Conduction Heat Transfer

Reading

 $10-1 \to 10-6$

 $11\text{-}1 \rightarrow 11\text{-}2$

Problems

10-20, 10-35, 10-49, 10-54, 10-59, 10-69, 10-71, 10-92, 10-126, 10-143, 10-157, 10-162 11-14, 11-17, 11-36, 11-41, 11-46, 11-97, 11-104

General Heat Conduction

From a $\mathbf{1}^{st}$ law energy balance:

$$\frac{\partial E}{\partial t} = \dot{Q}_x - \dot{Q}_{x + \Delta x}$$

If the volume to the element is given as $V = A \cdot \Delta x$, then the mass of the element is

$$m = \rho \cdot A \cdot \Delta x$$

The energy term (KE = PE = 0) is

$$E = m \cdot u = (\rho \cdot A \cdot \Delta x) \cdot u$$

For an incompressible substance the internal energy is $du=C\ dT$ and we can write

$$\frac{\partial E}{\partial t} = \rho C A \Delta x \frac{\partial T}{\partial t}$$

Heat flow along the x-direction is a product of the temperature difference.

$$\dot{Q}_x = rac{kA}{\Delta x}(T_x - T_{x+\Delta x})$$

where k is the thermal conductivity of the material. In the limit as $\Delta x o 0$

$$\dot{Q}_x = -kArac{\partial T}{\partial x}$$

This is Fourier's law of heat conduction. The -ve in front of k guarantees that we adhere to the 2^{nd} law and that heat always flows in the direction of lower temperature.

1

We can write the heat flow rate across the differential length, Δx as a truncated Taylor series expansion as follows

$$\dot{Q}_{x+\Delta x} = \dot{Q}_x + rac{\partial \dot{Q}_x}{\partial x} \Delta x$$

when combined with Fourier's equation gives

$$\dot{Q}_{x+\Delta x} = \underbrace{-kArac{\partial T}{\partial x}}_{\dot{Q}_x} - rac{\partial}{\partial x}\left(kArac{\partial T}{\partial x}
ight)\Delta x$$

Noting that

$$\dot{Q}_x - \dot{Q}_{x+\Delta x} = rac{\partial E}{\partial t} =
ho C A \Delta x rac{\partial T}{\partial t}$$

By removing the common factor of $A\Delta x$ we can then write the general 1-D conduction equation as

$$\underbrace{\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right)}_{\begin{array}{c} longitudinal \\ conduction \end{array}} = \underbrace{\rho C\frac{\partial T}{\partial t}}_{\begin{array}{c} thermal \\ inertia \end{array}}$$

Steady Conduction

- $\bullet \ \frac{\partial T}{\partial t} \to 0$
- properties are constant
- temperature varies in a linear manner
- heat flow rate defined by Fourier's equation
- ullet resistance to heat flow: $R=rac{\Delta T}{\dot{Q}}$

Transient Conduction

- properties are constant
- $\bullet \ \ \text{therefore} \ \frac{\partial^2 T}{\partial x^2} = \frac{\rho C}{k} \frac{\partial T}{\partial t} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$

where thermal diffusivity is defined as $\alpha = \frac{k}{\rho C}$

- exact solution is complicated
- partial differential equation can be solved using approximate or graphical methods

Steady Heat Conduction

Thermal Resistance Networks

Thermal circuits based on heat flow rate, \dot{Q} , temperature difference, ΔT and thermal resistance, R, enable analysis of complex systems.

Thermal Resistance

The thermal resistance to heat flow $({}^{\circ}C/W)$ can be constructed for all heat transfer mechanisms, including conduction, convection, and radiation as well as contact resistance and spreading resistance.

Radiation:
$$R_{rad}=rac{1}{h_{rad}A} \longrightarrow h_{rad}=\epsilon\sigma(T_s^2+T_{surr}^2)(T_s+T_{surr})$$

Contact: $R_c=rac{1}{h_cA} \longrightarrow h_c$ see Table 10-2

Cartesian Systems

Resistances in Series

The heat transfer across the fluid/solid interface is based on Newton's law of cooling

$$\dot{Q} = hA(T_{in} - T_{out}) = rac{T_{in} - T_{out}}{R_{conv}} \hspace{1cm} ext{where} \hspace{1cm} R_{conv} = rac{1}{hA}$$

The heat flow through a solid material of conductivity, k is

$$\dot{Q} = rac{kA}{L}(T_{in} - T_{out}) = rac{T_{in} - T_{out}}{R_{cond}}$$
 where $R_{cond} = rac{L}{kA}$

where
$$R_{cond} = rac{L}{kA}$$

By summing the temperature drop across each section, we can write:

$$egin{array}{lcl} \dot{Q} \, R_1 &=& (T_{\infty_1} - T_1) \ \dot{Q} \, R_2 &=& (T_1 - T_2) \ \dot{Q} \, R_3 &=& (T_2 - T_3) \ \dot{Q} \, R_4 &=& (T_3 - T_{\infty_2}) \ \hline \dot{Q} \left(\sum\limits_{i=1}^4 R_i
ight) &=& (T_{\infty_1} - T_{\infty_2}) \end{array}$$

The total heat flow across the system can be written as

$$\dot{Q} = rac{T_{\infty_1} - T_{\infty_2}}{R_{total}}$$
 where $R_{total} = \sum\limits_{i=1}^4 R_i$

Resistances in Parallel

For systems of parallel flow paths as shown above, we can use the $\mathbf{1}^{st}$ law to preserve the total energy

$$\dot{Q}=\dot{Q}_1+\dot{Q}_2$$

where we can write

$$\dot{Q}_1=rac{T_1-T_2}{R_1} \qquad \qquad R_1=rac{L}{k_1A_1} \ \dot{Q}_2=rac{T_1-T_2}{R_2} \qquad \qquad R_2=rac{L}{k_2A_2} \ \dot{Q}=\sum \dot{Q}_i=(T_1-T_2)\left(\sumrac{1}{R_i}
ight) \qquad ext{where} \qquad rac{1}{R_{total}}=\sumrac{1}{R_i}=UA$$

In general, for parallel networks we can use a parallel resistor network as follows:

$$rac{1}{R_{total}} = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3} + \cdots$$

and

$$\dot{Q} = rac{T_1 - T_2}{R_{total}}$$

Thermal Contact Resistance

- <u>real surfaces</u> have microscopic roughness, leading to non-perfect contacts where
 - 1 4% of the surface area is in solid-solid contact, the remainder consists of air gaps
- the total heat flow rate can be written as

$$\dot{Q}_{total} = h_c A \Delta T_{interface}$$

where:

 h_c = thermal contact conductance

A = apparent or projected area of the contact

 $\Delta T_{interface}$ = average temperature drop across the interface

The conductance, $oldsymbol{h_c}$ and the contact resistance, $oldsymbol{R_c}$ can be written as

$$h_c A = rac{\dot{Q}_{total}}{\Delta T_{interface}} = rac{1}{R_c}$$

Table 10-2 can be used to obtain some representative values for contact conductance

Table 10-2: Contact Conductances

				Chapter 10	I 415
TABLE 10-2					
Thermal contact condu	ctance of some me	tal surfaces in air (from	n various sources)		
Material	Surface condition	Roughness, μm	Temperature, °C	Pressure, MPa	<i>h_c,</i> * W/m² · °C
Identical Metal Pairs					
416 Stainless steel	Ground	2.54	90–200	0.17-2.5	3800
304 Stainless steel	Ground	1.14	20	4–7	1900
Aluminum	Ground	2.54	150	1.2–2.5	11,400
Copper	Ground	1.27	20	1.2-20	143,000
Copper	Milled	3.81	20	1–5	55,500
Copper (vacuum)	Milled	0.25	30	0.17–7	11,400
Dissimilar Metal Pairs					
Stainless steel-				10	2900
Aluminum		20–30	20	20	3600
Stainless steel-				10	16,400
Aluminum		1.0-2.0	20	20	20,800
Steel Ct-30-				10	50,000
Aluminum	Ground	1.4-2.0	20	15–35	59,000
Steel Ct-30-				10	4800
Aluminum	Milled	4.5-7.2	20	30	8300
				5	42,000
Aluminum-Copper	Ground	1.17 - 1.4	20	15	56,000
				10	12,000
Aluminum-Copper	Milled	4.4–4.5	20	20–35	22,000

^{*}Divide the given values by 5.678 to convert to Btu/h \cdot ft 2 \cdot °F.

Cylindrical Systems

Steady, 1D heat flow from T_1 to T_2 in a cylindrical system occurs in a radial direction where the lines of constant temperature (isotherms) are concentric circles, as shown by the dotted line and T = T(r).

Performing a 1^{st} law energy balance on a *control mass* from the annular ring of the cylindrical cylinder gives:

$$\dot{Q}_r = rac{T_1 - T_2}{\left(rac{\ln(r_2/r_1)}{2\pi k \mathcal{L}}
ight)} \qquad ext{where} \;\; R = \left(rac{\ln(r_2/r_1)}{2\pi k \mathcal{L}}
ight)$$

Composite Cylinders

Then the total resistance can be written as

$$egin{array}{lcl} R_{total} &=& R_1 + R_2 + R_3 + R_4 \ &=& rac{1}{h_1 A_1} + rac{\ln(r_2/r_1)}{2\pi k_2 \mathcal{L}} + rac{\ln(r_3/r_2)}{2\pi k_3 \mathcal{L}} + rac{1}{h_4 A_4} \end{array}$$

Example 5-1: Determine the temperature (T_1) of an electric wire surrounded by a layer of plastic insulation with a thermal conductivity if $0.15 \ W/mK$ when the thickness of the insulation is a) 2 mm and b) 4 mm, subject to the following conditions:

Given:

I = 10 A

 $\Delta \epsilon = \epsilon_1 - \epsilon_2 = 8 V$

 $\mathcal{L} = 5 m$

 $k = 0.15 \ W/mK$ $T_{\infty} = 30 \ ^{\circ}C$ $h = 12 \ W/m^2 \cdot K$

Find:

when:

 $\delta = 2 mm$

 $\delta = 4 mm$

Critical Radius of Insulation

Consider a steady, 1-D problem where an insulation cladding is added to the outside of a tube with constant surface temperature T_i . What happens to the heat transfer as insulation is added, i.e. we increase the thickness of the insulation?

The resistor network can be written as a series combination of the resistance of the insulation, $oldsymbol{R_1}$ and the convective resistance, R_2

$$R_{total} = R_1 + R_2 = rac{\ln(r_o/r_i)}{2\pi k \mathcal{L}} + rac{1}{h2\pi r_o \mathcal{L}}$$

Could there be a situation in which adding insulation <u>increases</u> the overall heat transfer?

$$rac{dR_{total}}{dr_o} = rac{1}{2\pi k r_o \mathcal{L}} - rac{1}{h2\pi r_o^2 \mathcal{L}} = 0 \hspace{1cm} \Rightarrow \hspace{1cm} r_{cr,cyl} = rac{k}{h} \hspace{0.5cm} [m]$$

There is always a value of $r_{cr,cal}$, but there is a minimum in heat transfer only if $r_{cr,cal} > r_i$

Spherical Systems

For steady, 1D heat flow in spherical geometries we can write the heat transfer in the radial direction as

$$\dot{Q}=rac{4\pi k r_i r_o}{(r_0-r_i)}\left(T_i-T_o
ight)=rac{(T_i-T_o)}{R}$$

where:
$$R=rac{r_o-r_i}{4\pi k r_i r_o}$$

The critical radius of insulation for a spherical shell is given as

$$r_{cr,sphere} = rac{2k}{h} \quad [m]$$

Heat Transfer from Finned Surfaces

the fin between x as $\dot{Q}_x - \dot{Q}_{x+\Delta}$

We can establish a 1^{st} law balance over the thin slice of the fin between x and $x + \Delta x$ such that

$$\dot{Q}_x - \dot{Q}_{x+\Delta x} - \underbrace{P\Delta x}_{A_{surface}} h(T-T_{\infty}) = 0$$

From Fourier's law we know

$$\dot{Q}_x - \dot{Q}_{x+\Delta x} = k A_c rac{d^2 T}{dx^2} \Delta x$$

Therefore the conduction equation for a fin with constant cross section is

$$\underbrace{kA_c \frac{d^2T}{\partial x^2}}_{longitudinal} - \underbrace{hP(T-T_\infty)}_{lateral} = 0$$

 T_{b} T_{∞} T_{∞}

Let the temperature difference between the fin and the surroundings (temperature excess) be $\theta = T(x) - T_{\infty}$ which allows the 1-D fin equation to be written as

$$rac{d^2 heta}{dx^2}-m^2 heta=0$$
 where $m=\left(rac{hP}{kA_c}
ight)^{1/2}$

The solution to the differential equation for θ is

$$heta(x) = C_1 \sinh(mx) + C_2 \cosh(mx) \qquad \quad [\equiv heta(x) = C_1 e^{mx} + C_2 e^{-mx}]$$

Potential boundary conditions include:

Substituting the boundary conditions to find the constants of integration, the temperature distribution and fin heat transfer rate can be determined as follows:

Case 1: Prescribed temperature ($\theta_{@x+L} = \theta_L$)

$$rac{ heta(x)}{ heta_b} = rac{(heta_L/ heta_b)\sinh mx + \sinh m(L-x)}{\sinh mL}$$

$$\dot{Q}_b = M \frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$$

Case 2: Adiabatic tip
$$\left(\left. \frac{d heta}{dx} \right|_{x=L} = 0
ight)$$

$$rac{ heta(x)}{ heta_b} \; = \; rac{\cosh m(L-x)}{\cosh mL}$$

 $\dot{Q}_b = M anh mL$

Case 3: Infinitely long fin $(\theta \to 0)$

$$rac{ heta(x)}{ heta_b} \; = \; e^{-mx} \qquad \qquad \dot{Q}_b = M$$

where

$$m = \sqrt{hP/(kA_c)}$$
 $M = \sqrt{hPkA_c} \; heta_b$
 $heta_b = T_b - T_\infty$

Fin Efficiency and Effectiveness

The dimensionless parameter that compares the actual heat transfer from the fin to the ideal heat transfer from the fin is the *fin efficiency*

$$\eta = rac{ ext{actual heat transfer rate}}{ ext{maximum heat transfer rate when}} = rac{\dot{Q}_b}{hPL heta_b}$$

If the fin has a constant cross section then

$$\eta = rac{ anh(mL)}{mL}$$

An alternative figure of merit is the *fin effectiveness* given as

$$\epsilon_{fin} = rac{ ext{total fin heat transfer}}{ ext{the heat transfer that would have}} = rac{\dot{Q}_b}{hA_c heta_b}$$
 in the absence of the fin

How to Determine the Appropriate Fin Length

- theoretically an infinitely long fin will dissipate the most heat
- but practically, an extra long fin is inefficient given the exponential temperature decay over the length of the fin
- so what is a realistic fin length in order to optimize performance and cost

If we determine the ratio of heat flow for a fin with an insulated tip (Case 2) versus an infinitely long fin (Case 3) we can assess the relative performance of a conventional fin

$$rac{\dot{Q}_{Case~2}}{\dot{Q}_{Case~3}} = rac{M anh mL}{M} = anh mL$$

Transient Heat Conduction

Performing a $\mathbf{1}^{st}$ law energy balance on a plane wall gives

$$egin{array}{ll} \dot{Q}_{cond} &=& rac{T_H - T_s}{L/(k \cdot A)} \ &=& \dot{Q}_{conv} = rac{T_s - T_\infty}{1/(h \cdot A)} \end{array}$$

where the Biot number can be obtained as follows:

$$rac{T_H - T_s}{T_s - T_\infty} = rac{L/(k \cdot A)}{1/(h \cdot A)} = rac{ ext{internal resistance to H.T.}}{ ext{external resistance to H.T.}} = rac{hL}{k} = Bi$$

 $R_{int} << R_{ext}$: the Biot number is small and we can conclude

$$T_H - T_s << T_s - T_\infty$$
 and in the limit $T_H pprox T_s$

 $R_{ext} << R_{int}$: the Biot number is large and we can conclude

$$T_s - T_\infty << T_H - T_s$$
 and in the limit $T_s pprox T_\infty$

Transient Conduction Analysis

- if the internal temperature of a body remains relatively constant with respect to time
 - can be treated as a lumped system analysis
 - heat transfer is a function of time only, T = T(t)

- $Bi \leq 0.1$: temperature profile is not a function of position temperature profile only changes with respect to time $\to T = T(t)$ use lumped system analysis
- Bi>0.1: temperature profile changes with respect to time and position $\to T=T(x,t)$ use approximate analytical or graphical solutions (Heisler charts)

Lumped System Analysis

At $t>0,\ T=T(x,y,z,t)$, however, when $Bi\leq 0.1$ then we can assume $T\approx T(t)$.

Performing a 1^{st} law energy balance on the control volume shown below

$$rac{dE_{C.M.}}{dt}=\dot{E}_{in}-\dot{E}_{out}+\dot{E}_{g}^{
ightarrow0}$$

If we assume PE and KE to be negligible then

$$\frac{dU}{dt} = -\dot{Q}$$
 $\Leftarrow \frac{dU}{dt} < 0$ implies U is decreasing

For an incompressible substance specific heat is constant and we can write

$$\underbrace{mC}_{\equiv C_{th}} \frac{dT}{dt} = - \underbrace{Ah}_{1/R_{th}} (T - T_{\infty})$$

where $C_{th} =$ lumped capacitance

$$C_{th}rac{dT}{dt}=-rac{1}{R_{th}}(T-T_{\infty})$$

We can integrate and apply the initial condition, $T=T_i \ @t=0$ to obtain

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-t/(R_{th} \cdot C_{th})} = e^{-t/\tau} = e^{-bt}$$

where

$$\frac{1}{b} = \tau$$

$$= R_{th} \cdot C_{th}$$

$$= \text{thermal time constant}$$

$$= \frac{mC}{4b} = \frac{\rho VC}{4b}$$

 $\frac{T - T_{\infty}}{T_{i} - T_{\infty}}$ 1 $e^{-t/\tau}$

The total heat transferred over the time period $0 o t^*$ is

$$Q_{total} = mC(T_i - T_{\infty})[1 - e^{-t^*/\tau}]$$

Example 5-2: Determine the time it takes a fuse to melt if a current of 3 A suddenly flows through the fuse subject to the following conditions:

Given:

$$D = 0.1 \; mm$$
 $T_{melt} = 900 \; ^{\circ}C$ $k = 20 \; W/mK$

$$L~=~10~mm$$
 $T_{\infty}~=~30~^{\circ}C$ $lpha~=~5 imes10^{-5}~m^2/s\equiv k/
ho C_p$

Assume:

- ullet constant resistance $\mathcal{R}=0.2~ohms$
- ullet the overall heat transfer coefficient is $h=h_{conv}+h_{rad}=10~W/m^2K$
- neglect any conduction losses to the fuse support

Approximate Analytical and Graphical Solutions (Heisler Charts)

If Bi > 0.1

- need to solve the partial differential equation for temperature
- leads to an infinite series solution ⇒ difficult to obtain a solution (see pp. 481 - 483 for exact solution by separation of variables)

We must find a solution to the PDE

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \quad \Rightarrow \quad \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}} = \sum_{n=1,3,5...}^{\infty} A_n e^{\left(-\frac{\lambda_n}{L}\right)^2 \alpha t} \cos\left(\frac{\lambda_n x}{L}\right)$$

By using dimensionless groups, we can reduce the temperature dependence to 3 dimensionless parameters

Dimensionless Group	Formulation		
temperature	$ heta(x,t) = rac{T(x,t) - T_{\infty}}{T_i - T_{\infty}}$		
position	X=x/L		
heat transfer	Bi = hL/k Biot number		
time	$Fo=lpha t/L^2$ Fourier number		

note: Cengel uses τ instead of Fo.

Now we can write

$$\theta(x,t) = f(X,Bi,Fo)$$

The characteristic length for the Biot number is

slab
$$\mathcal{L} = L$$
 cylinder $\mathcal{L} = r_o$ sphere $\mathcal{L} = r_o$

contrast this versus the characteristic length for the lumped system analysis.

With this, two approaches are possible

- 1. use the first term of the infinite series solution. This method is only valid for Fo > 0.2
- 2. use the Heisler charts for each geometry as shown in Figs. 11-15, 11-16 and 11-17

First term solution: $Fo > 0.2 \rightarrow \text{ error about } 2\% \text{ max.}$

Plane Wall:
$$heta_{wall}(x,t)=rac{T(x,t)-T_{\infty}}{T_i-T_{\infty}}=A_1e^{-\lambda_1^2Fo}\,\cos(\lambda_1x/L)$$

Cylinder:
$$heta_{cyl}(r,t)=rac{T(r,t)-T_{\infty}}{T_i-T_{\infty}}=A_1e^{-\lambda_1^2Fo}\,{
m J}_0(\lambda_1r/r_o)$$

$$\text{Sphere:} \qquad \quad \theta_{sph}(r,t) = \frac{T(r,t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 Fo} \, \frac{\sin(\lambda_1 r/r_o)}{\lambda_1 r/r_o}$$

 λ_1 , A_1 can be determined from Table 11-2 based on the calculated value of the Biot number (will likely require some interpolation). The Bessel function, J_0 can be calculated using Table 11-3.

Using Heisler Charts

- find T_0 at the center for a given time (Table 11-15 a, Table 11-16 a or Table 11-17 a)
- find T at other locations at the same time (Table 11-15 b, Table 11-16 b or Table 11-17 b)
- ullet find Q_{tot} up to time t (Table 11-15 c, Table 11-16 c or Table 11-17 c)

Example 5-3: An aluminum plate made of Al 2024-T6 with a thickness of $0.15 \ m$ is initially at a temperature of $300 \ K$. It is then placed in a furnace at $800 \ K$ with a convection coefficient of $500 \ W/m^2 K$.

Find: i) the time (s) for the plate midplane to reach 700 K

ii) the surface temperature at this condition. Use both the Heisler charts and the approximate analytical, first term solution.