
Conduction Heat Transfer

Reading Problems
10-1→ 10-6 10-20, 10-35, 10-49, 10-54, 10-59, 10-69,

10-71, 10-92, 10-126, 10-143, 10-157, 10-162
11-1→ 11-2 11-14, 11-17, 11-36, 11-41, 11-46, 11-97, 11-104

General Heat Conduction
From a 1st law energy balance:

∂E

∂t
= Q̇x − Q̇x+∆x

If the volume to the element is given as
V = A ·∆x, then the mass of the element is

m = ρ ·A ·∆x
x=0

xx

x+ xD

x=L
insulated

Q
x

Q
x+ xD

A

The energy term (KE = PE = 0) is

E = m · u = (ρ ·A ·∆x) · u

For an incompressible substance the internal energy is du = C dT and we can write

∂E

∂t
= ρCA∆x

∂T

∂t

Heat flow along the x−direction is a product of the temperature difference.

Q̇x =
kA

∆x
(Tx − Tx+∆x)

where k is the thermal conductivity of the material. In the limit as ∆x→ 0

Q̇x = −kA
∂T

∂x

This is Fourier’s law of heat conduction. The −ve in front of k guarantees that we adhere to the
2nd law and that heat always flows in the direction of lower temperature.
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We can write the heat flow rate across the differential length, ∆x as a truncated Taylor series
expansion as follows

Q̇x+∆x = Q̇x +
∂Q̇x

∂x
∆x

when combined with Fourier’s equation gives

Q̇x+∆x = −kA
∂T

∂x︸ ︷︷ ︸
Q̇x

−
∂

∂x

(
kA

∂T

∂x

)
∆x

Noting that

Q̇x − Q̇x+∆x =
∂E

∂t
= ρCA∆x

∂T

∂t

By removing the common factor of A∆x we can then write the general 1-D conduction equation
as

∂

∂x

(
k
∂T

∂x

)
︸ ︷︷ ︸

longitudinal
conduction

= ρC
∂T

∂t︸ ︷︷ ︸
thermal
inertia

↙ ↘

Steady Conduction Transient Conduction

•
∂T

∂t
→ 0

• properties are constant

• temperature varies in a linear manner

• heat flow rate defined by Fourier’s
equation

• resistance to heat flow: R =
∆T

Q̇

• properties are constant

• therefore
∂2T

∂x2
=
ρC

k

∂T

∂t
=

1

α

∂T

∂t

where thermal diffusivity is defined as

α =
k

ρC

• exact solution is complicated

• partial differential equation can be
solved using approximate or graphical
methods
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Steady Heat Conduction

Thermal Resistance Networks

Thermal circuits based on heat flow rate, Q̇, temperature difference, ∆T and thermal resistance,
R, enable analysis of complex systems.

Thermal Resistance

The thermal resistance to heat flow (◦C/W ) can be constructed for all heat transfer mechanisms,
including conduction, convection, and radiation as well as contact resistance and spreading resis-
tance.

R - film resistancef

R - fin resistancefin

R - base resistanceb

R - spreading resistances
R - contact resistancec

Tsource

Tsink

Conduction: Rcond =
L

kA

Convection: Rconv =
1

hA

Radiation: Rrad =
1

hradA
−→ hrad = εσ(T 2

s + T 2
surr)(Ts + Tsurr)

Contact: Rc =
1

hcA
−→ hc see Table 10-2

Cartesian Systems

Resistances in Series

The heat transfer across the fluid/solid interface is based on Newton’s law of cooling

Q̇ = hA(Tin − Tout) =
Tin − Tout
Rconv

where Rconv =
1

hA
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The heat flow through a solid material of conductivity, k is

Q̇ =
kA

L
(Tin − Tout) =

Tin − Tout
Rcond

where Rcond =
L

kA

By summing the temperature drop across
each section, we can write:

Q̇ R1 = (T∞1 − T1)

Q̇ R2 = (T1 − T2)

Q̇ R3 = (T2 − T3)

Q̇ R4 = (T3 − T∞2)

Q̇

(
4∑
i=1

Ri

)
= (T∞1 − T∞2)

The total heat flow across the system can be written as

Q̇ =
T∞1 − T∞2

Rtotal

where Rtotal =
4∑
i=1

Ri
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Resistances in Parallel

For systems of parallel flow paths as
shown above, we can use the 1st law
to preserve the total energy

Q̇ = Q̇1 + Q̇2

where we can write

L

T
1

T
2

Q
Q

R
1

R
2

R
3

k
1

k
2

k
3

Q̇1 =
T1 − T2

R1

R1 =
L

k1A1

Q̇2 =
T1 − T2

R2

R2 =
L

k2A2

Q̇ =
∑
Q̇i = (T1 − T2)

(∑ 1

Ri

)
where

1

Rtotal

=
∑ 1

Ri

= UA

In general, for parallel networks we can use a parallel resistor network as follows:

T
1

T
1

T
2 T

2

R
1

R
totalR

2

R
3

=

1

Rtotal

=
1

R1

+
1

R2

+
1

R3

+ · · ·

and

Q̇ =
T1 − T2

Rtotal
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Thermal Contact Resistance

• real surfaces have microscopic roughness,
leading to non-perfect contacts where

– 1 - 4% of the surface area is in solid-solid
contact, the remainder consists of air gaps

• the total heat flow rate can be
written as

Q̇total = hcA∆Tinterface

where:

hc = thermal contact conductance
A = apparent or projected area of the contact
∆Tinterface = average temperature drop across the interface

The conductance, hc and the contact resistance,Rc can be written as

hcA =
Q̇total

∆Tinterface
=

1

Rc

Table 10-2 can be used to obtain some representative values for contact conductance

Table 10-2: Contact Conductances
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Cylindrical Systems

L

r
1

r
2

Q
r

T
1

T
2

A=2 rLp

k

r

Steady, 1D heat flow from T1 to T2

in a cylindrical system occurs in a ra-
dial direction where the lines of con-
stant temperature (isotherms) are con-
centric circles, as shown by the dotted
line and T = T (r).
Performing a 1st law energy balance
on a control mass from the annular
ring of the cylindrical cylinder gives:

Q̇r =
T1 − T2(

ln(r2/r1)

2πkL

) where R =

(
ln(r2/r1)

2πkL

)

Composite Cylinders

Then the total resistance can be written as

Rtotal = R1 +R2 +R3 +R4

=
1

h1A1

+
ln(r2/r1)

2πk2L
+

ln(r3/r2)

2πk3L
+

1

h4A4
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Example 5-1: Determine the temperature (T1) of an electric wire surrounded by a layer of
plastic insulation with a thermal conductivity if 0.15 W/mK when the thickness of the insu-
lation is a) 2 mm and b) 4 mm, subject to the following conditions:

Given: Find:
I = 10 A T1 = ???

∆ε = ε1 − ε2 = 8 V when:
D = 3 mm δ = 2 mm
L = 5 m δ = 4 mm
k = 0.15 W/mK

T∞ = 30 ◦C
h = 12 W/m2 ·K

Critical Radius of Insulation

Consider a steady, 1-D problem where an insulation
cladding is added to the outside of a tube with constant
surface temperature Ti. What happens to the heat trans-
fer as insulation is added, i.e. we increase the thickness
of the insulation?

The resistor network can be written as a series combina-
tion of the resistance of the insulation, R1 and the con-
vective resistance,R2

Rtotal = R1 +R2 =
ln(ro/ri)

2πkL
+

1

h2πroL

Could there be a situation in which adding insulation increases the overall heat transfer?
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dRtotal

dro
=

1

2πkroL
−

1

h2πr2
oL

= 0 ⇒ rcr,cyl =
k

h
[m]

re
s
is

ta
n

c
e

Rtotal

R
1

added insulation

lowers resistance

added insulation

increases resistance

R
bare

R
2

r
i

r
or

c

There is always a value of rcr,cal, but there is a minimum in heat transfer only if rcr,cal > ri

Spherical Systems

For steady, 1D heat flow in spherical geometries we can write
the heat transfer in the radial direction as

Q̇ =
4πkriro

(r0 − ri)
(Ti − To) =

(Ti − To)
R

where: R =
ro − ri
4πkriro

r
i

r
o

T
i

T
o

The critical radius of insulation for a spherical shell is given as

rcr,sphere =
2k

h
[m]
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Heat Transfer from Finned Surfaces
We can establish a 1st law balance over the thin slice of
the fin between x and x+ ∆x such that

Q̇x − Q̇x+∆x − P∆x︸ ︷︷ ︸
Asurface

h(T − T∞) = 0

From Fourier’s law we know

Q̇x − Q̇x+∆x = kAc

d2T

dx2
∆x

Therefore the conduction equation for a fin with constant
cross section is

kAc

d2T

∂x2︸ ︷︷ ︸
longitudinal
conduction

−hP (T − T∞)︸ ︷︷ ︸
lateral

convection

= 0

Let the temperature difference between the fin and the surroundings (temperature excess) be
θ = T (x)− T∞ which allows the 1-D fin equation to be written as

d2θ

dx2
−m2θ = 0 where m =

(
hP

kAc

)1/2

The solution to the differential equation for θ is

θ(x) = C1 sinh(mx) + C2 cosh(mx) [≡ θ(x) = C1e
mx + C2e

−mx]

Potential boundary conditions include:

Base: → @x = 0 θ = θb
Tip: → @x = L θ = θL [T -specified tip]

θ =
dθ

dx

∣∣∣∣∣
x=L

= 0 [adiabatic (insulated) tip]

θ → 0 [infinitely long fin]

Substituting the boundary conditions to find the constants of integration, the temperature distribu-
tion and fin heat transfer rate can be determined as follows:

Case 1: Prescribed temperature (θ@ x+L = θL)

θ(x)

θb
=

(θL/θb) sinhmx+ sinhm(L− x)

sinhmL
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Q̇b = M
(coshmL− θL/θb)

sinhmL

Case 2: Adiabatic tip
(
dθ

dx

∣∣∣∣∣
x=L

= 0

)

θ(x)

θb
=

coshm(L− x)

coshmL
Q̇b = M tanhmL

Case 3: Infinitely long fin (θ → 0)

θ(x)

θb
= e−mx Q̇b = M

where

m =
√
hP/(kAc)

M =
√
hPkAc θb

θb = Tb − T∞

Fin Efficiency and Effectiveness

The dimensionless parameter that compares the actual heat transfer from the fin to the ideal heat
transfer from the fin is the fin efficiency

η =
actual heat transfer rate

maximum heat transfer rate when
the entire fin is at Tb

=
Q̇b

hPLθb

If the fin has a constant cross section then

η =
tanh(mL)

mL

An alternative figure of merit is the fin effectiveness given as

εfin =
total fin heat transfer

the heat transfer that would have
occurred through the base area

in the absence of the fin

=
Q̇b

hAcθb
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How to Determine the Appropriate Fin Length

• theoretically an infinitely long fin will
dissipate the most heat

• but practically, an extra long fin is in-
efficient given the exponential temper-
ature decay over the length of the fin

• so what is a realistic fin length in order
to optimize performance and cost

If we determine the ratio of heat flow for a
fin with an insulated tip (Case 2) versus an
infinitely long fin (Case 3) we can assess the
relative performance of a conventional fin

Q̇Case 2

Q̇Case 3

=
M tanhmL

M
= tanhmL

High

heat

transfer

Low

heat

transfer

No

heat

transfer

T

T

T

x

Tb

L

T = high
T= low

T = 0

h, T

T(x)

0

Transient Heat Conduction
Performing a 1st law energy balance on a plane
wall gives

Q̇cond =
TH − Ts
L/(k ·A)

= Q̇conv =
Ts − T∞
1/(h ·A)

where the Biot number can be obtained as follows:

TH − Ts
Ts − T∞

=
L/(k ·A)

1/(h ·A)
=

internal resistance to H.T.
external resistance to H.T.

=
hL

k
= Bi

Rint << Rext: the Biot number is small and we can conclude

TH − Ts << Ts − T∞ and in the limit TH ≈ Ts

Rext << Rint: the Biot number is large and we can conclude

Ts − T∞ << TH − Ts and in the limit Ts ≈ T∞

12



Transient Conduction Analysis
• if the internal temperature of a body remains relatively constant with respect to time

– can be treated as a lumped system analysis

– heat transfer is a function of time only, T = T (t)

T T T T

T(t)

L LL L

t
t

x x

T(x,0) = Ti

T(x,t)

Bi 0.1≤ Bi > 0.1

Bi ≤ 0.1: temperature profile is not a function of position
temperature profile only changes with respect to time→ T = T (t)
use lumped system analysis

Bi > 0.1: temperature profile changes with respect to time and position→ T = T (x, t)
use approximate analytical or graphical solutions (Heisler charts)

Lumped System Analysis

At t > 0, T = T (x, y, z, t), however, whenBi ≤ 0.1 then we can assume T ≈ T (t).

13



Performing a 1st law energy balance on the control volume shown below

dEC.M.

dt
= Ėin − Ėout + Ėg↗0

If we assume PE andKE to be negligible then

dU

dt
= −Q̇ ⇐

dU

dt
< 0 implies U is decreasing

For an incompressible substance specific heat is constant and we can write

mC︸ ︷︷ ︸
≡Cth

dT

dt
= − Ah︸︷︷︸

1/Rth

(T − T∞)

where Cth = lumped capacitance

Cth
dT

dt
= −

1

Rth

(T − T∞)

We can integrate and apply the initial condition, T = Ti @t = 0 to obtain

T (t)− T∞
Ti − T∞

= e−t/(Rth·Cth) = e−t/τ = e−bt

where

1

b
= τ

= Rth · Cth

= thermal time constant

=
mC

Ah
=
ρV C

Ah

The total heat transferred over the time period 0→ t∗ is

Qtotal = mC(Ti − T∞)[1− e−t∗/τ ]
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Example 5-2: Determine the time it takes a fuse to melt if a current of 3 A suddenly flows
through the fuse subject to the following conditions:

Given:
D = 0.1 mm Tmelt = 900 ◦C k = 20 W/mK

L = 10 mm T∞ = 30 ◦C α = 5× 10−5 m2/s ≡ k/ρCp

Assume:

• constant resistance R = 0.2 ohms

• the overall heat transfer coefficient is h = hconv + hrad = 10 W/m2K

• neglect any conduction losses to the fuse support
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Approximate Analytical and Graphical Solutions (Heisler Charts)
IfBi > 0.1

• need to solve the partial differential equation for temperature

• leads to an infinite series solution⇒ difficult to obtain a solution
(see pp. 481 - 483 for exact solution by separation of variables)

We must find a solution to the PDE

∂2T

∂x2
=

1

α

∂T

∂t
⇒

T (x, t)− T∞
Ti − T∞

=
∞∑

n=1,3,5...

Ane

(
−
λn

L

)2

αt

cos

(
λnx

L

)

By using dimensionless groups, we can reduce the temperature dependence to 3 dimensionless
parameters

Dimensionless Group Formulation

temperature θ(x, t) =
T (x, t)− T∞
Ti − T∞

position X = x/L

heat transfer Bi = hL/k Biot number

time Fo = αt/L2 Fourier number

note: Cengel uses τ instead of Fo.

Now we can write

θ(x, t) = f(X,Bi, Fo)

The characteristic length for the Biot number is

slab L = L
cylinder L = ro
sphere L = ro

contrast this versus the characteristic length for the lumped system analysis.
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With this, two approaches are possible

1. use the first term of the infinite series solution. This method is only valid for Fo > 0.2

2. use the Heisler charts for each geometry as shown in Figs. 11-15, 11-16 and 11-17

First term solution: Fo > 0.2→ error about 2% max.

Plane Wall: θwall(x, t) =
T (x, t)− T∞
Ti − T∞

= A1e
−λ2

1Fo cos(λ1x/L)

Cylinder: θcyl(r, t) =
T (r, t)− T∞
Ti − T∞

= A1e
−λ2

1Fo J0(λ1r/ro)

Sphere: θsph(r, t) =
T (r, t)− T∞
Ti − T∞

= A1e
−λ2

1Fo
sin(λ1r/ro)

λ1r/ro

λ1, A1 can be determined from Table 11-2 based on the calculated value of the Biot number (will
likely require some interpolation). The Bessel function, J0 can be calculated using Table 11-3.

Using Heisler Charts

• find T0 at the center for a given time (Table 11-15 a, Table 11-16 a or Table 11-17 a)

• find T at other locations at the same time (Table 11-15 b, Table 11-16 b or Table 11-17 b)

• findQtot up to time t (Table 11-15 c, Table 11-16 c or Table 11-17 c)

Example 5-3: An aluminum plate made of Al 2024-T6 with a thickness of 0.15 m is
initially at a temperature of 300 K. It is then placed in a furnace at 800 K with a
convection coefficient of 500 W/m2K.

Find: i) the time (s) for the plate midplane to reach 700 K
ii) the surface temperature at this condition. Use both the Heisler charts

and the approximate analytical, first term solution.
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