
Radiation Heat Transfer

Reading Problems
15-1→ 15-7 15-27, 15-33, 15-50, 15-57, 15-77, 15-79,

15-96, 15-107, 15-108

Introduction
A narrower band inside the thermal radiation spectrum is denoted as the visible spectrum, that is
the thermal radiation that can be seen by the human eye. The visible spectrum occupies roughly
0.4− 0.7 µm. Thermal radiation is mostly in the infrared range. As objects heat up, their energy
level increases, their frequency, ν, increases and the wavelength of the emitted radiation decreases.
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Blackbody Radiation
A blackbody is an ideal radiator that absorbs all incident radiation regardless of wavelength and
direction.

Definitions
1. Blackbody emissive power: the radiation emitted by a blackbody per unit time and per

unit surface area

Eb = σ T 4 [W/m2] ⇐ Stefan-Boltzmann law

where Stefan-Boltzmann constant = 5.67× 10−8 W/(m2 ·K4) and the temperature T
is given inK.
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2. Spectral blackbody emissive power: the amount of radiation energy emitted by a black-
body per unit surface area and per unit wavelength about the wavelength λ. The following
relationship between emissive power, temperature and wavelength is known as
Plank’s distribution law

Eb,λ =
C1

λ5[exp(C2/λT )− 1]
[W/(m2 · µm)]

where

C1 = 2πhC2
0 = 3.74177× 108 [W · µm4/m2]

C2 = hC0/K = 1.43878× 104 [µm ·K]

The wavelength at which the peak emissive power occurs for a given temperature can be
obtained from Wien’s displacement law

(λT )max power = 2897.8 µm ·K

3. Blackbody radiation function: the fraction of radiation emitted from a blackbody at tem-
perature, T in the wavelength band λ = 0→ λ

f0→λ =

∫ λ
0
Eb,λ(T ) dλ∫ ∞

0
Eb,λ(T ) dλ

=

∫ λ
0

C1

λ5[exp(C2/λT )− 1]
dλ

σT 4

let t = λT and dt = T dλ, then

f0→λ =

∫ t
0

C1T
5(1/T )dt

t5[exp(C2/t)− 1]

σT 4

=
C1

σ

∫ λT
0

dt

t5[exp(C2/t)− 1]

= f(λT )

f0→λ is tabulated as a function λT in Table 15.2

We can easily find the fraction of radiation emitted by a blackbody at temperature T over a
discrete wavelength band as

fλ1→λ2 = f(λ2T )− f(λ1T )

fλ→∞ = 1− f0→λ
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Radiation Properties of Real Surfaces

The thermal radiation emitted by a real surface is a
function of surface temperature, T , wavelength, λ,
direction and surface properties.

Eλ = f(T, λ, direction, surface properties)

⇒ spectral emissive power

while for a blackbody, the radiation was only a function of temperature and wavelength

Eb,λ = f(T, λ) → diffuse emitter ⇒ independent of direction

Definitions

1. Diffuse surface: properties are independent of direction.

2. Gray surface: properties are independent of wavelength.

3. Emissivity: defined as the ratio of radiation emitted by a surface to the radiation emitted by
a blackbody at the same surface temperature.

ε(T ) =
radiation emitted by surface at temperature T

radiation emitted by a black surface at T

=

∫ ∞
0
Eλ(T ) dλ∫ ∞

0
Ebλ(T ) dλ

=

∫ ∞
0
ελ(T )Ebλ(T ) dλ

Eb(T )
=
E(T )

σT 4

where ε changes rather quickly with surface temperature.

Typical Emissivity Values
metal (polished) ε ≈ 0.1
metal (oxidized) ε ≈ 0.3− 0.4
skin ε ≈ 0.9
graphite ε ≈ 0.95

3



4. Irradiation,G: the radiation energy incident on a surface per unit area and per unit time

An energy balance based on incident radiation gives

G = ρG+ αG+ τG

where

ρ = reflectivity
α = absorptivity
τ = transmissivity

 ⇒ function of λ& T of the incident radiation G

ε = emissivity ⇒ function of λ& T of the emitting surface

If we normalize with respect to the total irradiation

α+ ρ+ τ = 1

In general ε 6= α. However, for a diffuse-gray surface (properties are independent of wave-
length and direction)

ε = α diffuse-gray surface

5. Radiosity, J : the total radiation energy leaving a surface per unit area and per unit time.

For a surface that is gray and opaque, i.e. ε = α and α+ ρ = 1, the radiosity is given as

J = radiation emitted by the surface + radiation reflected by the surface

= ε Eb + ρG

= εσT 4 + ρG

Since ρ = 0 for a blackbody, the radiosity of a blackbody is

J = σT 4
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Diffuse-Gray Surfaces, ε = α

Kirchhoff’s Law

The absorptivity, α(λ, T, direction) of a non-black surface is always equal to the emissivity,
ε(λ, T, direction) of the same surface when the surface is in thermal equilibrium with the radi-
ation that impinges on it.

ε(λ, T, φ, θ) = α(λ, T, φ, θ)

To a lesser degree of certainty we can write a more restrictive form of Kirchhoff’s law for diffuse-
gray surfaces where

ε(T ) = α(T )

While Kirchhoff’s law requires that the radiant source and the surface be in thermal equilibrium,
this is seldom the case. The law can still be used but you should proceed with caution when the
two temperatures differ by more than 100K.

View Factor (Shape Factor, Configuration Factor)

• Definition: The view factor, Fi→j
is defined as the fraction of radiation
leaving surface i which is intercepted
by surface j. Hence

Fi→j =
Q̇i→j

AiJi
=

radiation reaching j
radiation leaving i

Fi→j =
1

Ai

∫
Ai

∫
Aj

cos θi cos θj

πR2
dAjdAi

Fj→i =
1

Aj

∫
Aj

∫
Ai

cos θi cos θj

πR2
dAidAj
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View Factor Relations

Reciprocity Relation

The last two equations show that

AiFi→j = AjFj→i

Summation Relation

A1J1 = Q̇1→1 + Q̇1→2 + . . .+ Q̇1→N

Therefore

1 =
N∑
j=1

Q̇i→j

AiJi

 =
N∑
j=1

Fi→j

Hence

N∑
j=1

Fi→j = 1 ; i = 1, 2, . . . , N

Note that Fi→i 6= 0 for a concave surface. For a plane or convex surface Fi→i = 0.

Superposition Relation

If the surface is not available in the tables sometimes
it can be treated as the sum of smaller known surfaces
to form the full extent of the surface of interest.

F1→(2,3) = F1→2 + F1→3

Symmetry Relation

If the problem is symmetric, then the view factors will also be symmetric.
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Hottel Crossed String Method

Can be applied to 2D problems where surfaces are any shape, flat, concave or convex. Note for a
2D surface the area,A is given as a length times a unit width.

⇒

A1F12 = A2F21 =
(total crossed)− (total uncrossed)

2

A1 andA2 do not have to be parallel

A1F12 = A2F21 =
1

2
[(ac+ bd)︸ ︷︷ ︸

crossed

− (bc+ ad)︸ ︷︷ ︸
uncrossed

]

Radiation Exchange Between Surfaces
In general, radiation exchange between surfaces should include:

• irradiation of each surface accounting for all energy reflected from other surfaces

• multiple reflections may occur before all energy is absorbed

Diffuse-Gray Surfaces Forming an Enclosure

To help simplify radiation analyses in diffuse, gray enclosures we will assume

1. each surface of the enclosure is isothermal
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2. radiosity, Ji, and irradiation,Gi are uniform over each surface

3. the surfaces are opaque (τi = 0) and diffuse-gray (αi = εi)

4. the cavity is filled with a fluid which does not participate in the radiative exchange process

Radiation Heat Transfer To or From a Surface

• an energy balance on the i′th surface gives:

Q̇i = q̇iAi = Ai(Ji −Gi)

recasting the energy balance:

Q̇i = Ai[(Ei + ρiGi)︸ ︷︷ ︸
Ji

− (ρiGi + αiGi)︸ ︷︷ ︸
Gi

] = Ai(Ei − αiGi) (1)

8



where:

Ji = Ei + ρiGi (2) ⇒ radiosity

Ei = εiEb,i = εiσT
4
i (3) ⇒ emmisive power

ρi = 1− αi = 1− εi (4) ⇒ since αi + ρi + τi↗0= 1

and αi = εi

Combining Eqs. 2, 3 and 4 gives

Ji = εiEb,i + (1− εi)Gi (5)

Combining this with Eq. 1 gives the net radiation heat transfer to or from surface “i”

Qi =
Eb,i − Ji(
1− εi
εiAi

) ≡ potential difference
surface resistance

this surface resistance represents real surface behavior

Note: for a black surface

εi = αi = 1

and Eq. 5 becomes

Ji = Eb,i = σT 4
i ⇐

Radiation Heat Transfer Between Surfaces
• by inspection it is clearly seen that

{
irradiation on

surface i

}
=

{
radiation leaving the
remaining surfaces

}

AiGi =
N∑
j=1

Fj→i(AjJj) =
N∑
j=1

AiFi→jJi ⇐ (from reciprocity)

9



Therefore

Gi =
N∑
j=1

Fi→jJj

Combining this with Eq. 5 gives

Ji = εi σT
4
i︸ ︷︷ ︸

Eb,i

+(1− εi)
N∑
j=1

Fi→jJj

In addition by performing an energy balance at surface “i”, we can write

Q̇i = energy out− energy in

= AiJi −
N∑
j=1

AiFi→jJj

Since the summation rule states
N∑
j=1

Fi→j = 1, the above equation becomes

Q̇i = Ai


N∑
j=1

Fi→j︸ ︷︷ ︸
≡1

Ji −
N∑
j=1

Fi→jJj


Q̇i =

N∑
j=1

AiFi→j(Ji − Jj)

or

Q̇i =
N∑
j=1

Ji − Jj(
1

AiFi→j

) ≡ potential difference
space resistance

• the space resistance can be used for any gray, diffuse and opaque surfaces that form an
enclosure
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Radiation Exchange in Enclosures
The Two-Surface Enclosure

• radiation from surface 1 must equal
radiation to surface 2

Q̇1 = −Q̇2 = Q̇12

• the resistor network will consist of
2 surface resistances and 1 space
resistance

• the net radiation exchange can be
determined as follows:

Q1

Q2

A , T ,1 1      1

A , T ,2 2      2

Q12

Q̇12 =
Eb,1 − Eb,2
Rtotal

=
σ(T 4

1 − T 4
2 )

1− ε1
ε1A1

+
1

A1F12

+
1− ε2
ε2A2
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The Three-Surface Enclosure

• radiative heat transfer between
all combinations of surfaces
must be accounted for

• the resistor network will consist
of 3 surface resistances and 3
space resistances

• leads to a system of 3 equations
in 3 unknowns

• the algebraic sum of the cur-
rents (net radiation transfer) at
each node must equal zero.
Note: this assumes all heat flow
is into the node.

• if the assumed direction of cur-
rent flow is incorrect, your will
get a -ve value of Q̇

Performing an energy balance at each
node:
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A F1 13 A F2 23 nodes for applying

surface energy balance

at J1 ⇒ Q̇1 + Q̇12 + Q̇13 = 0

Eb1 − J1

1− ε1
ε1A1

+
J2 − J1

1

A1F12

+
J3 − J1

1

A1F13

= 0 (1)

at J2 ⇒ Q̇12 + Q̇2 + Q̇23 = 0

J1 − J2

1

A1F12

+
Eb2 − J2

1− ε1
ε1A1

+
J3 − J2

1

A2F23

= 0 (2)

at J3 ⇒ Q̇13 + Q̇23 + Q̇3 = 0

J1 − J3

1

A1F13

+
J2 − J3

1

A2F23

+
Eb3 − J3

1− ε1
ε1A1

= 0 (3)
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if surface temperature is known

• given Ti, evaluate Ebi = σT 4
i

• evaluate all space and surface resistances

• solve for J1, J2 and J3

• determine the heat flow rate as

Q̇i = Ai

∑
Fij(Ji − Jj)

if surface heat flow rate is known

• replace Q̇1, Q̇2 and/or Q̇3 in Eqs. 1-3

• solve for J1, J2 and J3

• determine the surface temperature as

σT 4
i = Ji +

1− εi
εi

∑
Fij(Ji − Jj)

Special Cases

The system of equations for 2 and 3-surface enclosures can simplify further when one or more
surfaces are: i) blackbody surfaces or ii) reradiating (fully insulated) surfaces.

blackbody surface: for a blackbody surface ε = 1 and the surface resistance goes to zero. As a
consequence the radiosity can be calculated directly as a function of surface temperature

Ji = Ebi = σT 4
i

reradiating surface: Qi = 0, therefore the heat flow into the radiosity node equals the heat flow
out of the node.

The resistor network simplifies to:

Q
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R

R
R

QQ

Q Q

E Eb1 b221

12

13

23

2
12

13 23

1
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and the system of equations can be easily solved as:

Q̇1 = −Q̇2 =
Eb1 − Eb2

R1 +

[
1

R12

+
1

R13 +R23

]−1

︸ ︷︷ ︸
parallel resistance

+R2

Example 7-1: Consider two very large parallel plates with diffuse, gray surfaces, Determine
the net rate of radiation heat transfer per unit surface area, Q̇12/A, between the two surfaces.
For Case 2, also determine T3, the temperature of a radiation shield, positioned midway be-
tween surfaces 1 and 2.

Given:

ε1 = 0.2 T1 = 800 K
ε2 = 0.7 T2 = 500 K
ε3 = 0.02 A1 = A2 = A3 = A

Assume steady state conditions.
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Example 7-2: A thermocouple is suspended between two parallel surfaces as shown in the
figure below. Find Tf , the temperature of the air stream by performing an energy balance on
the thermocouple.

Given:

Tw = 400 K Tth = 650 K
εth = 0.6 h = 80 W/(m2 ·K)

Assume steady state conditions.
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Example 7-3: Consider a room that is 4 m long by 3 m wide with a floor-to-ceiling dis-
tance of 2.5 m. The four walls of the room are well insulated, while the surface of the floor
is maintained at a uniform temperature of 30 ◦C using an electric resistance heater. Heat loss
occurs through the ceiling, which has a surface temperature of 12◦C. All surfaces have an
emissivity of 0.9.

a) determine the rate of heat loss, (W ), by radiation from the room.
b) determine the temperature, (K), of the walls.
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