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Chapter 10: Steady Heat Conduction 
In thermodynamics, we considered the amount of heat transfer as a system 
undergoes a process from one equilibrium state to another. Thermodynamics 
gives no indication of how long the process takes. In heat transfer, we are more 
concerned about the rate of heat transfer. 
The basic requirement for heat transfer is the presence of a temperature 
difference. The temperature difference is the driving force for heat transfer, just as 
voltage difference for electrical current. The total amount of heat transfer Q during 
a time interval can be determined from: 
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The rate of heat transfer per unit area is called heat flux, and the average heat flux 
on a surface is expressed as 
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Steady Heat Conduction in Plane Walls 
Conduction is the transfer of energy from the more energetic particles of a 
substance to the adjacent less energetic ones as result of interactions between the 
particles. 
Consider steady conduction through a large plane wall of thickness ∆x = L and 
surface area A. The temperature difference across the wall is ∆T = T2 – T1.  
Note that heat transfer is the only energy interaction; the energy balance for the 
wall can be expressed: 

dt
dE

QQ wall
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For steady-state operation,  

.constQQ outin == ••  

It has been experimentally observed that the rate of heat conduction through a 
layer is proportional to the temperature difference across the layer and the heat 
transfer area, but it is inversely proportional to the thickness of the layer. 
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Fig. 10-1: Heat conduction through a large plane wall. 

 
The constant proportionality k is the thermal conductivity of the material. In the 
limiting case where ∆x→0, the equation above reduces to the differential form: 

( )W
dx
dTkAQ Cond −=•  

which is called Fourier’s law of heat conduction. The term dT/dx is called the 
temperature gradient, which is the slope of the temperature curve (the rate of 
change of temperature T with length x). 

Thermal Conductivity 
Thermal conductivity k [W/mK] is a measure of a material’s ability to conduct heat. 
The thermal conductivity is defined as the rate of heat transfer through a unit 
thickness of material per unit area per unit temperature difference.  
Thermal conductivity changes with temperature and determined through 
experiments. 
The thermal conductivity of certain materials show a dramatic change at 
temperatures near absolute zero, when these solids become superconductors. 
An isotropic material is a material that has uniform properties in all directions. 
Insulators are materials used primarily to provide resistance to heat flow. They 
have low thermal conductivity. 
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The Thermal Resistance Concept 
The Fourier equation, for steady conduction through a constant area plane wall, 
can be written: 
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Rwall is the thermal resistance of the wall against heat conduction or simply the 
conduction resistance of the wall. 
The heat transfer across the fluid/solid interface is based on Newton’s law of 
cooling: 
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Rconv is the thermal resistance of the surface against heat convection or simply the 
convection resistance of the surface. 
Thermal radiation between a surface of area A at Ts and the surroundings at T∞ 
can be expressed as: 
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where σ = 5.67x10-8 [W/m2K4] is the Stefan-Boltzman constant. Also 0 < ε <1 is the 
emissivity of the surface. Note that both the temperatures must be in Kelvin. 

Thermal Resistance Network 
Consider steady, one-dimensional heat flow through two plane walls in series 
which are exposed to convection on both sides, see Fig. 10-2. Under steady state 
condition: 
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Note that A is constant area for a plane wall. Also note that the thermal resistances 
are in series and equivalent resistance is determined by simply adding thermal 
resistances. 
 

 
Fig. 10-2: Thermal resistance network. 
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The rate of heat transfer between two surfaces is equal to the temperature 
difference divided by the total thermal resistance between two surfaces.  
It can be written: 

∆T = Q• R 
The thermal resistance concept is widely used in practice; however, its use is 
limited to systems through which the rate of heat transfer remains constant. It other 
words, to systems involving steady heat transfer with no heat generation. 

Thermal Resistances in Parallel 
The thermal resistance concept can be used to solve steady state heat transfer 
problem in parallel layers or combined series-parallel arrangements. 
It should be noted that these problems are often two- or three dimensional, but 
approximate solutions can be obtained by assuming one dimensional heat transfer 
(using thermal resistance network). 

 
Fig. 10-3 Parallel resistances. 
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Example 10-1: Thermal Resistance Network 
Consider the combined series-parallel arrangement shown in figure below. 
Assuming one –dimensional heat transfer, determine the rate of heat transfer. 

 
Fig. 10-4 Schematic for example 10-1. 

Solution: 
The rate of heat transfer through this composite system can be expressed as: 
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Two approximations commonly used in solving complex multi-dimensional heat 
transfer problems by transfer problems by treating them as one dimensional, using 
the thermal resistance network: 
1- Assume any plane wall normal to the x-axis to be isothermal, i.e. temperature to 
vary in one direction only T = T(x) 
2- Assume any plane parallel to the x-axis to be adiabatic, i.e. heat transfer occurs 
in the x-direction only. 
These two assumptions result in different networks (different results). The actual 
result lies between these two results.  

Heat Conduction in Cylinders and Spheres 
Steady state heat transfer through pipes is in the normal direction to the wall 
surface (no significant heat transfer occurs in other directions). Therefore, the heat 
transfer can be modeled as steady-state and one-dimensional, and the 
temperature of the pipe will depend only on the radial direction, T = T (r). 
Since, there is no heat generation in the layer and thermal conductivity is constant, 
the Fourier law becomes: 
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Fig. 10-5: Steady, one-dimensional heat conduction in a cylindrical layer. 

After integration: 

r2 

r1 

T1

T2 

Q•
cond,cyl 



Chapter 10 ECE 309, Spring 2016.   8 

. 

 

( )

( )
kL

rrR

R
TTQ

rr
TTkLQ

rLAkdTdr
A

Q

cyl

cyl
cylcond

cylcond

T

T

r

r

cylcond

π

π

π

2
/ln

/ln
2

2

12

21
,

12

21
,

2

1

2

1

,

=

−
=

−
=

=−=

•

•

•

∫∫

 

where Rcyl is the conduction resistance of the cylinder layer. 
Following the analysis above, the conduction resistance for the spherical layer can 
be found: 
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The convection resistance remains the same in both cylindrical and spherical 
coordinates, Rconv = 1/hA. However, note that the surface area A = 2πrL 
(cylindrical) and A = 4πr2 (spherical) are functions of radius. 
Example 10-2: Multilayer cylindrical thermal resistance network 
Steam at T∞,1 = 320 °C flows in a cast iron pipe [k = 80 W/ m.°C] whose inner and 
outer diameter are D1 = 5 cm and D2 = 5.5 cm, respectively. The pipe is covered 
with a 3-cm-thick glass wool insulation [k = 0.05 W/ m.°C]. Heat is lost to the 
surroundings at T∞,2 = 5°C by natural convection and radiation, with a combined 
heat transfer coefficient of  h2 = 18 W/m2. °C. Taking the heat transfer coefficient 
inside the pipe to be h1 = 60 W/m2K, determine the rate of heat loss from the 
steam per unit length of the pipe. Also determine the temperature drop across the 
pipe shell and the insulation. 
Assumptions: 
Steady-state and one-dimensional heat transfer. 
Solution: 
Taking L = 1 m, the areas of the surfaces exposed to convection are: 
A1 = 2πr1L = 0.157 m2 

A2 = 2πr2L = 0.361 m2 
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Fig. 10-6: Schematic for example 10-1. 

The steady-state rate of heat loss from the steam becomes 
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The total heat loss for a given length can be determined by multiplying the above 
quantity by the pipe length. 
The temperature drop across the pipe and the insulation are: 
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Note that the temperature difference (thermal resistance) across the pipe is too 
small relative to other resistances and can be ignored. 

Critical Radius of Insulation 
To insulate a plane wall, the thicker the insulator, the lower the heat transfer rate 
(since the area is constant). However, for cylindrical pipes or spherical shells, 
adding insulation results in increasing the surface area which in turns results in 
increasing the convection heat transfer. As a result of these two competing trends 
the heat transfer may increase or decrease.   
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Fig. 10-7: Critical radius of insulation. 
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The variation of Q• with the outer radius of the insulation reaches a maximum that 
can be determined from dQ• / dr2 = 0. The value of the critical radius for the 
cylindrical pipes and spherical shells are: 
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Note that for most applications, the critical radius is so small. Thus, we can 
insulate hot water or steam pipes without worrying about the possibility of 
increasing the heat transfer by insulating the pipe. 

Heat Generation in Solids 
Conversion of some form of energy into heat energy in a medium is called heat 
generation. Heat generation leads to a temperature rise throughout the medium. 
Some examples of heat generation are resistance heating in wires, exothermic 
chemical reactions in solids, and nuclear reaction. Heat generation is usually 
expressed per unit volume (W/m3).  
In most applications, we are interested in maximum temperature Tmax and surface 
temperature Ts of solids which are involved with heat generation. 
The maximum temperature Tmax in a solid that involves uniform heat generation 
will occur at a location furthest away from the outer surface when the outer surface 
is maintained at a constant temperature, Ts. 

 
Fig. 10-8: Maximum temperature with heat generation. 

Consider a solid medium of surface area A, volume V, and constant thermal 
conductivity k, where heat is generated at a constant rate of g• per unit volume. 

Ts Ts 

Tmax

T∞ 
Heat generation

∆Tmax

Symmetry line 

L



Chapter 10 ECE 309, Spring 2016.   12 

.

 

Heat is transferred from the solid to the surroundings medium at T∞.  Under steady 
conditions, the energy balance for the solid can be expressed as: 

rate of heat transfer 
from the solid 

= rate of energy generation 
within the solid 

Q• = g• V   (W) 
From the Newton’s law of cooling, Q•= hA (Ts - T∞). Combining these equations,  a 
relationship for the surface temperature can be found: 

hA
VgTTs
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Using the above relationship, the surface temperature can be calculated for a 
plane wall of thickness 2L, a long cylinder of radius r0, and a sphere of radius r0, as 
follows:   
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Note that the rise in temperature is due to heat generation. 
Using the Fourier’s law, we can derive a relationship for the center (maximum) 
temperature of long cylinder of radius r0.  
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where T0 is the centerline temperature of the cylinder (Tmax). Using the approach, 
the maximum temperature can be found for plane walls and spheres. 
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Heat Transfer from Finned Surfaces 
From the Newton’s law of cooling, Q•

conv = h A (Ts - T∞), the rate of convective heat 
transfer from a surface at a temperature Ts can be increased by two methods: 
1) Increasing the convective heat transfer coefficient, h 
2) Increasing the surface area A. 
Increasing the convective heat transfer coefficient may not be practical and/or 
adequate. An increase in surface area by attaching extended surfaces called fins 
to the surface is more convenient.  
Finned surfaces are commonly used in practice to enhance heat transfer. In the 
analysis of the fins, we consider steady operation with no heat generation in the 
fin. We also assume that the convection heat transfer coefficient h to be constant 
and uniform over the entire surface of the fin. 

 
Fig. 10-9: Temperature of a fin drops gradually along the fin. 

In the limiting case of zero thermal resistance (k→∞), the temperature of the fin will 
be uniform at the base value of Tb. The heat transfer from the fin will be maximized 
in this case: 
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Fin efficiency can be defined as: 
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where Afin is total surface area of the fin. This enables us to determine the heat 
transfer from a fin when its efficiency is known: 

( )∞
•• −== TThAQQ bfinfinfinfinfin ηη max,  

Fin efficiency for various profiles can be read from Fig. 10-59, 10-60 in Cengel’s 
book.  
The following must be noted for a proper fin selection: 

 the longer the fin, the larger the heat transfer area and thus the higher the rate 
of heat transfer from the fin  

 the larger the fin, the bigger the mass, the higher the price, and larger the fluid 
friction 

 also, the fin efficiency decreases with increasing fin length because of the 
decrease in fin temperature with length. 

Fin Effectiveness 
The performance of fins is judged on the basis of the enhancement in heat transfer 
relative to the no-fin case, and expressed in terms of the fin effectiveness: 
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For a sufficiently long fin of uniform cross-section Ac, the temperature at the tip of 
the fin will approach the environment temperature, T∞. By writing energy balance 
and solving the differential equation, one finds: 
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where Ac is the cross-sectional area, x is the distance from the base, and p is 
perimeter. The effectiveness becomes: 



Chapter 10 ECE 309, Spring 2016.   15 

. 

 

c
finlong hA

kp
=ε  

To increase fin effectiveness, one can conclude: 
 the thermal conductivity of the fin material must be as high as possible 
 the ratio of perimeter to the cross-sectional area p/Ac should be as high as 

possible 
 the use of fin is most effective in applications that involve low convection heat 

transfer coefficient, i.e. natural convection.  
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Chapter 11: Transient Heat Conduction 
In general, temperature of a body varies with time as well as position. 

Lumped System Analysis 
Interior temperatures of some bodies remain essentially uniform at all times during 
a heat transfer process. The temperature of such bodies are only a function of 
time, T = T(t). The heat transfer analysis based on this idealization is called 
lumped system analysis. 
Consider a body of arbitrary shape of mass m, volume V, surface area A, density ρ 
and specific heat Cp initially at a uniform temperature Ti.  

Fig. 11-1: Lumped system analysis. 
At time t = 0, the body is placed into a medium at temperature T∞ (T∞ >Ti) with a 
heat transfer coefficient h. An energy balance of the solid for a time interval dt can 
be expressed as: 

heat transfer into the 
body during dt 

= the increase in the energy 
of the body during dt 

h A (T∞ - T) dt = m Cp dT 
With m = ρV and change of variable dT = d(T - T∞), we find: 
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Integrating from t = 0 to T = Ti  
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Solid body 
m (mass) 
V (volume) 
ρ (density) 
Ti (initial temp) 

A (surface area)

h 
T∞ 

Q°= h A [T∞ - T(t)] 

T = T(t) 
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Fig. 11-2: Temperature of a lump system. 

Using above equation, we can determine the temperature T(t) of a body at time t, 
or alternatively, the time t required for the temperature to reach a specified value 
T(t). 
Note that the temperature of a body approaches the ambient temperature T∞ 
exponentially.  
A large value of b indicates that the body will approach the environment 
temperature in a short time.  
b is proportional to the surface area, but inversely proportional to the mass and the 
specific heat of the body. 
The total amount of heat transfer between a body and its surroundings over a time 
interval is: 

Q = m Cp [T(t) – Ti] 

Electrical Analogy 
The behavior of lumped systems, shown in Fig. 9-2 can be interpreted as a 
thermal time constant 
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where Rt is the resistance to convection heat transfer and Ct is the lumped thermal 
capacitance of the solid. Any increase in Rt or Ct will cause a solid to respond 
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more slowly to changes in its thermal environment and will increase the time 
respond required to reach thermal equilibrium. 

 
Fig. 11-3: Thermal time constant. 

Criterion for Lumped System Analysis 
Lumped system approximation provides a great convenience in heat transfer 
analysis.  We want to establish a criterion for the applicability of the lumped system 
analysis.  
A characteristic length scale is defined as: 
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The Biot number is the ratio of the internal resistance (conduction) to the external 
resistance to heat convection. 
Lumped system analysis assumes a uniform temperature distribution throughout 
the body, which implies that the conduction heat resistance is zero. Thus, the 
lumped system analysis is exact when Bi = 0. 
It is generally accepted that the lumped system analysis is applicable if  
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Therefore, small bodies with high thermal conductivity are good candidates for 
lumped system analysis. 
Note that assuming h to be constant and uniform is an approximation.  
Example 11-1 
A thermocouple junction, which may be approximated by a sphere, is to be used 
for temperature measurement in a gas stream. The convection heat transfer 
coefficient between the junction surface and the gas is known to be h = 400 
W/m2.K, and the junction thermophysical properties are k = 20 W/m.K, Cp = 400 
J/kg.K, and ρ = 8500 kg/m3. Determine the junction diameter needed for the 
thermocouple to have a time constant of 1 s. If the junction is at 25°C and is placed 
in a gas stream that is at 200°C, how long will it take for the junction to reach 
199°C? 
Assumptions: 

1. Temperature of the junction is uniform at any instant. 
2. Radiation is negligible. 
3. Losses through the leads, by conduction, are negligible. 
4. Constant properties. 

 

 
Solution: 
To find the diameter of the junction, we can use the time constant: 
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Rearranging and substituting numerical values, one finds, D = 0.706 mm. 
Now, we can check the validity of the lumped system analysis. With Lc = r0 / 3 

leads 

Thermocouple junction 
Ti = 25°C 
k = 20 W/m.K 
Cp = 400 J/kg.K 
ρ = 8500 kg/m3 
 
 

Gas stream 
T∞ = 25°C 
h = 400 W/m2.K 
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OK. is analysis Lumped1.01035.2 4 →≤×== −
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Bi << 0.1, therefore, the lumped approximation is an excellent approximation. 
The time required for the junction to reach T = 199°C is 
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Transient Conduction in Large Plane Walls, Long Cylinders, and Spheres 
The lumped system approximation can be used for small bodies of highly 
conductive materials. But, in general, temperature is a function of position as well 
as time. 
Consider a plane wall of thickness 2L, a long cylinder of radius r0, and a sphere of 
radius r0 initially at a uniform temperature Ti.  

 
Fig. 11-4: Schematic for simple geometries in which heat transfer is one-

dimensional. 
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We also assume a constant heat transfer coefficient h and neglect radiation. The 
formulation of the one-dimensional transient temperature distribution T(x,t) results 
in a partial differential equation, which can be solved using advanced mathematical 
methods. For plane wall, the solution involves several parameters: 

T = T (x, L, k, α, h, Ti, T∞) 
By using dimensional groups, we can reduce the number of parameters. So, one 
can write: 

( )τθθ ,, Bix=  

where, 

( ) ( )

numberFourier 

numberBiot 

distance essdimensionl

re temperatuessdimensionl,,
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t
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L
xx
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=

=
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−
−

=
∞

∞

 

There are two approaches: 
1. Use the first term of the infinite series solution. This method is only valid for 
Fourier number > 0.2 
2. Use the Heisler charts for each geometry as shown in Figs. 11-13, 11-14 and 11-15. 

Using the First Term Solution 
The maximum error associated with method is less than 2%. For different 
geometries we have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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where A1 and λ1 can be found from Table 11-1 Cengel book. 

Using Heisler Charts 
There are three charts associated with each geometry:  
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1. The first chart is to determine the temperature at the center T0 at a given 
time. 

2. The second chart is to determine the temperature at other locations at the 
same time in terms of T0. 

3. The third chart is to determine the total amount of heat transfer up to the 
time t. 


