Chapter 10: Steady Heat Conduction

In thermodynamics, we considered the amount of heat transfer as a system
undergoes a process from one equilibrium state to another. Thermodynamics
gives no indication of how long the process takes. In heat transfer, we are more
concerned about the rate of heat transfer.

The basic requirement for heat transfer is the presence of a temperature
difference. The temperature difference is the driving force for heat transfer, just as
voltage difference for electrical current. The total amount of heat transfer Q during
a time interval can be determined from:

Q= AfQ'dt (kd)

The rate of heat transfer per unit area is called heat flux, and the average heat flux
on a surface is expressed as

=2 fwim)

Steady Heat Conduction in Plane Walls

Conduction is the transfer of energy from the more energetic particles of a
substance to the adjacent less energetic ones as result of interactions between the
particles.

Consider steady conduction through a large plane wall of thickness Ax = L and
surface area A. The temperature difference across the wall is AT = T, — Ty.

Note that heat transfer is the only energy interaction; the energy balance for the

wall can be expressed:
. o dEwaII
Qin Qout - dt

For steady-state operation,
Qi = Q.. = const.

It has been experimentally observed that the rate of heat conduction through a
layer is proportional to the temperature difference across the layer and the heat
transfer area, but it is inversely proportional to the thickness of the layer.
(surface area)(temperature difference)

thickness

rate of heat transfer oc
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Fig. 10-1: Heat conduction through a large plane wall.

The constant proportionality k is the thermal conductivity of the material. In the
limiting case where Ax—0, the equation above reduces to the differential form:

Q.COnd = —kA?j—I (W)

which is called Fourier's law of heat conduction. The term dT/dx is called the
temperature gradient, which is the slope of the temperature curve (the rate of
change of temperature T with length x).

Thermal Conductivity

Thermal conductivity k [W/mK] is a measure of a material’s ability to conduct heat.
The thermal conductivity is defined as the rate of heat transfer through a unit
thickness of material per unit area per unit temperature difference.

Thermal conductivity changes with temperature and determined through
experiments.

The thermal conductivity of certain materials show a dramatic change at
temperatures near absolute zero, when these solids become superconductors.

An isotropic material is a material that has uniform properties in all directions.

Insulators are materials used primarily to provide resistance to heat flow. They
have low thermal conductivity.
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The Thermal Resistance Concept

The Fourier equation, for steady conduction through a constant area plane wall,
can be written:

dT T -T
¢ ond — —kA— = kA—l 2
Qo dx L
This can be re-arranged as:
T,-T
Q.Cond Cja L (\N)
RWaII
L
Roat =— ‘CIW
wall kA ( )

Rwai is the thermal resistance of the wall against heat conduction or simply the
conduction resistance of the wall.

The heat transfer across the fluid/solid interface is based on Newton’s law of
cooling:
Q" =hA(T,-T,) (W)
1

Regw =— ‘CIW
Conv hA ( )

Rconv is the thermal resistance of the surface against heat convection or simply the
convection resistance of the surface.

Thermal radiation between a surface of area A at T; and the surroundings at T.
can be expressed as:

Qr.ad = EO-A(T54 _Toj): hrad A(Ts _Too ) = TSR_ TOC (\N)
rad
Rrad = L
hrad A
w
N = eo(TZ+T2IT, +T,) [msz

where o = 5.67x10® [W/m?K?] is the Stefan-Boltzman constant. Also 0 < € <1 is the
emissivity of the surface. Note that both the temperatures must be in Kelvin.

Thermal Resistance Network

Consider steady, one-dimensional heat flow through two plane walls in series
which are exposed to convection on both sides, see Fig. 10-2. Under steady state
condition:
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rate of heat = rate of heat = rate of heat = rate of heat

convection conduction conduction convection from
into the wall through wall 1 through wall 2 the wall
T,-T, T,-T,

Q= hlA(Too,l _T1)= klA = th(Tz _Too,Z)

= k,A

1 2

Too,l _Tl _ Tl _Tz _ Tz _T3 _ Tz _Too,Z

Q =ThA TLIKATLIKA - 1/hA
Q. _ Too,l _Tl _ Tl —T2 _ Tz _T3 _ T3 _Too,z
- Rconv,l - Rwall,l - Rwall,2 - RconV,Z
o - Tw]lq T,
total
Rioal = Rconv,l + Rwall,l + Rwall,z + Rconv,z

Note that A is constant area for a plane wall. Also note that the thermal resistances
are in series and equivalent resistance is determined by simply adding thermal
resistances.

R1 R2 R3 R4

Fig. 10-2: Thermal resistance network.
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The rate of heat transfer between two surfaces is equal to the temperature
difference divided by the total thermal resistance between two surfaces.

It can be written:
AT=QR

The thermal resistance concept is widely used in practice; however, its use is
limited to systems through which the rate of heat transfer remains constant. It other
words, to systems involving steady heat transfer with no heat generation.

Thermal Resistances in Parallel

The thermal resistance concept can be used to solve steady state heat transfer
problem in parallel layers or combined series-parallel arrangements.

It should be noted that these problems are often two- or three dimensional, but
approximate solutions can be obtained by assuming one dimensional heat transfer
(using thermal resistance network).

Aq
T,
< ¥5— Insulation
. . . L
Q =Q2+Q2
R1 Qf
— >
¢ . o
— . — >
Ty —— Q2 — T2
R>

Fig. 10-3 Parallel resistances.
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T,-T,

Q =2
Rtotal

1 (1 1 1 RR,
R R, R,) Ryy R +R,

total total

Example 10-1: Thermal Resistance Network

Consider the combined series-parallel arrangement shown in figure below.
Assuming one —dimensional heat transfer, determine the rate of heat transfer.

Aq

T4

Fig. 10-4 Schematic for example 10-1.
Solution:
The rate of heat transfer through this composite system can be expressed as:
Tl _Too

Q" = R

total

R,.R
=R, +R;+R,, =—%+R, +R_,,

R conv
R, +R,

total
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Two approximations commonly used in solving complex multi-dimensional heat
transfer problems by transfer problems by treating them as one dimensional, using
the thermal resistance network:

1- Assume any plane wall normal to the x-axis to be isothermal, i.e. temperature to
vary in one direction only T = T(x)

2- Assume any plane parallel to the x-axis to be adiabatic, i.e. heat transfer occurs
in the x-direction only.

These two assumptions result in different networks (different results). The actual
result lies between these two results.
Heat Conduction in Cylinders and Spheres

Steady state heat transfer through pipes is in the normal direction to the wall
surface (no significant heat transfer occurs in other directions). Therefore, the heat
transfer can be modeled as steady-state and one-dimensional, and the
temperature of the pipe will depend only on the radial direction, T =T (r).

Since, there is no heat generation in the layer and thermal conductivity is constant,
the Fourier law becomes:

. dT
Qcond,cyl = _kAW (W)

A=2mL

T>

Q.cond, cyl

Fig. 10-5: Steady, one-dimensional heat conduction in a cylindrical layer.
After integration:
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r20)° T2
[==%dr =~ [kdT ~ A=2arL
rl A T1

Qc.ond cyl = 27ZkL Tl _T2
! In(r, /r,)

T1 _Tz

Qcond eyl = R
cyl

_In(r, /1)
AN kL

where Ry is the conduction resistance of the cylinder layer.

Following the analysis above, the conduction resistance for the spherical layer can
be found:

. T, -T,
Qcond,sph - R
sph
_h-n
sph
4rrr,k
The convection resistance remains the same in both cylindrical and spherical

coordinates, Rcn = 71/hA. However, note that the surface area A = 2mrL
(cylindrical) and A = 4m7? (spherical) are functions of radius.

Example 10-2: Multilayer cylindrical thermal resistance network

Steam at T 1 = 320 °C flows in a cast iron pipe [k = 80 W/ m.°C] whose inner and
outer diameter are D1 = 5 cm and D, = 5.5 cm, respectively. The pipe is covered
with a 3-cm-thick glass wool insulation [k = 0.05 W/ m.°C]. Heat is lost to the
surroundings at T, = 5°C by natural convection and radiation, with a combined
heat transfer coefficient of h, = 18 W/m?. °C. Taking the heat transfer coefficient
inside the pipe to be hy = 60 W/m?K, determine the rate of heat loss from the
steam per unit length of the pipe. Also determine the temperature drop across the
pipe shell and the insulation.

Assumptions:

Steady-state and one-dimensional heat transfer.

Solution:

Taking L = 1 m, the areas of the surfaces exposed to convection are:
A;=2mrl = 0.157 m?

Ay =2l = 0.361 m?
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1 1

Reonva =7 = =0.106 "C/W

™t " hA (60w /m? C)0.157m?)
R, =Ry, = In(r, /%) _ o 0002°C 1w

27k, L
R2 = Rinsulation = M =235C/W
27k, L
conv,2 — L =0.154 "C/W
h, A,

Rtotal = Rconv,l + Rl + R2 + Rconv,z =261C /W

T3

’ hy, Ts

Q.cond, cyl

hy, Tw 1

Insulation

T T. T.
Rconv, 1 ! R 1 2 R2 s Rconv,2

Tooy‘] Tooy2

Fig. 10-6: Schematic for example 10-1.
The steady-state rate of heat loss from the steam becomes

. Tool _Too 2 H
Q' =—==120.7TW (per m pipe length)

total

The total heat loss for a given length can be determined by multiplying the above
quantity by the pipe length.

The temperature drop across the pipe and the insulation are:
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AT, =Q'R_.. =(120.7W)(0.0002 ‘C/W)=0.02°C
ATinsulation = Q. Rinsulation = (1207 W )(235 OC /W ) = 284OC

Note that the temperature difference (thermal resistance) across the pipe is too
small relative to other resistances and can be ignored.

Critical Radius of Insulation

To insulate a plane wall, the thicker the insulator, the lower the heat transfer rate
(since the area is constant). However, for cylindrical pipes or spherical shells,
adding insulation results in increasing the surface area which in turns results in
increasing the convection heat transfer. As a result of these two competing trends
the heat transfer may increase or decrease.

T,-T., T,-T,
R.+R,, In(r,/r) 1
+
27kL  (2ar,L)h

Q"=

conv

Insulation

Q critical |-=-----=---- Feritical = K /' D

Q.bare -t

v

ra
r Ieritical

Fig. 10-7: Critical radius of insulation.
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The variation of Q" with the outer radius of the insulation reaches a maximum that
can be determined from dQ / dr, = 0. The value of the critical radius for the
cylindrical pipes and spherical shells are:

k
r‘cr,cylinder = F (m)

r = % (m)

cr,spherer h
Note that for most applications, the critical radius is so small. Thus, we can
insulate hot water or steam pipes without worrying about the possibility of
increasing the heat transfer by insulating the pipe.

Heat Generation in Solids

Conversion of some form of energy into heat energy in a medium is called heat
generation. Heat generation leads to a temperature rise throughout the medium.

Some examples of heat generation are resistance heating in wires, exothermic
chemical reactions in solids, and nuclear reaction. Heat generation is usually
expressed per unit volume (W/m?).

In most applications, we are interested in maximum temperature Tyax and surface
temperature T; of solids which are involved with heat generation.

The maximum temperature Thax in a solid that involves uniform heat generation
will occur at a location furthest away from the outer surface when the outer surface
is maintained at a constant temperature, Ts.

! ATmax

Tmax I /

Ts Ts

N—— .

Heat generation

| Symmetry line

Fig. 10-8: Maximum temperature with heat generation.

Consider a solid medium of surface area A, volume V, and constant thermal
conductivity k, where heat is generated at a constant rate of g° per unit volume.
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Heat is transferred from the solid to the surroundings medium at T.. Under steady
conditions, the energy balance for the solid can be expressed as:

rate of heat transfer = rate of energy generation
from the solid within the solid

Q=gV W

From the Newton’s law of cooling, Q= hA (T - T..). Combining these equations, a
relationship for the surface temperature can be found:

gV
hA

Using the above relationship, the surface temperature can be calculated for a
plane wall of thickness 2L, a long cylinder of radius ry, and a sphere of radius ry, as
follows:

T,=T, +

_ g’L
Ts,planewall _Toc + h
g1
Ty cvtinger = 1, +
s,cylinder ®© 2h
T -1 490

s,sphere © 3h

Note that the rise in temperature is due to heat generation.

Using the Fourier's law, we can derive a relationship for the center (maximum)
temperature of long cylinder of radius rp.

r

—kAr?j—ng’Vr A =2mL  V,=ar’L
r
After integrating,

o 2
ATmax :TO _Ts :&
4k

where TO is the centerline temperature of the cylinder (Tnax). Using the approach,
the maximum temperature can be found for plane walls and spheres.

g9°'ry
AT i = =0
max,cylinder 4k
g . |_2
AT S
max,plane wall 2k
AT B g [ r02

max,sphere 6k
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Heat Transfer from Finned Surfaces

From the Newton’s law of cooling, Q'conv = h A (T - T=), the rate of convective heat
transfer from a surface at a temperature T can be increased by two methods:

1) Increasing the convective heat transfer coefficient, h
2) Increasing the surface area A.

Increasing the convective heat transfer coefficient may not be practical and/or
adequate. An increase in surface area by attaching extended surfaces called fins
to the surface is more convenient.

Finned surfaces are commonly used in practice to enhance heat transfer. In the
analysis of the fins, we consider steady operation with no heat generation in the
fin. We also assume that the convection heat transfer coefficient h to be constant
and uniform over the entire surface of the fin.

h, To

Fig. 10-9: Temperature of a fin drops gradually along the fin.

In the limiting case of zero thermal resistance (k—<), the temperature of the fin will
be uniform at the base value of Ty. The heat transfer from the fin will be maximized
in this case:

Q;in,max = hAfin (Tb _Too)
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Fin efficiency can be defined as:

Qfn actual heat transfer rate from the fin

fin =

where A, is total surface area of the fin. This enables us to determine the heat
transfer from a fin when its efficiency is known:

Qfin = 70 Qfinmax = 7 1inNAsin (Tb _Too)
Fin efficiency for various profiles can be read from Fig. 10-59, 10-60 in Cengel’s
book.
The following must be noted for a proper fin selection:

% the longer the fin, the larger the heat transfer area and thus the higher the rate
of heat transfer from the fin

X/
°e

the larger the fin, the bigger the mass, the higher the price, and larger the fluid
friction

« also, the fin efficiency decreases with increasing fin length because of the
decrease in fin temperature with length.
Fin Effectiveness

The performance of fins is judged on the basis of the enhancement in heat transfer
relative to the no-fin case, and expressed in terms of the fin effectiveness:

_ Qf Qfin heat transfer rate from the fin

QL AT -T,) " heat transfer rate from the surface area of A,

Efin =

<1 fin acts as insulation
gq =| =1 findoes not affect heat transfer
>1 fin enhances heat transfer

For a sufficiently long fin of uniform cross-section A., the temperature at the tip of
the fin will approach the environment temperature, T.. By writing energy balance
and solving the differential equation, one finds:

—T(X)_Tw = exp(— X ’EJ
T,-T, KA,
Qjong in = +/NPKA, (Tb _Too)

where A; is the cross-sectional area, x is the distance from the base, and p is
perimeter. The effectiveness becomes:
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k
glong fin = h_p
A,
To increase fin effectiveness, one can conclude:
% the thermal conductivity of the fin material must be as high as possible

+ the ratio of perimeter to the cross-sectional area p/A; should be as high as
possible

+» the use of fin is most effective in applications that involve low convection heat
transfer coefficient, i.e. natural convection.
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Chapter 11: Transient Heat Conduction

In general, temperature of a body varies with time as well as position.

Lumped System Analysis

Interior temperatures of some bodies remain essentially uniform at all times during
a heat transfer process. The temperature of such bodies are only a function of
time, T = T(t). The heat transfer analysis based on this idealization is called
lumped system analysis.

Consider a body of arbitrary shape of mass m, volume V, surface area A, density p
and specific heat C, initially at a uniform temperature T;.

A (surface area)

Q°=h A [T.-T()]

Fig. 11-1: Lumped system analysis.

At time t = 0, the body is placed into a medium at temperature T.. (T. >T;) with a
heat transfer coefficient h. An energy balance of the solid for a time interval dt can
be expressed as:

heat transfer into the = the increase in the energy
body during dt of the body during dt

hA(T.-T)dt=mC,dT
With m = pV and change of variable dT = d(T - T.), we find:
d(T-T,) hA

=- dt
T-T, pVC,
Integrating fromt=0to T =T;
T(t)_Too — efbl
T -T,
p-_A (1/s)
oVC,
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Fig. 11-2: Temperature of a lump system.

Using above equation, we can determine the temperature T(t) of a body at time t,
or alternatively, the time t required for the temperature to reach a specified value
T(1).

Note that the temperature of a body approaches the ambient temperature T.
exponentially.

A large value of b indicates that the body will approach the environment
temperature in a short time.

b is proportional to the surface area, but inversely proportional to the mass and the
specific heat of the body.

The total amount of heat transfer between a body and its surroundings over a time
interval is:

Q=mCy,[T(t)-T]

Electrical Analogy

The behavior of lumped systems, shown in Fig. 9-2 can be interpreted as a
thermal time constant

1
T, = [mjpvcp = RtCt
1
b

where Ry is the resistance to convection heat transfer and C; is the lumped thermal
capacitance of the solid. Any increase in R; or C; will cause a solid to respond
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more slowly to changes in its thermal environment and will increase the time
respond required to reach thermal equilibrium.

T-Te e,
Ti'Too Ty hA >t
1
- -tit
e
>
t

Fig. 11-3: Thermal time constant.

Criterion for Lumped System Analysis

Lumped system approximation provides a great convenience in heat transfer
analysis. We want to establish a criterion for the applicability of the lumped system
analysis.

A characteristic length scale is defined as:

LY
A
A Biot number is defined:
Bi = L.
k
Bi = hAT  convection at the surface of the body
L conduction within the body
LC
Bi L./k conduction resistance within the body

~ 1/h  convection resistance at the surface of the body

The Biot number is the ratio of the internal resistance (conduction) to the external
resistance to heat convection.

Lumped system analysis assumes a uniform temperature distribution throughout
the body, which implies that the conduction heat resistance is zero. Thus, the
lumped system analysis is exact when Bi = 0.

It is generally accepted that the lumped system analysis is applicable if
Bi<0.1
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Therefore, small bodies with high thermal conductivity are good candidates for
lumped system analysis.

Note that assuming h to be constant and uniform is an approximation.
Example 11-1

A thermocouple junction, which may be approximated by a sphere, is to be used
for temperature measurement in a gas stream. The convection heat transfer
coefficient between the junction surface and the gas is known to be h = 400
W/m2.K, and the junction thermophysical properties are k = 20 W/m.K, C, = 400
Jikg.K, and p = 8500 kg/m®. Determine the junction diameter needed for the
thermocouple to have a time constant of 1 s. If the junction is at 25°C and is placed
in a gas stream that is at 200°C, how long will it take for the junction to reach
199°C?

Assumptions:
1. Temperature of the junction is uniform at any instant.
2. Radiation is negligible.
3. Losses through the leads, by conduction, are negligible.
4. Constant properties.

leads
/ / Thermocouple junction
Gas stream
Ti=25°C
T.=25°C
) k=20 Wm.K
h =400 Wm-.K

Cp = 400 J/kg.K
p = 8500 kg/m®

Solution:

To find the diameter of the junction, we can use the time constant:

3
thiVCp: 12><pﬂD C,
hA hzD 6

Rearranging and substituting numerical values, one finds, D = 0.706 mm.

Now, we can check the validity of the lumped system analysis. With Lo =19/ 3
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hL,

Bi = - 2.35x107* < 0.1 — Lumped analysisis OK.

Bi << 0.1, therefore, the lumped approximation is an excellent approximation.
The time required for the junction to reach T = 199°C is

T(t)_—Tw:e—m
Ti_Toc
o _hA
pVC,
1. T -7
t==ln—i_=
b T()-T,
t=5.2s

Transient Conduction in Large Plane Walls, Long Cylinders, and Spheres

The lumped system approximation can be used for small bodies of highly
conductive materials. But, in general, temperature is a function of position as well
as time.

Consider a plane wall of thickness 2L, a long cylinder of radius ro, and a sphere of
radius ro initially at a uniform temperature T;.

—

: /_i\
| ; T.
i h
o Initially

Initially: at atT=T

=T ; Initially
E E ) ) atT =T,
—h '
| i o
L !
: —

(. I ; r

E /_E\
: ~_ .

L li h
Plane wall ong cylinder Sphere

Fig. 11-4: Schematic for simple geometries in which heat transfer is one-
dimensional.
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We also assume a constant heat transfer coefficient h and neglect radiation. The
formulation of the one-dimensional transient temperature distribution T(x,t) results
in a partial differential equation, which can be solved using advanced mathematical
methods. For plane wall, the solution involves several parameters:

T=T(x L ka h T,Ts)

By using dimensional groups, we can reduce the number of parameters. So, one
can write:

0 =6(x,Bi,7)

where,

== dimensionless temperature

X ) . .
X = E dimensionless distance

Bi = % Biot number

ot
T2

There are two approaches:

Fourier number

1. Use the first term of the infinite series solution. This method is only valid for
Fourier number > 0.2

2. Use the Heisler charts for each geometry as shown in Figs. 11-13, 11-14 and 11-15.

Using the First Term Solution

The maximum error associated with method is less than 2%. For different
geometries we have:

T(xt)-T

00X, t) s = # =A exp(— /Lfr)cos(/llx/ L)
e(x’t)cylinder = T (-Ir--J:_-I_--I-Qo = A:L eXp(— 2‘122-) ‘]0 (ﬂir / rO)
(r.t sin(4,r/r,)

e(x't)sphere = TT_% = Al eXp(—ﬂlzT) (ﬂ,lr/r )

where 7>0.2
where A4 and Aq can be found from Table 11-1 Cengel book.
Using Heisler Charts
There are three charts associated with each geometry:
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1. The first chart is to determine the temperature at the center Ty at a given
time.

2. The second chart is to determine the temperature at other locations at the
same time in terms of Ty,.

3. The third chart is to determine the total amount of heat transfer up to the
time t.
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