
Chapter 15, ECE 309, Spring 2016.   1 

. 

Chapter 15: Radiation Heat Transfer 
Radiation differs from Conduction and Convection heat t transfer mechanisms, in 
the sense that it does not require the presence of a material medium to occur. 
Energy transfer by radiation occurs at the speed of light and suffers no attenuation 
in vacuum. 
Radiation can occur between two bodies separated by a medium colder than both 
bodies. 
According to Maxwell theory, energy transfer takes place via electromagnetic 
waves in radiation. Electromagnetic waves transport energy like other waves and 
travel at the speed of light. 
Electromagnetic waves are characterized by their frequency ν (Hz) and 
wavelength λ (µm), where: 

λ = c / ν 
where c is the speed of light in that medium; in a vacuum c0 = 2.99 x 108 m / s. 
Note that the frequency and wavelength are inversely proportional. 
The speed of light in a medium is related to the speed of light in a vacuum, 

c = c0 / n 
where n is the index of refraction of the medium, n = 1 for air and n = 1.5 for water. 
Note that the frequency of an electromagnetic wave depends only on the source 
and is independent of the medium. 
The frequency of an electromagnetic wave can range from a few cycles to millions 
of cycles and higher per second.  
Einstein postulated another theory for electromagnetic radiation. Based on this 
theory, electromagnetic radiation is the propagation of a collection of discrete 
packets of energy called photons. In this view, each photon of frequency ν is 
considered to have energy of  

e = hν = hc / λ 
where h = 6.625 x 10-34 J.s is the Planck’s constant.  
Note that in Einstein’s theory h and c are constants, thus the energy of a photon is 
inversely proportional to its wavelength. Therefore, shorter wavelength radiation 
possesses more powerful photon energies (X-ray and gamma rays are highly 
destructive). 
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Fig. 15-1: Electromagnetic spectrum. 

Electromagnetic radiation covers a wide range of wavelength, from 10-10 µm for 
cosmic rays to 1010 µm for electrical power waves. 
As shown in Fig. 15-1, thermal radiation wave is a narrow band on the 
electromagnetic wave spectrum. 
Thermal radiation emission is a direct result of vibrational and rotational motions of 
molecules, atoms, and electrons of a substance. Temperature is a measure of 
these activities. Thus, the rate of thermal radiation emission increases with 
increasing temperature. 
What we call light is the visible portion of the electromagnetic spectrum which lies 
within the thermal radiation band. 
Thermal radiation is a volumetric phenomenon. However, for opaque solids such 
as metals, radiation is considered to be a surface phenomenon, since the radiation 
emitted by the interior region never reach the surface.  
Note that the radiation characteristics of surfaces can be changed completely by 
applying thin layers of coatings on them. 

Blackbody Radiation 
A blackbody is defined as a perfect emitter and absorber of radiation. At a 
specified temperature and wavelength, no surface can emit more energy than a 
blackbody. 
A blackbody is a diffuse emitter which means it emits radiation uniformly in all 
direction. Also a blackbody absorbs all incident radiation regardless of wavelength 
and direction. 
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The radiation energy emitted by a blackbody per unit time and per unit surface 
area can be determined from the Stefan-Boltzmann Law: 
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where T is the absolute temperature of the surface in K and Eb is called the 
blackbody emissive power. 
A large cavity with a small opening closely resembles a blackbody. 

 
Fig. 15-2: Variation of blackbody emissive power with wavelength 

Spectral blackbody emissive power is the amount of radiation energy emitted by a 
blackbody at an absolute temperature T per unit time, per unit surface area, and 
per unit wavelength. 
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This is called Plank’s distribution law and is valid for a surface in a vacuum or gas. 
For other mediums, it needs to be modified by replacing C1 by C1/n2, where n is 
the index of refraction of the medium, 
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The wavelength at which the peak emissive power occurs for a given temperature 
can be obtained from Wien’s displacement law: 

( ) KmT power .8.2897max µλ =  

It can be shown that integration of the spectral blackbody emissive power Ebλ over 
the entire wavelength spectrum gives the total blackbody emissive power Eb: 
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The Stefan-Boltzmann law gives the total radiation emitted by a blackbody at all 
wavelengths from 0 to infinity. But, we are often interested in the amount of 
radiation emitted over some wavelength band. 
To avoid numerical integration of the Planck’s equation, a non-dimensional 
quantity fλ is defined which is called the blackbody radiation function as 
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The function fλ represents the fraction of radiation emitted from a blackbody at 
temperature T in the wavelength band from 0 to λ. Table 15-2 in Cengel book lists 
fλ as a function of λT. 
Therefore, one can write: 
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Fig. 15-3: Fraction of radiation emitted in the wavelength between λ1 and λ2   
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Example 15-1  
The temperature of the filament of a light bulb is 2500 K. Assuming the filament to 
be a blackbody, determine the fraction of the radiant energy emitted by the 
filament that falls in the visible range. Also determine the wavelength at which the 
emission of radiation from the filament peaks. 
Solution 
The visible range of the electromagnetic spectrum extends from 0.4 to 0.76 micro 
meter. Using Table 15-2: 
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which means only about 5% of the radiation emitted by the filament of the light 
bulb falls in the visible range. The remaining 95% appears in the infrared region or 
the “invisible light”. 

Radiation Properties 
A blackbody can serve as a convenient reference in describing the emission and 
absorption characteristics of real surfaces. 

 Emissivity 
The emissivity of a surface is defined as the ratio of the radiation emitted by the 
surface to the radiation emitted by a blackbody at the same temperature. Thus,  

10 ≤≤ ε  

Emissivity is a measure of how closely a surface approximate a blackbody, 
εblackbody = 1. 
The emissivity of a surface is not a constant; it is a function of temperature of the 
surface and wavelength and the direction of the emitted radiation, ε = ε (T, λ, θ) 
where θ is the angle between the direction and the normal of the surface. 
The total emissivity of a surface is the average emissivity of a surface over all 
direction and wavelengths: 
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Spectral emissivity is defined in a similar manner: 
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where Eλ(T) is the spectral emissive power of the real surface. As shown, the 
radiation emission from a real surface differs from the Planck’s distribution.  
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Fig. 15-4: Comparison of the emissive power of a real surface and a blackbody. 
To make the radiation calculations easier, we define the following approximations: 
Diffuse surface: is a surface which its properties are independent of direction. 
Gray surface: is a surface which its properties are independent from wavelength. 
Therefore, the emissivity of a gray, diffuse surface is the total hemispherical (or 
simply the total) emissivity of that surface. 
A gray surface should emit as much as radiation as the real surface it represents 
at the same temperature: 
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Emissivity is a strong function of temperature, see Fig. 15-20 Cengel book. 

Absorptivity, Reflectivity, and Transmissivity 
The radiation energy incident on a surface per unit area per unit time is called 
irradiation, G. 
Absorptivity α: is the fraction of irradiation absorbed by the surface. 
Reflectivity ρ: is the fraction of irradiation reflected by the surface. 
Transmissivity τ: is the fraction of irradiation transmitted through the surface. 
Radiosity J: total radiation energy streaming from a surface, per unit area per unit 
time. It is the summation of the reflected and the emitted radiation. 
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Applying the first law of thermodynamics, the sum of the absorbed, reflected, and 
the transmitted radiation radiations must be equal to the incident radiation: 

Gabs + Gref + Gtr = G 
Divide by G: 

α + ρ + τ = 1 

 

 
Fig. 15-5: The absorption, reflection, and transmission of irradiation by a semi-

transparent material. 
 

For opaque surfaces τ = 0 and thus: α + ρ = 1. The above definitions are for total 
hemi-spherical properties (over all direction and all frequencies). We can also 
define these properties in terms of their spectral counterparts: 

Incident 
radiation 
G, W/m2 

Reflected 
ρG 

Absorbed 
αG 

Transmitted 
τG 

Semi-transparent 
material 

Emitted radiation 
ε Ebλ 

Radiosity, J 
(Reflected + Emitted radiation) 



Chapter 15, ECE 309, Spring 2016.   8 

. 

( )
( )
( )

λλλ

λλ

λλ

λλ

λλλλλλλ

ατρ

λττ
λαα
λρρ

ατρ

++=

=
=
=

++=

1
thus

ivity transmissspectral,
tyabsorptivi spectral,

tyreflectivi spectral,

T
T
T

where
GGGG

 

Note that the absorptivity α is almost independent of surface temperature and it 
strongly depends on the temperature of the source at which the incident radiation 
is originating. For example α of the concrete roof is about 0.6 for solar radiation 
(source temperature 5762 K) and 0.9 for radiation originating from the 
surroundings (source temperature 300 K). 

Kirchhoff’s Law 
Consider an isothermal cavity and a surface at the same temperature T. At the 
steady state (equilibrium) thermal condition 

Gabs = α G = α σ T4   
and radiation emitted 

      Eemit = ε σ T4 
Since the small body is in thermal equilibrium, Gabs = Eemit 

ε(T) = α(T) 
The total hemispherical emissivity of a surface at temperature T is equal to its total 
hemi-spherical absorptivity for radiation coming from a blackbody at the same 
temperature T. This is called the Kirchhoff’s law. 
 
 
 
  
 
 

 
 
 

Fig. 15-6: Small body contained in a large isothermal cavity. 
The Kirchhoff’s law can be written in the spectral form: 

A, ε, α 

Eemit 

G
T 

T 
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( ) ( )TT λλ αε =  

and in the spectral directional form 

( ) ( )TT θλθλ αε ,, =  

The Kirchhoff’s law makes the radiation analysis easier (ε = α), especially for 
opaque surfaces where ρ = 1 – α. 
Note that Kirchhoff’s law cannot be used when there is a large temperature 
difference (more than 100 K) between the surface and the source temperature.  

Solar Radiation 
The solar energy reaching the edge of the earth’s atmosphere is called the solar 
constant: 

Gs = 1353 W / m2 
Owing to the ellipticity of the earth’s orbit, the actual solar constant changes 
throughout the year within +/- 3.4%. This variation is relatively small; thus Gs is 
assumed to be a constant. 
The effective surface temperature of the sun can be estimated from the solar 
constant (by treating the sun as a blackbody). 
The solar radiation undergoes considerable attenuation as it passes through the 
atmosphere as a result of absorption and scattering:  

 Absorption by the oxygen occurs in a narrow band about λ = 0.76 µm. 
 The ozone layer absorbs ultraviolet radiation at wavelengths below λ = 0.3 µm 

almost completely and radiation in the range of 0.3 – 0.4 µm considerably.  
 Absorption in the infrared region is dominated by water vapor and carbon 

dioxide. Dust/pollutant particles also absorb radiation at various wavelengths.  
 As a result the solar radiation reaching the earth’s surface is about 950 W/m2 

on a clear day and much less on a cloudy day, in the wavelength band 0.3 to 
2.5 µm. 

Scattering and reflection by air molecules (and other particles) are other 
mechanisms that attenuate the solar radiation. Oxygen and nitrogen molecules 
scatter radiation at short wavelengths (corresponding to violet and blue colors). 
That is the reason the sky seems blue! 
The gas molecules (mostly CO2 and H2O) and the suspended particles in the 
atmosphere emit radiation as well as absorbing it. It is convenient to consider the 
atmosphere (sky) as a blackbody at some lower temperature. This fictitious 
temperature is called the effective sky temperature Tsky. 

Gsky = σ T4
sky 

Tsky = 230 K for cold clear sky  
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Tsky = 285 K for warm cloudy sky  
Using Kirchhoff’s law we can write α = ε since the temperature of the sky is on the 
order of the room temperature. 

The View Factor 
Radiation heat transfer between surfaces depends on the orientation of the 
surfaces relative to each other as well as their radiation properties and 
temperatures. 
View factor (or shape factor) is a purely geometrical parameter that accounts for 
the effects of orientation on radiation between surfaces.  
In view factor calculations, we assume uniform radiation in all directions throughout 
the surface, i.e., surfaces are isothermal and diffuse. Also the medium between 
two surfaces does not absorb, emit, or scatter radiation. 
Fi→j or Fij = the fraction of the radiation leaving surface i that strikes surface j 
directly. 
Note the following: 

 The view factor ranges between zero and one. 
 Fij = 0 indicates that two surfaces do not see each other directly. Fij = 1 

indicates that the surface j completely surrounds surface i. 
 The radiation that strikes a surface does not need to be absorbed by that 

surface. 
 Fii is the fraction of radiation leaving surface i that strikes itself directly. Fii = 0 for 

plane or convex surfaces, and Fii  ≠ 0 for concave surfaces. 

 
Fig. 15-7: View factor between surface and itself. 

Calculating view factors between surfaces are usually very complex and difficult to 
perform. View factors for selected geometries are given in Table 15-3 and 15-4 and 
Figs. 15-33 to 15-36 in Cengel book. 

Plane surface, 
Fii = 0 

Convex surface, 
Fii = 0 Concave surface, 

Fii ≠ 0 



Chapter 15, ECE 309, Spring 2016.   11 

. 

View Factor Relations 
Radiation analysis of an enclosure consisting of N surfaces requires the 
calculations of N2 view factors. However, all of these calculations are not 
necessary. Once a sufficient number of view factors are available, the rest of them 
can be found using the following relations for view factors. 

The Reciprocity Rule 
The view factor Fij is not equal to Fji unless the areas of the two surfaces are equal. 
It can be shown that: 

Ai Fij =Aj Fji 

The Summation Rule 
In radiation analysis, we usually form an enclosure. The conservation of energy 
principle requires that the entire radiation leaving any surface i of an enclosure be 
intercepted by the surfaces of enclosure. Therefore, 

1
1

=∑
=

N

j
ijF  

The summation rule can be applied to each surface of an enclosure by varying i 
from 1 to N (number of surfaces). Thus the summation rule gives N equations. 
Also reciprocity rule gives 0.5 N (N-1) additional equations. Therefore, the total 
number of view factors that need to be evaluated directly for an N-surface 
enclosure becomes 
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Example 15-2 
Determine the view factors F12 and F21 for the following geometries: 

 
1) Sphere of diameter D inside a cubical box of length L = D. 

L = D 

1 

L 

D 

L 

2 3

A1 

A2 

A1 

A2 

A3 

A1 

A3 

A2 
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2) Diagonal partition within a long square duct. 
3) End and side of a circular tube of equal length and diameter, L = D. 
Assumptions: 
Diffuse surfaces. 
 
Solution: 
1) sphere within a cube: 
By inspection,    F12 = 1 
By reciprocity and summation:     

6
11

6
1

6

222221

2

2

12
2

1
21

π
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2) Partition within a square duct: 
From summation rule, F11 + F12 + F13 = 1    where F11 = 0 
By symmetry       F12 = F13 
Thus,  F12 = 0.5.  
From reciprocity: 

71.05.02
12

2

1
21 =×==

L
LF

A
AF  

3) Circular tube: from Fig. 12-43, with r2 / L = 0.5 and L / r1 = 2, F13 ≈ 0.17. 
From summation rule,  
F11 + F12 + F13 = 1    with F11 = 0, F12 = 1 - F13 = 0.83 
From reciprocity,  

21.083.04/2

12
2

1
21 =×==

DL
DF

A
AF

π
π  

The Superposition Rule 
The view factor from a surface i to a surface j is equal to the sum of the view 
factors from surface i to the parts of surface j. 
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Fig. 15-8: The superposition rule for view factors. 

F1→(2,3) = F1→2 + F1→3 

The Symmetry Rule 
Two (or more) surfaces that possess symmetry about a third surface will have 
identical view factors from that surface. 
Example: 15-3 
Find the view factor from the base of a pyramid to each of its four sides. The base 
is a square and its side surfaces are isosceles triangles. 
From symmetry rule, we have: 

F12 = F13 = F14 = F15 

Also, the summation rule yields: 
F11 + F12 + F13 + F14 + F15 = 1 

Since, F11 = 0 (flat surface), we find; F12 = F13 = F14 = F15 = 0.25 

 
Pyramid in example 15-2. 
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The Crossed-Strings Method  
Geometries such as channels and ducts that are very long in one direction can be 
considered two-dimensional (since radiation through end surfaces can be 
neglected).  The view factor between their surfaces can be determined by cross-
string method developed by H. C. Hottel, as follows: 
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Fig. 15-9: Cross-string method. 
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Note that the surfaces do not need to be flat. 

Radiation Heat Transfer 
The analysis of radiation exchange between surfaces is complicated because of 
reflection. This can be simplified when surfaces are assumed to be black surfaces. 
The net radiation between two surfaces can be expressed as 

( )WEFAEFAQ

Q

bb 2212112112

12 1 surface stikesdirectly that 
2 surface leavingradiation 

2 surface stikesdirectly that 
1 surface leavingradiation 

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

•

•

 

Applying reciprocity A1 F12 = A2 F21 yields 
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Consider an enclosure consisting of N black surfaces maintained at specified 
temperatures. For each surface i, we can write 
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Using the sign convention, a negative heat transfer rate indicates that the radiation 
heat transfer is to surface i (heat gain). 
Now, we can extend this analysis to non-black surfaces. It is common to assume 
that the surfaces are opaque, diffuse, and gray. Also, surfaces are considered to 
be isothermal. Also the fluid inside the cavity is not participating in the radiation. 
Radiosity J is the total radiation energy streaming from a surface, per unit area per 
unit time. It is the summation of the reflected and the emitted radiation.  
For a surface i that is gray and opaque (εi = αi and αi + ρi = 1), the Radiosity can be 
expressed as 
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Note that the radiosity of a blackbody is equal to its emissive power. 
Using an energy balance, the net rate of radiation heat transfer from a surface i of 
surface area Ai can be expressed as 
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In electrical analogy to Ohm’s law, a thermal resistance can be defined as 
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where Ri is called the surface resistance to radiation. 

 
Fig. 15-10: Surface resistance to radiation. 
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Note that the surface resistance to radiation for a blackbody is zero. 
For insulated or adiabatic surfaces, the net heat transfer through them is zero. In 
this cases, the surface is called reradiating surface. There is no net heat transfer to 
a reradiating surface. 

Net Radiation between Two Surfaces 
Consider two diffuse, gray, and opaque surfaces of arbitrary shape maintained at 
uniform temperatures. The net rate of radiation heat transfer from surface i to 
surface j can be expressed  
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In analogy with Ohm’s law, a resistance can be defined as 
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where Rij is called the space resistance to radiation. 

 
Fig. 15-11: Electrical network, surface and space resistances. 

In an N-surface enclosure, the conservation of energy principle requires that the 
net heat transfer from surface i to be equal to the sum of the net heat transfers 
from i to each of the N surfaces of the enclosure. 
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We have already derived a relationship for the net radiation from a surface 
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Combining these two relationships gives: 
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Method of Solving Radiation Problem 
In radiation problems, either the temperature or the net rate of heat transfer must 
be given for each of the surfaces to obtain a unique solution for the unknown 
surface temperature and heat transfer rates. 
 We use the network method which is based on the electrical network analogy. 
The following steps should be taken: 

1. Form an enclosure; consider fictitious surface(s) for openings, room, etc. 
2. Draw a surface resistance associated with each surface of the enclosure 
3. Connect the surface resistances with space resistances 
4. Solve the radiations problem (radiosities) by treating it as an electrical 

network problem. 
Note that this method is not practical for enclosures with more than 4 surfaces. 
 
Example 15-4: Hot Plates in Room 
Two parallel plates 0.5 by 1.0 m are spaced 0.5 m apart. One plate is maintained 
at 1000°C and the other at 500°C. The emissivities of the plates are 0.2 and 0.5, 
respectively. The plates are located in a very large room, the walls of which are 
maintained at 27°C. The plates exchange heat with each other and with the room, 
but only the plate surfaces facing each other are to be considered in the analysis. 
Find the net heat transfer rate to each plate and the room; neglect other modes of 
heat transfer, i.e., conduction and convection. 
 
Assumptions: 
Diffuse, gray, and opaque surfaces and steady-state heat transfer. 
 
Solution: 
This is a three-body problem, the two plates and room. The radiation network is 
shown below. 
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Fig. 12-12: Schematic for Problem 15-4 

where, 
T1 = 1000°C = 1273 K  A1 = A2 = 0.5 m2 
T2 = 500°C = 773 K   T3 = 27°C = 300 K 
ε1 = 0.2    ε2 = 0.5 

 
Fig. 15-12: Thermal network for Problem 15-4. 

We can assume that the room is a blackbody, since its surface resistance is 
negligible: 
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From Fig. 15-33 in Cengel book, the shape factor F12 = 0.285 
Using reciprocity and A1 = A2, F12 = F21 = 0.285 
Applying summation rule 

F11 + F12 + F13 = 1 
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J2 Eb1 Eb2 

R12 
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R2 R1 

Eb3 = J3 = σT4
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R13 R23 
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T1 =1000°C 

T2 =1000°C 
1.0 m 

0.5 m 
0.5 m 
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Since F11 = 0 (flat plate), F13 = 1 - 0.285 = 0.715 
Finally, from symmetry F23 = F13 = 0.715 
The surface resistances are 
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Space resistances are 
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We need to find the radiosity for surface 1 and 2 only, since surface 3 is a 
blackbody, J3 = Eb3 = σT4

3 

For node J1: 

0
13

13

12

12

1

11 =
−

+
−

+
−

R
JJ

R
JJ

R
JEb  

For node J2: 

0
23

23

12

21

2

22 =
−

+
−

+
−

R
JJ

R
JJ

R
JEb  

where 

24
333

24
22

24
11

/4592.0

/241.20

/87.148

mkWTEJ

mkWTE

mkWTE

b

b

b

===

==

==

σ

σ

σ

 

Substituting values and solving two equations, one finds: 
J1 = 33.469 kW/m2      and J2 = 15.054 kW/m2 

The total heat loss by plate 1 is: 

kW
R
JE

Q

kW
R
JE

Q

b

b

594.2

425.14

2

22
2

1

11
1

=
−

=

=
−

=

•

•
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The total radiation received by the room is 

kW
R
JJ

R
JJ

Q 020.17
23

32

13

31
3 =

−
+

−
=

•

 

Note that from an energy balance, we must have: 

213

•••

+= QQQ  


