$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 10: Line Integrals, Conservative Force Fields
Scalar Potential Functions \& Green's Theorem March 23, 2018

1. Evaluate the line integrals of the following scalar functions:
(a) $\oint_{C C W}\left(x^{2}+y^{2}\right) d s$ once around the square C in the $x y$-plane with vertices

$$
(-1,-1),(-1,1),(1,-1),(1,1)
$$

ANSWER: 32/3
(b) $\int_{C} x^{2} y z d s$ where C is the curve $z=x+y, x+y+z=1$ from $(1,-1 / 2,1 / 2)$

$$
\text { to }(-3,7 / 2,1 / 2)
$$

ANSWER: $37 \sqrt{2} / 3$
(c) $\int_{C}(x+y) z d s$ where C is the curve $y=x, z=1+y^{4}$ from $(-1,-1,2)$ to $(1,1,2)$.
(set up the integral but do not evaluate)
2. Find the average value of the function $f(x, y, z)=x y z$ along the curve

$$
C: z=x^{2}, y=x^{2} \text { from }(0,0,0) \text { to }(1,1,1)
$$

ANSWER: 0.2417
3. Ice tends to form on the wings of aircraft when air conditions are such that the average air temperature, $\overline{\boldsymbol{T}}_{\boldsymbol{c}}$, over the flight drops below $\mathbf{0}^{\circ} \boldsymbol{C}$ and the relative humidity is $\mathbf{1 0 0 \%}$. On a particular day of 100% relative humidity, the air temperature distribution is defined in terms of position:

$$
T(x, y, z)=-10+2 \sqrt{x^{2}+y^{2}+z}\left[{ }^{\circ} C\right]
$$

as the plane follows the path given by:

$$
C: \quad z=x^{2}, \quad y=2 x
$$

from $(0,0,0)$ to $(3,6,9)$. Determine the average temperature \bar{T}_{c}. Will ice form on the wings?
4. Evaluate the line integrals of the following vector functions:
(a) $\int_{C} x d x+y z d y+x^{2} d z$ where C is the curve $y=x, z=x^{2}$ from $(-1,-1,1)$ to $(2,2,4)$.

ANSWER: 51/4
(b) $\oint_{C C W} x^{2} y d x+(x-y) d y$ once counterclockwise around the region bounded by the curves $\boldsymbol{x}=\mathbf{1}-\boldsymbol{y}^{2}, \boldsymbol{y}=\boldsymbol{x}+\mathbf{1}$.

ANSWER: -99/140
5. Find the work done by the given force on a particle as it moves along the given path:
(a) $\overrightarrow{\boldsymbol{F}}=\left(x^{2} y\right) \hat{i}+x \hat{j}$ along a straight line joining points $(1,0)$ and $(6,5)$.

ANSWER: 3235/12
(b) $\overrightarrow{\boldsymbol{F}}=x \hat{i}+y \hat{j}$ once counterclockwise around $b^{2} x^{2}+a^{2} y^{2}=b^{2} a^{2}, z=0$.

ANSWER: 0
6. For each of the following, show that the line integral is independent of path and evaluate it:
(a) $\int_{C} 3 x^{2} y z d x+x^{3} z d y+\left(x^{3} y-4 z\right) d z$ where C is the curve $y=x, x^{2}+y^{2}+z^{2}=3$ from $(-1,-1,1)$ to $(1,1,-1)$.

ANSWER: - 2
(b) $\oint_{C W} y \cos x d x+\sin x d y$ once clockwise around the circle

$$
x^{2}+y^{2}-2 x+4 y=7, z=0
$$

ANSWER: 0
(c) $\int_{C} 3 x^{2} y^{3} d x+3 x^{3} y^{2} d y$ where C is the curve $y=e^{x}$ from $(0,1)$ to $(1, e)$.

ANSWER: e^{3}
(d) $\oint_{C W} y\left(\tan x+x \sec ^{2} x\right) d x+x \tan x d y+d z$ once clockwise around the circle $x^{2}+y^{2}=1, z=0$.

ANSWER: 0
7. Given a scalar potential function $\phi=3 \boldsymbol{x}^{2} \boldsymbol{y}-\boldsymbol{y}^{4}+\boldsymbol{x}^{\mathbf{3}}$ and that $\overrightarrow{\boldsymbol{F}}=\boldsymbol{\nabla} \phi$ demonstrate independence of path by calculating the work required to move between $A(0,0)$ and $B(2,4)$ along any path of your choosing.
8. Determine if the force field is conservative and if it is, find its potential function:
(a) $\overrightarrow{\boldsymbol{F}}=\boldsymbol{m} \boldsymbol{x} \hat{\boldsymbol{i}}+\boldsymbol{x} \boldsymbol{y} \hat{\boldsymbol{j}}$ (\boldsymbol{m} is a constant)

ANSWER: not conservative
(b) $\boldsymbol{\vec { F }}=-\boldsymbol{m} \boldsymbol{g} \hat{\boldsymbol{k}}$ (\boldsymbol{m} and \boldsymbol{g} are constants) \quad ANSWER: conservative, $\boldsymbol{U}=-\boldsymbol{m} \boldsymbol{g} \boldsymbol{z}$
9. One end of a spring with unstretched length L is fixed at the origin in space. If the other end is at point $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ (all coordinates in meters) what is the force exerted by the spring? Is the force conservative?

ANSWER: conservative
10. Find the work done by the force field:

$$
\vec{F}=\left(-\frac{y}{z} \sin x\right) \hat{i}+\left(\frac{1}{z} \cos x\right) \hat{j}-\left(\frac{y}{z^{2}} \cos x\right) \hat{k}
$$

if it acts on a particle that moves:
(a) from $(\sqrt{2}, \sqrt{2}, 2 \pi)$ to $(\sqrt{2}, \sqrt{2}, 4 \pi)$ along $x=2 \cos t, y=2 \sin t$,

$$
z=t+\frac{7 \pi}{4}, \frac{\pi}{4} \leq t \leq \frac{9 \pi}{4}
$$

ANSWER: - 0.0175
(b) from $(\sqrt{2}, \sqrt{2}, 2 \pi)$ to $(\sqrt{2}, \sqrt{2}, 4 \pi)$ along a straight line

ANSWER: - 0.0175
(c) once around the circle $x^{2}+y^{2}=4, z=2 \pi$

ANSWER: 0
11. Use Green's theorem to evaluate the following line integrals:
(a) $\oint_{C C W} x y^{3} d x+x^{2} d y$ where C encloses the region bounded by

$$
x=\sqrt{1+y^{2}}, x=2
$$

ANSWER: $2 \sqrt{3} / 5$
(b) $\oint_{C C W} 2 \tan ^{-1}(y / x) d x+\ln \left(x^{2}+y^{2}\right) d y$ where C is the circle $(x-4)^{2}+(y-1)^{2}=2$

ANSWER: 0
(c) $\oint_{C C W}\left(x^{3}+y^{3}\right) d x+\left(x^{3}-y^{3}\right) d y$ where C is the curve $2|x|+|y|=1$.

ANSWER: $-3 / 8$

