$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 11: Surface Integrals, Divergence and

Stoke's Theorem
March 28, 2018

1. Evaluate the surface integrals of the following scalar functions:
(a) $\iint_{S}\left(x^{2}+y^{2}\right) z d S$ where S is that part of $z=x+y$ cut out by $x=0$, $y=0, x+y=1$.

ANSWER: $2 \sqrt{3} / 15$
(b) $\iint_{S} x y d S$ where S is the first octant part of $z=\sqrt{x^{2}+y^{2}}$ cut out by $x^{2}+y^{2}=1$.

ANSWER: $\sqrt{2} / 8$
(c) $\iint_{S} z d S$ where S is that part of the surface $x^{2}+y^{2}-z^{2}=1$ between the planes $z=0$ and $z=1$.

ANSWER: $\left(\frac{\pi}{3}\right)(3 \sqrt{3}-1)$
2. Evaluate the surface integrals of the following vector functions:
(a) $\iint_{S}\left(y z^{2} \hat{i}+y e^{x} \hat{\boldsymbol{j}}+x \hat{\boldsymbol{k}}\right) \cdot \hat{n} d S$ where S is defined by $y=x^{2}, 0 \leq y \leq 4$, $0 \leq \boldsymbol{z} \leq 1$ and $\hat{\boldsymbol{n}}$ is the unit vector to \boldsymbol{S} with positive \boldsymbol{y}-component.

ANSWER: $2 e^{2}-10 e^{-2}$
(b) $\iint_{S}(x \hat{i}+y \hat{j}) \cdot \hat{n} d S$ where S is that part of the surface $z=\sqrt{x^{2}+y^{2}}$ below $\boldsymbol{z}=1$ and $\hat{\boldsymbol{n}}$ is the unit normal to \boldsymbol{S} with negative \boldsymbol{z}-component.

ANSWER: $2 \pi / 3$
(c) $\iint_{S}(x \hat{i}+y \hat{j}) \cdot \hat{n} d S$ where S is the surface $x^{2}+y^{2}+z^{2}=4, z \geq 1$ and \hat{n} is the unit upper normal to S.

ANSWER: $\mathbf{1 0 \pi} \boldsymbol{\pi} \mathbf{3}$
3. A circular tube $S: x^{2}+z^{2}=1,0 \leq y \leq 2$ is a model for an artery. Blood flows through the artery and the force per unit area at any point on the arterial wall is given by:

$$
\vec{F}=e^{-y} \hat{n}+\frac{1}{y^{2}+1} \hat{j}
$$

where $\hat{\boldsymbol{n}}$ is the unit outer normal to the arterial wall. Blood diffuses through the wall in such a way that if $\boldsymbol{d} \boldsymbol{S}$ is a small area on \boldsymbol{S}, the amount of diffusion through $\boldsymbol{d S}$ in 1 second is $\overrightarrow{\boldsymbol{F}} \cdot \hat{\boldsymbol{n}} \boldsymbol{d S}$. Find the total amount of blood leaving the entire wall per second.

ANSWER: $2 \pi\left(1-e^{-2}\right)$
4. Use the divergence theorem to evaluate the following surface integrals:
(a) $\oint \oint_{S}\left(x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{\boldsymbol{k}}\right) \cdot \hat{n} d S$ where S is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and \hat{n} is the unit outer normal to S.

ANSWER: 0
(b) $\oint \oint_{S}(x \hat{i}+y \hat{j}+2 z \hat{k}) \cdot \hat{n} d S$ where S is the surface bounded by the volume defined by the surfaces $z=2 x^{2}+y^{2}, x^{2}+y^{2}=3, z=0$ and \hat{n} is the unit outer normal to \boldsymbol{S}.

ANSWER: $\mathbf{2 7 \pi}$
(c) $\oint \oint_{S}\left(x y \hat{i}+z^{2} \hat{\boldsymbol{k}}\right) \cdot \hat{n} \boldsymbol{d} \boldsymbol{S}$ where \boldsymbol{S} is the surface enclosing the volume in the first octant bounded by the planes $z=0, y=x, y=2 x, x+y+z=6$ and $\hat{\boldsymbol{n}}$ is the unit outer normal to \boldsymbol{S}.

ANSWER: 57/2
5. Use Stoke's theorem to evaluate the following integrals:
(a) $\oint_{C} y^{2} d x+x y d y+x z d z$ where C is the curve $x^{2}+y^{2}=2 y, y=z$ directed so that \boldsymbol{y} increases when \boldsymbol{x} is positive.

ANSWER: 0
(b) $\oint_{C} y d x+z d y+x d z$ where C is the curve $x+y=2 b, x^{2}+y^{2}+z^{2}=2 b(x+y)$ directed clockwise as viewed from the origin.

$$
\text { ANSWER: }-2 \sqrt{2} \pi b^{2}
$$

(c) $\oint_{C}-2 y^{3} x^{2} d x+x^{3} y^{2} d y+z d z$ where C is the curve $x^{2}+y^{2}+z^{2}=$ $4, x^{2}+4 y^{2}=4$ directed so that x decreases along that part of the curve in the first octant.

ANSWER: 3π
6. Use the divergence theorem to evaluate

$$
\oint \oint_{S}\left[x z^{2} \hat{i}+\left(x^{2} y-z^{3}\right) \hat{j}+\left(2 x y+y^{2} z\right) \hat{k}\right] \cdot \hat{n} d S
$$

where S is the entire surface of the hemispherical region bounded by:

$$
z=\sqrt{a^{2}-x^{2}-y^{2}}, \quad z=0
$$

and $\hat{\boldsymbol{n}}$ is the outward directed normal.
ANSWER: $\frac{2 \pi a^{5}}{5}$
7. Let C be the intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z^{2}=x^{2}+y^{2}$ directed in the clockwise sense around the z-axis. For the vector field:

$$
\overrightarrow{\boldsymbol{F}}=\left(x^{2}+z\right) \hat{i}+\left(y^{2}+2 x\right) \hat{j}+\left(z^{2}-y\right) \hat{k}
$$

Use Stoke's theorem to evaluate the line integral

$$
\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot d \vec{r}
$$

ANSWER: π

