

ME 201 ADVANCED CALCULUS

Assignment 11:

1: Surface Integrals, Divergence and Stoke's Theorem March 28, 2018

1. Evaluate the surface integrals of the following scalar functions:

(a)
$$\int \int_{S} (x^2 + y^2) z \, dS$$
 where S is that part of $z = x + y$ cut out by $x = 0$,
 $y = 0, x + y = 1$.
ANSWER: $2\sqrt{3}/15$

(b) $\int \int_S xy \, dS$ where S is the first octant part of $z = \sqrt{x^2 + y^2}$ cut out by $x^2 + y^2 = 1$. ANSWER: $\sqrt{2}/8$

(c) $\int \int_{S} z \, dS$ where S is that part of the surface $x^2 + y^2 - z^2 = 1$ between the planes z = 0 and z = 1. ANSWER: $\left(\frac{\pi}{3}\right) \left(3\sqrt{3} - 1\right)$

2. Evaluate the surface integrals of the following vector functions:

(a) $\int \int_{S} (yz^{2}\hat{i} + ye^{x}\hat{j} + x\hat{k}) \cdot \hat{n} \, dS$ where S is defined by $y = x^{2}, 0 \le y \le 4$, $0 \le z \le 1$ and \hat{n} is the unit vector to S with positive y-component.

ANSWER:
$$2e^2 - 10e^{-2}$$

(b) $\int \int_{S} (x\hat{i} + y\hat{j}) \cdot \hat{n} \, dS$ where S is that part of the surface $z = \sqrt{x^2 + y^2}$ below z = 1 and \hat{n} is the unit normal to S with negative z-component.

ANSWER: $2\pi/3$

(c) $\int \int_{S} (x\hat{i} + y\hat{j}) \cdot \hat{n} \, dS$ where S is the surface $x^2 + y^2 + z^2 = 4$, $z \ge 1$ and \hat{n} is the unit upper normal to S.

ANSWER: $10\pi/3$

3. A circular tube $S : x^2 + z^2 = 1$, $0 \le y \le 2$ is a model for an artery. Blood flows through the artery and the force per unit area at any point on the arterial wall is given by:

$$ec{F}=e^{-y}\hat{n}+rac{1}{y^2+1}\hat{j}$$

where \hat{n} is the unit outer normal to the arterial wall. Blood diffuses through the wall in such a way that if dS is a small area on S, the amount of diffusion through dS in 1 second is $\vec{F} \cdot \hat{n} \, dS$. Find the total amount of blood leaving the entire wall per second.

ANSWER: $2\pi(1 - e^{-2})$

- 4. Use the divergence theorem to evaluate the following surface integrals:
 - (a) $\oint \oint_S (x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}) \cdot \hat{n} \, dS$ where S is the sphere $x^2 + y^2 + z^2 = a^2$ and \hat{n} is the unit outer normal to S.
 - (b) $\oint \oint_{S} (x\hat{i} + y\hat{j} + 2z\hat{k}) \cdot \hat{n} \, dS$ where S is the surface bounded by the volume defined by the surfaces $z = 2x^2 + y^2$, $x^2 + y^2 = 3$, z = 0 and \hat{n} is the unit outer normal to S.

ANSWER: 27π

ANSWER: 0

(c) $\oint \oint_{S} (xy\hat{i} + z^{2}\hat{k}) \cdot \hat{n} \, dS$ where S is the surface enclosing the volume in the first octant bounded by the planes z = 0, y = x, y = 2x, x + y + z = 6 and \hat{n} is the unit outer normal to S.

```
ANSWER: 57/2
```

- 5. Use Stoke's theorem to evaluate the following integrals:
 - (a) $\oint_C y^2 dx + xy dy + xz dz$ where C is the curve $x^2 + y^2 = 2y$, y = z directed so that y increases when x is positive.

ANSWER: 0

(b) $\oint_C y \, dx + z \, dy + x \, dz$ where *C* is the curve x + y = 2b, $x^2 + y^2 + z^2 = 2b(x+y)$ directed clockwise as viewed from the origin.

ANSWER: $-2\sqrt{2}\pi b^2$

(c) $\oint_C -2y^3x^2 dx + x^3y^2 dy + z dz$ where C is the curve $x^2 + y^2 + z^2 = 4$, $x^2 + 4y^2 = 4$ directed so that x decreases along that part of the curve in the first octant. ANSWER: 3π

6. Use the divergence theorem to evaluate

$$\oint \oint_S [xz^2 \hat{i} \ + \ (x^2y - z^3) \hat{j} \ + \ (2xy + y^2z) \hat{k}] \cdot \hat{n} \ dS$$

where \boldsymbol{S} is the entire surface of the hemispherical region bounded by:

$$z=\sqrt{a^2-x^2-y^2}, \,\, z=0$$

and \hat{n} is the outward directed normal.

7. Let C be the intersection of the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z^2 = x^2 + y^2$ directed in the clockwise sense around the z-axis. For the vector field:

$$ec{F} = (x^2+z) \hat{i} \,+\, (y^2+2x) \hat{j} \,+\, (z^2-y) \hat{k}$$

Use Stoke's theorem to evaluate the line integral

$$\oint_C ec{F} \cdot dec{r}$$

ANSWER: π

ANSWER:
$$\frac{2\pi a^5}{5}$$