

$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 1: Vectors, Vector Operations and Vector Representations
 January 5, 2018

1. If $\overrightarrow{\boldsymbol{u}}=(1,3,6), \vec{v}=(-2,0,4)$ and $\overrightarrow{\boldsymbol{w}}=(4,3,-2)$, solve the following vector operations, expressing your answers in triple notation.
(a) $\mathbf{2} \boldsymbol{w}+\mathbf{3} \overrightarrow{\boldsymbol{v}}$
(b) $|\vec{v}| \vec{v}-2|\hat{v}| \vec{w}$
(c) $\frac{\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{w}}}{|\overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{w}}|}$
2. If $\overrightarrow{\boldsymbol{u}}=2 \hat{i}+\hat{j}$ and $\overrightarrow{\boldsymbol{v}}=-\hat{i}+3 \hat{j}$, solve the following vector operations, expressing your answers in vector notation. Plot the resulting vector in $2 \boldsymbol{D}(\boldsymbol{x}, \boldsymbol{y})$ space.
(a) $\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}$
(b) $\hat{\boldsymbol{v}}+\hat{\boldsymbol{u}}$
3. If P, Q and R are the points with coordinates $(3,2,-1),(0,1,4)$ and $(6,5,-2)$, respectively, find the coordinates of a point S such that $\overrightarrow{P Q}=\overrightarrow{\boldsymbol{R S}}$
4. Section 11.3 Problem 37.
5. If $\overrightarrow{\boldsymbol{u}}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{v}=\hat{j}-\hat{k}$ and $\overrightarrow{\boldsymbol{w}}=6 \hat{i}-2 \hat{j}+3 \hat{k}$, solve the following vector products, expressing your answers in vector notation.
(a) $(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{w}}) \overrightarrow{\boldsymbol{u}}$
(b) $(3 \hat{u}-4 \hat{w}) \cdot(2 \hat{i}+3 \hat{u}-2 \hat{v})$
6. If $\overrightarrow{\boldsymbol{u}}=(3,1,4), \vec{v}=(-1,2,0)$ and $\overrightarrow{\boldsymbol{w}}=(-2,-3,5)$, solve the following vector operations, expressing your answers in triple notation.
(a) $\overrightarrow{\boldsymbol{u}} \times(3 \overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{w}})$
(b) $\overrightarrow{\boldsymbol{u}} \times(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}})$
7. Section 11.4 Problems 26, 30.
8. Section 11.4 Problems 31, 32.
9. Find the equation for the following planes:
(a) Through the point $(2,1,5)$ and normal to the vector joining $(2,1,5)$ and $(4,2,3)$.
(b) Containing the points $(1,3,2),(-2,0,-2)$ and $(1,4,3)$.
(c) Containing the lines $\frac{x-1}{6}=\frac{y}{8}=\frac{z+2}{2}$ and $\frac{x+1}{3}=\frac{y-2}{4}=z+5$.
10. Find vector, parametric and symmetric (if possible) equations for the following lines:
(a) Through the points $(2,-3,4)$ and $(5,2,-1)$.
(b) Through the point $(-2,3,1)$ and parallel to the line $x+y=3,2 x-y+z=-2$.
(c) For the intersection of surfaces $2 x-y=5$ and $3 x+4 y+z=10$.
