$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 2: Applications of Vectors and Vector Calculus

January 12, 2018

1. Find the area of the following:
(a) A triangle with vertices $(1,2,3),(3,5,10)$ and $(-3,-4,-11)$.
(b) A parallelogram with vertices $(1,-2,4),(3,5,7),(4,6,8)$ and $(2,-1,5)$.
2. Find the shortest distance between the following:
(a) From point $(-2,3,-5)$ to the plane $2 x+y+4 z=6$.
(b) From point $(3,-2,0)$ to the line $x=t, y=3-2 t, z=4+t$.
(c) From point $(1,2,-3)$ to the line $x=2(y+1)=(z-4) / 2$.
(d) Between the lines $x=t, y=3 t-1, z=1+2 t$ and $x=2 t+1, y=1-t$, $z=4+2 t$.
(e) Between the lines $x+y-z=4,2 x-z=4$ and $x=\frac{y+1}{2}=\frac{z-1}{3}$.
3.

A hot air balloon is being launched from a field adjacent to a high voltage power line. As the balloon leaves the ground, a $2 \mathrm{~m} / \mathrm{s}$ gust of wind from the southwest blows the balloon towards the power lines. Assume that the balloon ascends at a steady rate of $0.5 \mathrm{~m} / \mathrm{s}$ and the power lines are at a constant height of 30 m (no line sag between the towers). A plan view of the launch site and the power line is shown in the figure.
(a) Derive a set of parametric equations for the position of the balloon as a function of time relative to the coordinate system given in the diagram. (m)
(b) How close does the balloon get to the power line? (\boldsymbol{m})
4. Calculate the moment of the force for the following:
(a) $\overrightarrow{\boldsymbol{F}}=3 \hat{i}-\hat{j}+4 \hat{\boldsymbol{k}}$ at $(1,1,0)$ about the point $(2,1,-5)$
(b) $\vec{F}=6 \hat{i}-5 \hat{j}+\hat{k}$ at $(-2,3,1)$ about the line $\frac{x-3}{2}=y+1=\frac{z}{4}$
5. If

$$
\begin{aligned}
f(t) & =t^{2}+3 \\
\vec{u}(t) & =t \hat{i}-t^{2} \hat{j}+2 t \hat{k} \\
\vec{v}(t) & =\hat{i}-2 t \hat{j}+3 t^{2} \hat{k}
\end{aligned}
$$

solve the following derivative and integral expressions:
(a) $\frac{d}{d t}(3 \vec{u}+4 \vec{v})$
(b) $\int \vec{u} d t$
(c) $\frac{d}{d t}[t(\vec{u} \times \vec{v})]$
(d) $\int[f(t) \vec{u} \cdot \vec{v}] d t$
6. Express the curve in vector form and find the unit tangent vector $\hat{\boldsymbol{T}}$ at each point on the curve for the following:
(a) $x=t, y=t^{2}, z=t^{3}, t \geq 0$
(b) $x+y=5, x^{2}-y=z$ from $(5,0,25)$ to $(0,5,-5)$
7. Find the length of the curve and plot the curve in $3 D$:
(a) $x=2 \cos t, y=2 \sin t, z=3 t, 0 \leq t \leq 2 \pi$
(b) $x=2-5 t, y=1+t, z=6+4 t,-1 \leq t \leq 0$
(c) $x=t, y=t^{3 / 2}, z=4 t^{3 / 2}, 1 \leq t \leq 4$
8.

To protect a water pipe from freezing in winter temperatures, a heat cable is wrapped around the pipe. The wire is wrapped in a circular helix around the 5 cm diameter pipe with a complete turn around the pipe every 8 cm . Assume that the wire diameter is negligible.
(a) Derive a set of parametric equations for the position of the heating wire relative to the coordinate system given in the diagram.
(b) What is the length of wire required to heat a $2 m$ long section of pipe? (m)

