$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 3: Curvature, Acceleration \& Partial Derivatives

January 19, 2018

1. Find parametric equations, the position vector and plot the following curves:
(a) $x^{2}+y^{2}=2, z=4$ directed so that y increases in the first octant.
(b) $z=\sqrt{x^{2}+y^{2}}, y=x$ directed so that \boldsymbol{y} increases when \boldsymbol{x} is positive.
(c) $z=\sqrt{4-x^{2}-y^{2}}, x^{2}+y^{2}-2 y=0$ directed so that z decreases when x is positive.
(d) $z=\sqrt{x^{2}+y^{2}}, y=x^{2}$ directed so that \boldsymbol{y} decreases in the first octant.
2. Find the normal vectors $\hat{\boldsymbol{N}}$ and $\hat{\boldsymbol{B}}$ for the following:
(a) At point $(2 \sqrt{2}, 3 \sqrt{2}, \sqrt{2})$ on the line $x=4 \cos t, y=6 \sin t, z=2 \sin t$ from $-\infty<t<\infty$.
(b) At point $(1,1, \sqrt{2})$ on the line $x^{2}+y^{2}+z^{2}=4, z=\sqrt{x^{2}+y^{2}}$ directed so that \boldsymbol{x} increases when \boldsymbol{y} is positive.
3. Find the curvature and radius of curvature and plot the following curves:
(a) $x=e^{t} \cos t, y=e^{t} \sin t, z=t$ for $t \geq 0$.
(b) $x=t+1, y=t^{2}-1, z=t+1$, for $-\infty<t<\infty$.
4. At which points on the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ where $a>b$ is the curvature a maximum and at what points is the curvature a minimum?
5. Find the velocity, speed and acceleration of a particle moving along the curve described by the parametric equations:

$$
x=t^{2}+1, y=2 t e^{t}, z=\frac{1}{t^{2}} \quad \text { for } \quad 1 \leq t \leq 5
$$

6. If a particle starts at rest (zero velocity) from position $(1,2,-1)$ at time $t=\mathbf{0}$ and experiences acceleration $\vec{a}=3 t^{2} \hat{i}+(t+1) \hat{j}-4 t^{3} \hat{k}$ for $t \geq 0$, find an expression for the position vector.
7. Find the normal and tangential components of acceleration, \boldsymbol{a}_{N} and \boldsymbol{a}_{T}, for a particle moving with position defined by the parametric equations:

$$
x=\cos t, y=\sin t, z=t, \quad \text { for } t \geq 0
$$

8. A particle travels counterclockwise around a circle $(x-h)^{2}+(y-k)^{2}=R^{2}$, where R is the radius and \boldsymbol{h} and \boldsymbol{k} are the \boldsymbol{x} - and \boldsymbol{y}-coordinates at the center of the circle. Show that the speed of the particle at any time \boldsymbol{t} is $|\overrightarrow{\boldsymbol{v}}|=\omega \boldsymbol{R}$, where ω is the angular speed of the particle in $\mathrm{rad} / \mathrm{s}$.
9. A particle follows a trajectory in space given by:

$$
x(t)=2 \cos t, y(t)=2 \sin t, \quad z(t)=2 \pi-t
$$

where x, y and z are in meters and $0 \leq t \leq 2 \pi$.
(a) Calculate the local vectors $\hat{\boldsymbol{T}}, \hat{\boldsymbol{N}}$ and $\hat{\boldsymbol{B}}$ to the curve at any time \boldsymbol{t}.
(b) Calculate the length of the curve.
(c) Find the curvature of the curve at any time t.
(d) Express the particle velocity and acceleration (normal and tangent components).
10. A stone embedded in the tread of a rolling tire follows a path called a cycloid, shown in the figure. \boldsymbol{S} is the speed of the center of the wheel in the \boldsymbol{x} direction and radius \boldsymbol{R} is the radius of the tire. If a coordinate system is defined such that at $t=0$ the stone is located at the origin, parametric equations can be formed to describe the position of the stone:

$$
x=R(\theta-\sin \theta) \quad y=R(1-\cos \theta)
$$

where θ is the angle of rotation of the wheel, which is related to the speed and radius by $\theta=S t / R$

(a) Find the velocity, speed and acceleration of the stone in terms of the variables $\boldsymbol{\theta}, \boldsymbol{S}, \boldsymbol{R}$.
(b) Find the tangential and normal components of the acceleration, \boldsymbol{a}_{T} and \boldsymbol{a}_{N}.
11. Plot the following functions:
(a) $f(x, y)=x^{2}+y^{2}$
(b) $f(x, y)=x^{2}-y^{2}$
(c) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$
12. Evaluate partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ for the following:
(a) $f(x, y)=3 x y-4 x^{4} y^{4}$
(b) $f(x, y)=\sin (x y)$
(c) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$
(d) $f(x, y)=\ln (\sec \sqrt{x+y})$

