

ME 201 ADVANCED CALCULUS

Assignment 3: Curvature, Acceleration & Partial Derivatives January 19, 2018

- 1. Find parametric equations, the position vector and plot the following curves:
 - (a) $x^2 + y^2 = 2$, z = 4 directed so that y increases in the first octant.
 - (b) $z = \sqrt{x^2 + y^2}$, y = x directed so that y increases when x is positive.
 - (c) $z = \sqrt{4 x^2 y^2}$, $x^2 + y^2 2y = 0$ directed so that z decreases when x is positive.
 - (d) $z = \sqrt{x^2 + y^2}$, $y = x^2$ directed so that y decreases in the first octant.
- 2. Find the normal vectors \hat{N} and \hat{B} for the following:
 - (a) At point $(2\sqrt{2}, 3\sqrt{2}, \sqrt{2})$ on the line $x = 4\cos t$, $y = 6\sin t$, $z = 2\sin t$ from $-\infty < t < \infty$.
 - (b) At point $(1, 1, \sqrt{2})$ on the line $x^2 + y^2 + z^2 = 4$, $z = \sqrt{x^2 + y^2}$ directed so that x increases when y is positive.
- 3. Find the curvature and radius of curvature and plot the following curves:
 - (a) $x = e^t \cos t$, $y = e^t \sin t$, z = t for $t \ge 0$.
 - (b) x = t + 1, $y = t^2 1$, z = t + 1, for $-\infty < t < \infty$.
- 4. At which points on the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ where a > b is the curvature a maximum and at what points is the curvature a minimum?
- 5. Find the velocity, speed and acceleration of a particle moving along the curve described by the parametric equations:

$$x = t^2 + 1, \ y = 2te^t, \ z = rac{1}{t^2} \quad ext{for} \quad 1 \leq t \leq 5.$$

- 6. If a particle starts at rest (zero velocity) from position (1, 2, -1) at time t = 0 and experiences acceleration $\vec{a} = 3t^2\hat{i} + (t+1)\hat{j} 4t^3\hat{k}$ for $t \ge 0$, find an expression for the position vector.
- 7. Find the normal and tangential components of acceleration, a_N and a_T , for a particle moving with position defined by the parametric equations:

$$x = \cos t, \ y = \sin t, \ z = t, \ \text{ for } t \ge 0$$

- 8. A particle travels counterclockwise around a circle $(x h)^2 + (y k)^2 = R^2$, where R is the radius and h and k are the x- and y-coordinates at the center of the circle. Show that the speed of the particle at any time t is $|\vec{v}| = \omega R$, where ω is the angular speed of the particle in rad/s.
- 9. A particle follows a trajectory in space given by:

$$x(t) = 2\cos t, \,\,\, y(t) = 2\sin t, \,\,\, z(t) = 2\pi - t$$

where x, y and z are in meters and $0 \le t \le 2\pi$.

- (a) Calculate the local vectors \hat{T} , \hat{N} and \hat{B} to the curve at any time t.
- (b) Calculate the length of the curve.
- (c) Find the curvature of the curve at any time t.
- (d) Express the particle velocity and acceleration (normal and tangent components).

10. A stone embedded in the tread of a rolling tire follows a path called a cycloid, shown in the figure. S is the speed of the center of the wheel in the x direction and radius R is the radius of the tire. If a coordinate system is defined such that at t = 0 the stone is located at the origin, parametric equations can be formed to describe the position of the stone:

$$x = R(\theta - \sin \theta)$$
 $y = R(1 - \cos \theta)$

where θ is the angle of rotation of the wheel, which is related to the speed and radius by $\theta = St/R$

- (a) Find the velocity, speed and acceleration of the stone in terms of the variables θ , S, R.
- (b) Find the tangential and normal components of the acceleration, a_T and a_N .
- 11. Plot the following functions:
 - (a) $f(x,y) = x^2 + y^2$
 - (b) $f(x,y) = x^2 y^2$
 - (c) $f(x,y) = \ln(x^2 + y^2)$
- 12. Evaluate partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ for the following:
 - (a) $f(x,y) = 3xy 4x^4y^4$
 - (b) $f(x, y) = \sin(xy)$
 - (c) $f(x,y) = \ln(x^2 + y^2)$
 - (d) $f(x,y) = \ln(\sec\sqrt{x+y})$