ME 201 ADVANCED CALCULUS

Assignment 4:

Chain Rule, Tangent Lines and Tangent Planes January 26, 2018

1. Solve the following partial derivatives:

(a)
$$\frac{\partial^3 f}{\partial y^3}$$
 if $f(x, y) = \frac{2x}{y} + 3x^3y^4$
(b) $\frac{\partial^2 f}{\partial y \partial z}$ if $f(x, y, z) = xyze^{x+y+z}$
(c) $\frac{\partial^2 f}{\partial z^2}$ if $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$
(d) $\frac{\partial^6 f}{\partial z^2}$ if $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$

(d) $\frac{\partial^{\circ} f}{\partial x^2 \partial y^2 \partial z^2}$ if $f(x, y, z) = \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}$

2. If
$$z = x^2 + xy + y^2 \sin(x/y)$$
 show that:

$$x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=2z=x^2\frac{\partial^2 z}{\partial x^2}+2xy\frac{\partial^2 z}{\partial x\partial y}+y^2\frac{\partial z^2}{\partial y^2}$$

3. Use chain rule to solve the following partial derivatives:

(a)
$$\frac{\partial u}{\partial s}$$
 if $u = \sqrt{x^2 + y^2 + z^2}$, $x = 2st$, $y = s^2 + t^2$, $z = st$
(b) $\frac{\partial z}{\partial t}$ if $z = x^2 + y^2 + u^2$, $x = v^3 - 3v^2$, $u = \frac{1}{x^2 - y^2}$, $v = e^t$, $y = e^{4t}$
(c) $\frac{\partial^2 z}{\partial v^2}$ if $z = \sin(xy)$, $x = 3\cos v$, $y = 4\sin v$

- 4. Find the equation for the tangent line to the curve at the point given for the following:
 - (a) $x = e^{-t} \cos t$, $y = e^{-t} \sin t$, z = t at (1, 0, 0)
 - (b) $x^2 + y^2 + z^2 = 4$, $z^2 = x^2 + y^2$ at $(1, 1, -\sqrt{2})$

- 5. Find an equation for the tangent plane to the surface at the point given for the following:
 - (a) $x = x^2 y^3 z$ at (2, -1, -2)

(b)
$$x^2 + y^2 + 2y = 1$$
 at $(1, 0, 3)$

- 6. Verify that the curve $x^2 y^2 + z^2 = 1$, xy + xz = 2 is tangent to the surface $xyz x^2 6y + 6 = 0$ at the point (1, 1, 1).
- 7. Determine the following quantities:
 - (a) The unit tangent vector, \hat{T} , for the curve of intersection of surfaces $x^2 + y^2 + z^2 = 2$ and y = z at point (0, 1, 1).
 - (b) The directional derivative of $f(x, y, z) = 2xyz x^2 z^2$ along the curve from Part a) at point (0, 1, 1) in the direction of increasing x.
 - (c) Find the angle between the gradient vector, ∇f , and the vector, \vec{v} , along which the rate of change (directional derivative) of f(x, y, z) at point (0, 1, 1) is equal to 0, equal to 1 and is a maximum.