$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 4: Chain Rule, Tangent Lines and
 Tangent Planes
 January 26, 2018

1. Solve the following partial derivatives:
(a) $\frac{\partial^{3} f}{\partial y^{3}}$ if $f(x, y)=\frac{2 x}{y}+3 x^{3} y^{4}$
(b) $\frac{\partial^{2} f}{\partial y \partial z}$ if $f(x, y, z)=x y z e^{x+y+z}$
(c) $\frac{\partial^{2} f}{\partial z^{2}}$ if $f(x, y, z)=\ln \sqrt{x^{2}+y^{2}+z^{2}}$
(d) $\frac{\partial^{6} f}{\partial x^{2} \partial y^{2} \partial z^{2}}$ if $f(x, y, z)=\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}$
2. If $z=x^{2}+x y+y^{2} \sin (x / y)$ show that:

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=2 z=x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial z^{2}}{\partial y^{2}}
$$

3. Use chain rule to solve the following partial derivatives:
(a) $\frac{\partial u}{\partial s}$ if $u=\sqrt{x^{2}+y^{2}+z^{2}}, x=2 s t, y=s^{2}+t^{2}, z=s t$
(b) $\frac{\partial z}{\partial t}$ if $z=x^{2}+y^{2}+u^{2}, x=v^{3}-3 v^{2}, u=\frac{1}{x^{2}-y^{2}}, v=e^{t}, y=e^{4 t}$
(c) $\frac{\partial^{2} z}{\partial v^{2}}$ if $z=\sin (x y), x=3 \cos v, y=4 \sin v$
4. Find the equation for the tangent line to the curve at the point given for the following:
(a) $x=e^{-t} \cos t, y=e^{-t} \sin t, z=t$ at $(1,0,0)$
(b) $x^{2}+y^{2}+z^{2}=4, z^{2}=x^{2}+y^{2}$ at $(1,1,-\sqrt{2})$
5. Find an equation for the tangent plane to the surface at the point given for the following:
(a) $x=x^{2}-y^{3} z$ at $(2,-1,-2)$
(b) $x^{2}+y^{2}+2 y=1$ at $(1,0,3)$
6. Verify that the curve $x^{2}-y^{2}+z^{2}=1, x y+x z=2$ is tangent to the surface $x y z-x^{2}-6 y+6=0$ at the point $(1,1,1)$.
7. Determine the following quantities:
(a) The unit tangent vector, \hat{T}, for the curve of intersection of surfaces $x^{2}+y^{2}+z^{2}=2$ and $y=z$ at point $(0,1,1)$.
(b) The directional derivative of $f(x, y, z)=2 x y z-x^{2}-z^{2}$ along the curve from Part a) at point $(0,1,1)$ in the direction of increasing x.
(c) Find the angle between the gradient vector, $\boldsymbol{\nabla} f$, and the vector, $\overrightarrow{\boldsymbol{v}}$, along which the rate of change (directional derivative) of $f(x, y, z)$ at point $(0,1,1)$ is equal to 0 , equal to 1 and is a maximum.
