## $\mathcal{M E} 201$ ADVANCED CALCULUS

## Assignment 7: Double Integration and Surface Area

March 2, 2018

1. Evaluate the following double integrals:
(a) $\int_{-3}^{3} \int_{-\sqrt{18-2 y^{2}}}^{\sqrt{18-2 y^{2}}} x d x d y$

ANSWER: 0
(b) $\int_{-1}^{0} \int_{y}^{2}(1+y)^{2} d x d y$

ANSWER: 3/4
(c) $\int_{1}^{2} \int_{1}^{y} e^{x+y} d x d y$

ANSWER: $\frac{e^{2}(1-e)^{2}}{2}$
(d) $\int_{-1}^{1} \int_{x}^{2 x}\left(x y+x^{3} y^{3}\right) d x d y$

ANSWER: 0
2. Evaluate the double integrals over the region given:
(a) $\iint_{R} x y^{2} d A$ where $R$ is bounded by $x+y+1=0, x+y^{2}=1$

ANSWER: -621/140
(b) $\iint_{R}\left(x y+y^{2}-3 x^{2}\right) d A$ where $R$ is bounded by $y=|x|, y=1, y=2$

ANSWER: 0
3. Evaluate the following double integrals by reversing the order of integration:
(a) $\int_{0}^{1} \int_{y}^{1} \sin \left(x^{2}\right) d x d y$
ANSWER: $\frac{1-\cos 1}{2}$
(b) $\int_{-2}^{0} \int_{-2}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$
ANSWER: $2(1-\sqrt{2})$
4. The Cobb-Douglas production function for a widget is $P(x, y)=10,000 x^{0.3} y^{0.7}$, where $\boldsymbol{P}$ is the number of widgets produced each month, $\boldsymbol{x}$ is the number of employees and $\boldsymbol{y}$ is the monthly operating budget in thousands of dollars. If the company uses anywhere between 45 and 55 workers each month and its operating budget varies from $\$ 8,000$ to $\$ 12,000$ per month, what is the average number of widgets produced each month.

ANSWER: 161, 781
5. Evaluate the double integrals in polar coordinates over the region given:
(a) $\iint_{R} x d A$ where $R$ is bounded by $x=\sqrt{2 y-y^{2}}, x=0$

ANSWER: $2 / 3$
(b) $\iint_{R} \frac{1}{\sqrt{x^{2}+y^{2}}} d A$ where $R$ is the region outside $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=4 x$ ANSWER: $\frac{4}{3(3 \sqrt{3}-\pi)}$
(c) $\iint_{R} \sqrt{1+2 x^{2}+2 y^{2}} d A$ where $R$ is bounded by $x^{2}+y^{2}=1, x^{2}+y^{2}=4$

ANSWER: $(9-\sqrt{3}) \pi$
6. Poiseuille's law states that for laminar flow through a circular pipe, the speed of the fluid, $\boldsymbol{v}$, at a distance $\boldsymbol{r}$ from the center of the pipe is given by:

$$
v=\frac{P}{4 n L}\left(R^{2}-r^{2}\right)
$$

where $\boldsymbol{P}$ is the pressure difference between the ends of the pipe, $L$ is the length of the pipe, $\boldsymbol{n}$ is the fluid viscosity and $\boldsymbol{R}$ is the pipe radius. Find the volume flow rate through the pipe.

$$
\text { ANSWER: } \frac{\pi P R^{4}}{8 n L}
$$

7. Use double integrals to find the area of the region bounded by the following curves:
(a) $y=x^{3}+8, y=4 x+8$

ANSWER: 8
(b) $y=x e^{-x}, y=x, x=2$

ANSWER: $1+3 e^{-2}$
(c) $y=x^{3}-x, x+y+1=0, x=\sqrt{y+1}$

ANSWER: 7/6
(d) Common to $r=2, r^{2}=9 \cos 2 \theta \quad$ ANSWER: $4 \cos ^{-1}(4 / 9)+9-\sqrt{65}$
8. Use double integrals to find the volume of a solid of revolution obtained by rotating the region bounded by the curves around the line:
(a) $y=x^{2}+4, y=2 x^{2}$ about $y=0$

ANSWER: $1024 \pi / 15$
(b) $r=1+\sin \theta$ about the $y$ axis

ANSWER: $8 \pi / 3$
9. Find the surface area of the following functions for the region given:
(a) $z=\sqrt{2 x y}$ cut out by the planes $x=1, x=2, y=1, y=3$ ANSWER: $\frac{4}{3}(5 \sqrt{3}-2 \sqrt{6}-3+\sqrt{2})$
(b) $z=\ln (1+x+y)$ in the first octant cut off by $y=1-x^{2}$ (set up integral only)
10. Prove the following surface area relationships:
(a) Surface area of the curved portion of a right circular cone, $\pi r \sqrt{r^{2}+h^{2}}$
(b) Surface area of a sphere, $4 \pi r^{2}$
11. Determine the surface area of intersection for the part of the cylinder $x^{2}+z^{2}=a^{2}$ that lies inside the cylinder $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=\boldsymbol{a}^{2}$. Make a suitable sketch of the two intersecting cylinders and clearly show the surface of intersection.

ANSWER: $\mathbf{8} \boldsymbol{a}^{\mathbf{2}}$
12. Find the surface area of the portion of the sphere $x^{2}+y^{2}+z^{2}=25$ that lies between the planes $z=3$ and $z=4$.

ANSWER: $\mathbf{1 0 \pi}$

