

$\mathcal{M E} 201$ ADVANCED CALCULUS

Assignment 8: Triple Integrals, Volumes, Centroids \& Moments March 9, 2018

1. Evaluate the following triple integrals over the given region:
(a) $\iiint_{G} x y d V$ where G is bounded by $z=\sqrt{1-x^{2}-y^{2}}, z=0$

ANSWER: 0
(b) $\iiint_{G}(x+y+z) d V$ where G is bounded by $x=0, x=1, z=0$,

$$
y+z=2, y=z
$$

ANSWER: 11/6
(c) $\iiint_{G} x^{2} y d V$ where G is bounded by $z=\frac{x^{2}}{4}+\frac{y^{2}}{9}, z=1$

ANSWER: 48/35
(d) $\iiint_{G}\left(x^{2}+y^{2}+z^{2}\right) d V$ where G is bounded by $z=\sqrt{1-x^{2}-y^{2}}, z=x^{2}$ (set up but do not evaluate)
(e) $\iiint_{G}\left(y+x^{2}\right) d V$ where G is bounded by $x+z^{2}=1, z=x+1, y=1$, $y=-1$

ANSWER: 729/70
2. Find the volume bounded by the following surfaces:
(a) $x=z^{2}, z=x^{2}, y=0, y=2$

ANSWER: 2/3
(b) $y=x^{2}-1, y=1-x^{2}, x+z=1, z=0$

ANSWER: 8/3
3. Find the average value of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ over the region bounded by $x=0, x=1, y+z=2, y=2, z=2$

ANSWER: 13/3
4. A pyramid has a square base with side lengths \boldsymbol{b} and has height \boldsymbol{h} at its center. Find its volume using a triple integral.
5. Find the volume bounded by the following surfaces using cylindrical coordinates:
(a) $z=x^{2}+y^{2}, z=4-x^{2}-y^{2}$

ANSWER: 4π
(b) $x+y+z=2, x^{2}+y^{2}=1, z=0$

ANSWER: 2π
6. Set up the six triple iterated integrals (do not evaluate the integrals) in polar coordinates for the triple integral of the function $f(x, y, z)$ over the region bounded by the surfaces $z=1+x^{2}+y^{2}, x^{2}+y^{2}=9, z=0$.
7. A casting is in the form of a sphere of radius \boldsymbol{b} with two cylindrical holes of radius $\boldsymbol{a}<\boldsymbol{b}$ such that the axes of the holes pass through the center of the sphere and intersect at right angles. What volume of metal is required for the casting?

$$
\text { ANSWER: } V=\frac{16 a^{3}}{3}+\frac{4 \pi}{2}\left[2\left(b^{2}-a^{2}\right)^{3 / 2}-b^{3}\right]
$$

8. Find the volume bounded by the following surfaces using spherical coordinates:
(a) $z=\sqrt{x^{2}+y^{2}}, z=\sqrt{1-x^{2}-y^{2}}$

ANSWER: $(2-\sqrt{2}) \pi / 3$
(b) $x^{2}+y^{2}+z^{2}=1, y=x, y=2 x, z=0$ in the first octant

$$
\text { ANSWER: } \frac{1}{3}\left(\tan ^{-1} 2-\pi / 4\right)
$$

9. The temperature distribution of the region $R(r, \phi, \theta)$ in the range, $a \leq r \leq b$,

$$
\begin{aligned}
0 \leq \phi \leq \pi, 0 & \leq \theta \leq 2 \pi \text { is given by: } \\
& T(r)=T_{0}+\frac{S\left(r^{2}-a^{2}\right)}{6 k}+\frac{S b^{3}}{3 k}\left(\frac{1}{r}-\frac{1}{a}\right)
\end{aligned}
$$

where T_{0}, S, k are constants. Determine the volumetric average temperature

$$
\bar{T}=\frac{1}{V} \iiint_{R} T d V
$$

where \boldsymbol{V} is the total volume of \boldsymbol{R}. Verify that the triple integral reduces to the single integral

$$
\bar{T}=\frac{3}{b^{3}-a^{3}} \int_{a}^{b} T(r) r^{2} d r
$$

10. Use Archimedes' principle to determine the density of a spherical ball, with density ρ_{b}, if it floats half submerged in water with density, $\boldsymbol{\rho}_{\boldsymbol{w}}$. What force is required to keep the ball with its center at a depth of one-half the radius of the ball.

$$
\text { ANSWER: } \rho_{b}=\frac{\rho_{w}}{2}, \quad F=\frac{11}{24} \pi \rho_{w} g R^{3}
$$

11. Given the intersection of a sphere, $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\boldsymbol{z}^{2}=\boldsymbol{z}$ and a cone, $\boldsymbol{z}^{2}=\boldsymbol{x}^{2}+\boldsymbol{y}^{2}$:
(a) Sketch the solid and determine the coordinates of the center of the intersecting plane between the two objects. What is the radius of the sphere?

ANSWER: $a=1 / 2$
(b) Use triple integrals to find the volume of the solid within the sphere and above the cone.

ANSWER: $\boldsymbol{\pi} / 8$
12. Find the centroid of the $2 \boldsymbol{D}$ region bounded by the curves:
(a) $y=8-2 x^{2}, y+x^{2}=4$

ANSWER: $(0,24 / 5)$
(b) $x=4 y-4 y^{2}, x=y+3, y=1, y=0$

ANSWER: (177/85, 9/17)
(c) $y=\sqrt{2-x}, 15 y=x^{2}-4$

ANSWER: $(-61 / 28,807 / 700)$
13. Find the second moment of inertia of the $2 D$ region $y=x, y=2 x+4, y=0$ about the \boldsymbol{x}-axis.

ANSWER: 32/3
14. Find the centroid of the $3 D$ region bounded by the surfaces:
(a) $y=4-x^{2}, y=z, z=0$

ANSWER: $(0,16 / 7,8 / 7)$
(b) $y=x^{3}, x=y^{2}, z=1+x^{2}+y^{2}, z=-x^{2}-y^{2}$

$$
\text { ANSWER: }\left(\frac{6772}{11847}, \frac{7300}{14001}, \frac{1}{2}\right)
$$

15. Find the second moment of inertia of the $3 D$ region $y+z=2, x+z=2, x=0$, $\boldsymbol{y}=0, \boldsymbol{z}=0$ about the \boldsymbol{z}-axis where the material density is given as ρ.

ANSWER: $64 \rho / 15$
16. Find the center of mass of a uniform solid in the first octant bounded by the ellipsoid

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\
& \quad \text { ANSWER: }\left(\frac{3 a}{8}, \frac{3 b}{8}, \frac{3 c}{8}\right)
\end{aligned}
$$

17. A novelty golf ball, the Unputtaball, is described as looking like a real golf ball but when it rolls it wobbles and jumps in all directions, making it impossible to putt - a good prank for your fellow golfers. This 4 cm diameter ball is constructed using a two part rubber core, where each part has a different density. Neglecting the thin coating on the outside of the ball, calculate the center of mass, $(\bar{x}, \bar{y}, \bar{z})$, using the coordinate system given in the figure. Hint: perform the volume integral in cylindrical coordinates.

ANSWER: $\left(0,0, \frac{27}{52}\right)$

