
Problem 1.   
 
 
 
 
 
Solution: 
1. Identify variables:   dependent variable = instantaneous velocity, V [m/s] 
     independent variable = time, t [s] 
 
2.  Fundamental law: 
 Newton’s Second Law: 
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 b) Air resistance  VkFa ⋅−=  
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3. Solve ODE 
 The solution to the ODE is, 
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 According to the initial solution, the constant is, 
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4. Maximum height 

When 0=V , the ball will reach the maximum height. The length of time is, 
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 The height of the ball can be determined by integrating velocity ( dtdzV = ) with respect to t , 
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 The maximum height is 
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Problem  2. 
 
Solution: 
1. Identify variables:   dependent variable = depth of water, y [m] 
     independent variable = time, t [s] 
 
2.  Fundamental laws: 
 Conservation of Mass: 
   Change in Tank Volume = - Outflow rate of water 
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 Torricelli’s Law 
     ygCV dex ⋅⋅= 2  
      where dC  is the discharge coefficient (constant) 
   Volume outflow rate of water 
     ygCrVAQ dhexexex ⋅⋅== 22π  
  
 First order, linear separable ODE 

     ygCr
dt
dyy

y
R

dh ⋅⋅−= 22

0

2
0 ππ  

     dt
R
rygCdyy h

d 2
0

2

02−=  

 Initial condition 
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3. Solve ODE 
 The solution to the ODE is, 
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 According to the initial solution, the constant is, 
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 The final solution is 
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The length of time it takes the tank to drain ( 0=y ) is 
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Problem 3.   

 
 

Solution: 
1. Identify variables:   dependent variable = concentration of X, C [g/m3] 
     independent variable = time, t [day] 
 
2.  Fundamental law: 
 Conservation of Mass: 
   Change of X in the Lake = Inflow of X – Outflow of X 
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First order, linear separable ODE 

     eCQ
dt
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where ][50000 3 daymQe = , ][10 37 mV =  
  

Initial condition 
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3. Solve ODE 
 The solution to the ODE is, 
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 Substituting ][50000 3 daymQe = , ][10 37 mV = into the solution gives 

     tAeC
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 According to the initial solution, the constant is, 
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 The final solution is 
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The length of time it takes for the lake concentration to drop to a level of ][10 34 mg−  
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Problem 4.   
 
Solution: 
1. Identify variables:   dependent variable = current flow, I [A] 
     independent variable = time, t [s] 
 
2.  Fundamental law: 
 Kirchoff’s Law: 
     ∑= drops voltage  E   

     IR
dt
dILE +=       

  
First order, linear separable ODE 
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Initial condition 
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3. Solve ODE 
 The solution to the ODE is, 
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 According to the initial solution, the constant is, 
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 The final solution is 
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 When ∞→ t , the steady state value of the current is 
R
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The length of time it takes for the current to achieve half its steady-state value is 
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Problem 5.  
 
Solution: 
Recall: the dimensional ODE  from problem 4 is 
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Let refIII =*  and refttt =* , thus, 
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The non-dimensional differential equation is 
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Initial condition 
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The solution to the non-dimensional ODE is 
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The constant can be determined according to the initial condition, 
    1=C  
The final solution is 
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The solution in dimensional form 
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