
ME203 PROBLEM SET #6 
 
1. Text – Section 4.5 
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Solution: 
First multiply this equation by 2x  (which we can 
do since 0>x ) to transform it into the Cauchy-
Euler equation given by 
 0)(4)(6)(2 =+′+′′ xwxwxxwx  
Then by making the substitution tex =  (and 
using equation (17) on page 188 of the text), we 
transform the Cauchy-Euler equation into an 
equation with constant coefficients given by 
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This is a linear equation with constant 
coefficients and has the associated auxiliary 
equation  
 0452 =++ rr  
which has roots 4,1 −−=r . 
Therefore, a general solution to equation (1) is 
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1
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To change this equation back into one with the 
independent variable x , we again use the 
substitution tex = .  
Therefore the solution becomes 
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1
1)( −− +== xcxcxw  

 
 
2. Text – Section 4.6 
 
33. 0)(6)(3)(2 =+′−′′ xyxyxxyx  
Solution: 
Making the substitution tex =  (and using 
equation (17) on page 188 of the text), we 
transform the Cauchy-Euler equation into an 
equation with constant coefficients given by 
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This is a linear equation with constant 
coefficients and has the associated auxiliary 
equation  
 0642 =+− rr  
which has roots ir 22 ±= . 
Therefore, a general solution to equation (2) is 
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To change this equation back into one with the 
independent variable x , we again use the 
substitution tex =  or, solving this expression 
for t , xt ln= . 
Therefore the solution becomes 

( ) ( )xxcxxcxy ln2sinln2cos)( 2
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2
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3. Text – Section 6.2 
 
3. 0276 =−′−′′+′′′ zzzz  
Solution: 
The auxiliary equation for this problem is 
 0276 23 =−−+ rrr  
By inspection we see that 1−=r is a root to this 
equation and so we can factor it as follows 

0
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Thus, we see that the roots to the auxiliary 

equation are 
2
1,

3
2,1 −−=r . 

These roots are real and non-repeating. 
Therefore, a general solution to this problem is 
give by 
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13. 044)4( =+′′+ yyy  
Solution: 
The auxiliary equation for this problem is 
 044 24 =++ rr  
This can be factored as 
 ( ) 022 =+r  



Therefore, this equation has roots 
iiiir 2,2,2,2 −−= , 

which we see are repeated and complex. 
Therefore, a general solution to this problem is 
give by 
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4. Text – Section 4.8 
 
6. 18322 23 ++−−=−′−′′ xxxyyy  
Solution: 
According to Table 4.1 on page 208 of the text, 
this non-homogeneous term is of Type I. Thus, 
we want a particular solution of this differential 
equation to have the form 
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3)( AxAxAxAxyp +++= . 

Therefore, py , py′  and py ′′  are given by 
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3 23)( AxAxAxyp ++=′ , and 

 23 26)( AxAxyp +=′′  
Substituting these expressions into the original 
differential equation yields 
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By equating coefficients, we obtain 
22 3 −=− A   ⇒ 13 =A  

323 23 =+ AA   ⇒ 02 =A  
8226 123 =−− AAA  ⇒ 11 −=A  

122 012 =−− AAA  ⇒ 00 =A  
Therefore, a particular solution of the non-
homogeneous differential equation  

18322 23 ++−−=−′−′′ xxxyyy ppp  
is given by 
 xxxy p −= 3)(  

 
7. xyyy 3sin39 =+′−′′  
Solution: 
According to Table 4.1 on page 208 of the text, 
this non-homogeneous term is of Type III (with 

0=a , 3=b , and 3=β ). Thus, we want a 
particular solution of this differential equation to 
have the form 

xBxAxyp 3sin3cos)( += . 

Therefore, py , py′  and py ′′  are given by 

 xBxAxyp 3sin3cos)( +=  

 xBxAxyp 3cos33sin3)( +−=′ , and 

 xBxAxyp 3sin93cos9)( −−=′′  
Substituting these expressions into the original 
differential equation yields 

( )
( )

x
xBxA

xBxA
xBxAxBxA

yyy ppp

3sin3
3cos33sin3

3sin3cos9
3cos33sin33sin93cos9

9

=
−=

++
−+−−=

+′−′′

By equating coefficients, we obtain 
33 =A   ⇒ 1=A  

03 =− B  ⇒ 0=B  
Therefore, a particular solution of the non-
homogeneous differential equation  

xyyy ppp 3sin39 =+′−′′  
is given by 
 xxy p 3cos)( =  
 

9. rre
dr
d

dr
d

=+− θθθ 652
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Solution: 
For this problem, the corresponding 
homogeneous equation is 

065 =+′−′′ θθθ  
which has the associated auxiliary equation 
 0652 =+− ρρ  
This auxiliary equation has roots 3,2=ρ . 
Thus, a general solution of this homogeneous 
equation is given by 
 rr

h eCeCr 3
2

2
1)( +=θ  



The non-homogenous term of the original 
differential equation is rre . According to Table 
4.1 on page 208 of the text, this non-
homogeneous term is of Type IV. Thus, we want 
a particular solution of this differential equation 
to have the form rs

p eArArr )()( 01 +=θ . 

Since neither rre  nor re  are solutions of the 
corresponding homogeneous equation, we let 

0=s . 
Therefore, pθ , pθ ′  and pθ ′′  are given by 

 rr
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p eAAreAr 011)( ++=′θ , and 

 ( ) rr
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Substituting these expressions into the original 
differential equation yields 
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By equating coefficients, we obtain 

12 1 =A  ⇒ 
2
1

1 =A  

032 10 =− AA  ⇒ 
4
3

0 =A  

Therefore, a particular solution of the non-
homogeneous differential equation  

r
ppp re=+′−′′ θθθ 65  

is given by 
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17. tetytyty t sin)(2)(3)( =+′−′′  
Solution: 
The corresponding homogeneous equation is 

023 =+′−′′ yyy  
which has the associated auxiliary equation 
 0232 =+− rr  
This auxiliary equation has roots 2,1=r . 
Thus, a general solution of this homogeneous 
equation is given by 

 tt
h eCeCty 2

21)( +=  
The non-homogenous term of the original 
differential equation is tet sin . According to 
Table 4.1 on page 208 of the text, this non-
homogeneous term is of Type VI with 1=α , 

1=β , 0=a , and 1=b . Thus, a particular 
solution of the non-homogeneous differential 
equation will have the form 

)sincos()( tBtAetty ts
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Since neither tet cos  nor tet sin  is a solution 
of the corresponding homogeneous equation, we 
let 0=s . 
Therefore, py , py′  and py ′′  are given by 
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Substituting these expressions into the original 
differential equation yields 
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By equating coefficients, we obtain 
0=−− BA  and 1=− BA  

⇒ 
2
1

−=B  and 
2
1

=A  

Therefore, a particular solution to the non-
homogeneous differential equation  

teyyy t sin23 =+′−′′  
is given by 
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Thus, a general solution of the original, non-
homogeneous differential equation is 
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31. θθθθ 2sin)()( eyy −=−′′ � 
   1)0( =y � 1)0( −=′y  
Solution: 
We first solve the associated homogeneous 
equation  

0=−′′ yy  
and obtain as general solution 
 θθθ −+= eCeCyh 21)(  
Next we will use the superposition principle and 
consider separately the equations 
 θsin=−′′ yy    (3) 
and 
 θ2eyy −=−′′    (4) 
For equation (3), according to Table 4.1 on page 
208 of the text, this non-homogeneous term is of 
Type III (with 0=a , 1=b , and 1=β ). Thus, 
we want a particular solution of equation (3) to 
have the form 

θθθ sincos)(1 BAy p += . 

Therefore, 1py  and 1py ′′  are given by 

 θθθ sincos)(1 BAy p +=  

 θθθ sincos)(1 BAy p −−=′′  
Substituting these expressions into equation (3) 
yields 
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By equating coefficients, we obtain 
02 =− A  ⇒ 0=A  

12 =− B  ⇒
2
1

−=B  

Therefore, a particular solution of the non-
homogeneous differential equation (3) is 

 
2
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For equation (4), according to Table 4.1 on page 
208 of the text, this non-homogeneous term is of 
Type II (with 1−=a  and 2=α ). Thus, we 

want a particular solution of equation (4) to have 
the form 

θθ 2
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Therefore, py  and py ′′  are given by 

 θθ 2
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Substituting these expressions into equation (4) 
yields 
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By equating coefficients, we obtain 

13 −=D  ⇒
3
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Therefore, a particular solution of the non-
homogeneous differential equation (4) is 
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It follows from the superposition principle 
that a general solution to the original 
equation is given by 
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Thus we have 
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The initial conditions give 
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5. Text – Section 4.9 
 



2. xyy sec=+′′  
Solution: 
Step 1) solve complimentary equation 
 0=+′′ yy  
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 xCxCyc sincos 21 +=  
 xy cos1 =  xy sin2 =  
Step 2) General form of solution 
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Thus the general solution is 
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6. xeyyy −=+′+′′ 2  
Solution: 
Step 1) solve complimentary equation 
 02 =+′+′′ yyy  
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Step 2) General form of solution 
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17. 1sec3 2 +−=+′′ xxyy  
Solution: 
Step 1) solve complimentary equation 
 0=+′′ yy  
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 xCxCyc sincos 21 +=  
 xy cos1 =  xy sin2 =  
Step 2) General form of solution 
We will use the superposition principle and 
consider separately the equations 
 xyy sec3=+′′   (5) 
and 
 12 +−=+′′ xyy   (6) 
For equation (5) 
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We can use the method of undetermined 
coefficients to solve equation (6). 
According to Table 4.1 on page 208 of the text, 
this non-homogeneous term is of Type I. Thus, 
we want a particular solution of this differential 
equation to have the form 
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Therefore, 2py  and 2py ′′  are given by 
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Substituting these expressions into equation (6) 
yields 

( )

1

2

2

2
021

2
2

01
2

22

+−=

+++=

+++=

+′′

x
AAxAxA
AxAxAA

yy

 

By equating coefficients, we obtain 
12 −=A  

01 =A   
12 02 =+ AA  ⇒ 30 =A  

Therefore, a particular solution of equation (6) is 
given by 
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Solution: 
The given differential equation is a Cauchy-
Euler equation. We make the substitution tex =  
to transform the Cauchy-Euler equation into an 
equation with constant coefficients given by 

 
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Step 1) solve complimentary equation 
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Step 2) General form of solution 
 2211 zuzuz p +=  

 ∫
−

= dt
zzw
tfzu
),(
)(

21

2
1  

∫= dt
zzw
tfzu

),(
)(

21

1
2  

( ) tttttt

ttt

tt

eeteteee

teee
tee

zzw

2

21

)(

),(

=−+=

+
=

( ) ttdtt

dt
e

t
ete

u t

tt

3
2

3

31

2

21

−−=+−=







 +−

=

∫

∫  

∫

∫

+=





 +=







 +

=

ttdt
t

dt
e

t
ee

u t

tt

ln331

31

22  

Thus, 



( )

t

tt

p

etttt

tettett

zuzuz









+−=

++







−−=

+=

ln33
2

ln33
2

2

2

2211

 

Thus the general solution is 
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With tex =  (so that xt ln= ), 11 Cc =  and 

322 −= Cc , the general solution can be 
expressed as follows 
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