
ME203 – Ordinary Differential Equations      October 1, 2002 
Mathcad Demonstration – Applications of Solutions for First Order ODEs 
 
Example #1 – Transient Heat Transfer 
 
 
Steel spheres 12 mm in diameter are annealed by 

heating to 1150K and then slowly cooled to 400K 

in an air environment for which KTair 325=  and 

KmWh 220= .  Assuming the following 

properties for steel, calculate the time required for 

the cooling process: 
37800 mkg=ρ  

KkgJc p 600=  

 
Solution 

1. Identify variables:  dependent variable = temperature, T [K]  

    independent variable = time, t [s] 

 

2. Fundamental Laws:  

  Conservation of Energy 

Change in Internal Energy = Energy Outflow 

outp Q
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  Newtons Law of Cooling 

( )airsout TTAhQ −=  

   where h is called the convective heat transfer coefficient (constant) 

 First order, linear separable ODE 
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 Initial condition  
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Example #2 – Tank Draining Problem 
 
 
 
Water enters a cylindrical tank of diameter mD 1=  at 

smQin
30026.0= .  There is a small hole of diameter  

cmdex 5=  at the bottom of the tank.  Find an equation for 

the water level in the tank y(t), given initial condition 

( ) mty 5.00 ==  

 

Solution 

1. Identify variables dependent variable = height of fluid, y [m] 

     independent variable = time, t [s] 

2. Fundamental Laws: 

 Conservation of Mass 

Change in Tank Volume = Inflow – Outflow 
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  Torricelli’s Law 
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where dC  is the discharge coefficient (constant) 
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 First order, non-linear ODE 
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3. Solution of ODE 

Substitute: 2
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ODE becomes: βα =+ 2
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First order, non-linear, separable 
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Substitute: 2uy =  , duudy 2=  
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Integrate both sides: 
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Multiply both sides by βα  and take exponential of both sides: 
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Substitute initial condition and back substitute in terms of y: 
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