Reacting Gas Mixtures

Definitions

Combustion Process:

- a fuel made up of hydrocarbons is said to have burned completely if:
 - all the carbon present in the fuel is burned to carbon dioxide
 - all the hydrogen is burned to water
- if the conditions are not fulfilled the combustion process is incomplete

Combustion Reactions:

```
reactants \rightarrow products
```

or

 $fuel + oxidizer \rightarrow products$

• in all cases the mass is conserved mass of products = mass of reactants

Fuels:

- hydrocarbon fuels exist as liquids, gases and solids
 - liquids \rightarrow gasoline octane, C_8H_{18}
 - gases \rightarrow methane, CH_4
 - solids \rightarrow coal

Combustion Air:

• oxygen is required in every combustion reaction

• dry air is considered to be

 $\left. \begin{array}{c} \mathbf{21\%} \ \mathbf{oxygen} \\ \mathbf{79\%} \ \mathbf{nitrogen} \end{array} \right\} \ \mathbf{on} \ \mathbf{a} \ \mathbf{molar} \ \mathbf{basis} \end{array} \right.$

$$molar\ ratio = rac{n_{N_2}}{n_{O_2}} = rac{0.79}{0.21} = 3.76$$

1 mole of air can then be written as $[0.21 O_2 + 0.79 N_2]$

For convenience, we typically refer to air as $[O_2 + 3.76 N_2]$ which is actually 4.76 moles of air.

Air-Fuel Ratio:

 $egin{aligned} rac{mass \ of \ air}{mass \ of \ fuel} &= rac{moles \ of \ air imes ilde{M}_{air}}{moles \ of \ fuel imes ilde{M}_{fuel}} \ AF &= ar{AF}\left(rac{ ilde{M}_{air}}{ ilde{M}_{fuel}}
ight) \end{aligned}$

where:

AF - air fuel ratio on a mass basis

 \overline{AF} - air fuel ratio on a molar basis

 \tilde{M}_{air} = 28.97 kg/kmol

Theoretical or Stoichiometric Air:

• the minimum amount of air that supplies sufficient oxygen for complete combustion of all carbon and hydrogen in the fuel - referred to as stoichiometric, 100% stoichiometric or theoretical

Equivalence Ratio:

• defined as

$$\Phi = \frac{FA_{actual}}{FA_{theoretical}} = \frac{AF_{theoretical}}{AF_{actual}}$$
$$= \frac{\frac{\text{mass of air theoretical}}{\frac{\text{mass of fuel}}{\text{mass of air actual}}}{\frac{\text{mass of fuel}}{\text{mass of fuel}}}$$

 $= \frac{\text{mass of air theoretical}}{\text{mass of air actual}}$

• if the equivalence ratio is:

 $- < 1 \rightarrow$ lean mixture (excess air)

 $- > 1 \rightarrow$ rich mixture (not enough air)

Conservation of Energy for Reacting Systems

Enthalpy of Formation

- when chemical reactions occur, reactants disappear and products are formed
 → differences cannot be calculated for all substances involved
- the enthalpy datum for reacting systems is set to zero at standard temperature and pressure
 - $T_{ref} = 25^{\circ}C \rightarrow 298~K$
 - $P_{ref} = 1 atm$
- h = 0 assigned to elements in their most stable form i.e. $O_2, N_2, C, etc.$
- Enthalpy of Formation: the energy released or absorbed when a compound is formed from its stable elements at STP

where \overline{h}_{f}^{o} is the enthalpy of formation.

Taking an energy balance over the combustion chamber shown above, we obtain

$$\underbrace{a \ \overline{h}^o_A + b \ \overline{h}^o_B + c \ \overline{h}^o_C}_{generally=0} + \overline{h}^o_f \ \longrightarrow \ \overline{h}^o_{ABC}$$

The left side of the equation is typically zero because h = 0 for elements in their stable form. The sign of \overline{h}_{f}^{o} indicates the direction of heat flow; +ve is endothermic and -ve is exothermic.

In general

$$\overline{h}^{o}_{f} = \overline{h}^{o}_{comp} - \sum \overline{n}_{i}\overline{h}^{o}_{i} ~~(kJ/kmol)$$

where

 \overline{n}_i = # of moles of i'th elemental substance in forming a single mole of compound (unitless)

Effects of Non-Standard Temperature

$$\overline{h}(T,P) = \overline{h}_{f}^{o} + \underbrace{(\overline{h}_{T,P} - \overline{h}_{T=25\ ^{o}C,\ P=\ 1\ atm})}_{\Delta \overline{h}\ at\ known\ temperatures}$$

where

- \overline{h}^o_f is the heat resulting from a chemical change at $T=25~^\circ C$ and P=1~atm
- $\Delta \overline{h}$ is the heat resulting from a change in temperature (sensible heat) with respect to the reference temperature, $T_{ref} = 25 \ ^\circ C$

Effects of Non-Standard Pressure

$$\overline{h}(T,P) = \overline{h}^o_f + \overline{h}_{T,P} - \overline{h}^o_{T=25\ ^oC} - P\overline{v}$$

but for an ideal gas

$$P\overline{v}=\mathcal{R}T$$

This allows us to write the pressure in terms of temperature.

$$\overline{h}(T,P) = \overline{h}_{f}^{o} + \underbrace{(\overline{h}_{T,P} - \overline{h}_{T=25\ ^{o}C}^{o} - \mathcal{R}T)}_{\downarrow \overline{\downarrow} \ \overline{\downarrow}$$

 $\Delta \overline{h}$ at known temperatures

Enthalpy of Combustion

• Enthalpy of Combustion: the difference between the enthalpy of the products and the enthalpy of the reactants where complete combustion occurs at a given temperature and pressure

$$Q = \sum (mh)_P - \sum (mh)_R = \underbrace{H_P(T_P) - H_R(T_R)}_{H_{RP}}$$
$$Q = \sum (n\overline{h})_P - \sum (n\overline{h})_R = \underbrace{\overline{H}_P(T_P) - \overline{H}_R(T_R)}_{\overline{H}_{RP}}$$

where

 $\overline{h}_{c} = H_{RP}/kmol \ of \ fuel$

with:

 $+ve Q \Rightarrow endothermic$ $-ve Q \Rightarrow exothermic$

Heating Value

- two values are used
 - **HHV**: higher heating value obtained when all the water formed by combustion is a liquid at the reference temperature
 - LHV: lower heating value obtained when all the water formed by combustion is a vapour as an ideal gas in the mixture of the products

- the HHV exceeds the LHV by the energy required to vaporize the liquid formed
- Table 15.3 lists HHV and LHV for commonly used fuels

$$egin{aligned} HHV &= LHV - rac{m_{H_2O}}{m_{fuel}} \cdot (h_{fg})_{H_2O} \ &= LHV - \cdot rac{(n \cdot ilde{M})_{H_2O}}{(n \cdot ilde{M})_{fuel}} \cdot (h_{fg})_{H_2O} \end{aligned}$$

where

$$egin{array}{rcl} h_{fg}(25\ ^{\circ}C) &=& 2,442.3\ kJ/kg \ && ilde{M}_{H_{2}O} &=& 18.015\ kg/kmol \end{array}$$

Adiabatic Flame Temperature

- if the system is perfectly insulated it cannot dispose of the LHV and the LHV goes into heating the products above the reference temperature
- under adiabatic conditions, the maximum temperature attained by the products when combustion is complete is called the adiabatic flame or adiabatic combustion temperature

$$\begin{split} H_P(T_{ad}) &= H_R(T_R) \\ \sum_P n_P \; (\overline{h}_f^o + \underbrace{\overline{h} - \overline{h}^0}_{\Delta \overline{h}})_P &= \sum_R n_R \; (\overline{h}_f^o + \underbrace{\overline{h} - \overline{h}^0}_{\Delta \overline{h}})_R \end{split}$$

We need to collect terms based on what we know or can readily calculate and what we do not know, i.e. terms that are a function of T_{ad} .

$$\sum_{P} \underbrace{\underbrace{n_{P}(\bar{h})_{P}}_{sensible \ heat}}_{function \ of \ T_{ad}} = \sum_{R} \underbrace{n_{R}(\bar{h} - \bar{h}^{o})_{R} - \left(-\sum_{P} n_{P}(\bar{h}^{o})_{P}\right)}_{sensible \ heat}}_{function \ of \ T_{R} \ or \ T_{ref}} + \sum_{R} \underbrace{n_{R}(\bar{h}^{o}_{f})_{R} - \sum_{P} n_{P}(\bar{h}^{o}_{f})_{P}}_{chemical \ heat}}_{function \ of \ T_{R} \ or \ T_{ref}}$$

Step 1: Calculate the right hand side based on known values of T_R and T_{ref} .

Step 2: Calculate the left hand side based on a guessed value of T_{ad} .

Step 3: Repeat Step 2, until LHS = RHS.

Dew Point

- since water is formed when hydrocarbon fuels are burned, the mole fraction of water vapour in the form of gaseous products can be significant
- if the gaseous products of combustion are cooled at constant mixture pressure the dew point temperature is reached when water vapour begins to condense
- since corrosion of duct work, mufflers etc. can occur, the knowledge of dew point temperature is important

Evaluation of Entropy for Reacting Systems

The 2nd law entropy equation can be written as

 $\underbrace{S_{in} - S_{out}}_{due \ to \ heat \ \& \ mass \ transfer} + \underbrace{S_{gen}}_{generation} = \underbrace{\Delta S_{system}}_{change \ in \ entropy}$

For a closed system, such as a combustion process, the entropy balance on the system can be written as

$$\sum rac{Q_i}{T_i} + S_{gen} = S_P - S_R$$

- a common datum must be used to assign entropy values for each substance involved in the reaction
- an entropy of 0 for pure crystalline substances is obtained at absolute zero
- the entropy relative to this datum is called absolute entropy
- absolute entropy at 1 atm and temperature T is denoted as $s^o(T)$ or $\overline{s}^o(T)$ for a per unit mass or per mole basis
- while \overline{h} was only a function of temperature for ideal gases, we must account for the effects of both T and P in entropy
- the entropy at any value of *T* and *P* can be calculated as

$$\overline{s}(T,P) = \underbrace{\overline{s}^o(T)}_{tables} - \mathcal{R} \ln \left(rac{P_i}{P_{ref}}
ight)$$

where

$$P_{ref} = 1 atm$$

 $P_i = partial \ pressure \ of \ i'th \ component$
 $\mathcal{R} = 8.31451 \ kJ/kmol \cdot K$

• the partial pressure P_i can also be written as

$$P_i = Y_i P$$

and

$$\overline{s}(T,P_i) = \overline{s}^o_i(T) - \mathcal{R} \ln \left(rac{Y_i P}{P_{ref}}
ight)$$

where P is the mixture pressure and Y_i is the mole fraction of the i'th component.

PROBLEM STATEMENT:

Liquid octane (C_8H_{18}) enters a steady-flow combustion chamber at 25 °C and 1 *atm* at a rate of 0.4 kg/min. It is burned with 50% excess air that also enters at 25 °C. If it is assumed that $T_0 = 298 \ K$, the products leave the combustion chamber at 1 *atm*, the combustion process is complete and that all the H_2O in the products is in liquid form. Determine the entropy generation rate $[kJ/(min \cdot K)]$ and the irreversibility [kW]