Rankine Cycle

Definitions

- working fluid is alternately vaporized and condensed as it recirculates in a closed cycle
- the standard vapour cycle that excludes internal irreversibilities is called the **Ideal Rankine Cycle**

Analyze the Process

Device	1st Law Balance			
Boiler	$h_2+q_H=h_3$	\Rightarrow	$q_H=h_3-h_2$	(in)
Turbine	$h_3=h_4+w_T$	\Rightarrow	$w_T = h_3 - h_4$	(out)
Condenser	$h_4=h_1+q_L$	\Rightarrow	$q_L=h_4-h_1$	(out)
Pump	$h_1+w_P=h_2$	\Rightarrow	$w_P = h_2 - h_1$	(in)

The Rankine efficiency is

Effects of Boiler and Condenser Pressure

We know the efficiency is proportional to

$$\eta \propto 1 - rac{T_L}{T_H}$$

The question is \rightarrow how do we increase efficiency $\Rightarrow T_L \downarrow$ and/or $T_H \uparrow$.

1. INCREASED BOILER PRESSURE:

- an increase in boiler pressure results in a higher T_H for the same T_L , therefore $\eta \uparrow$.
- but 4' has a lower quality than 4
 - wetter steam at the turbine exhaust
 - results in cavitation of the turbine blades
 - $\eta \downarrow$ plus \uparrow maintenance
- quality should be > 80 90% at the turbine exhaust

2. LOWER T_L :

• we are generally limited by the *TER* (lake, river, etc.)

eg. lake @ $15 \circ C + \Delta T = 10 \circ C$ resistance to HT = $25 \circ C$

 $\Rightarrow P_{sat} = 3.169 \, kPa.$

- this is why we have a condenser
 - the pressure at the exit of the turbine can be less than atmospheric pressure

3. INCREASED T_H BY ADDING SUPERHEAT:

- the average temperature at which heat is supplied in the boiler can be increased by superheating the steam
 - dry saturated steam from the boiler is passed through a second bank of smaller bore tubes within the boiler until the steam reaches the required temperature
 - The value of \overline{T}_H , the mean temperature at which heat is added, increases, while \overline{T}_L remains constant. Therefore the efficiency increases.

Rankine Cycle with Reheat

- the wetness at the exhaust of the turbine should be no greater that 10% this can result in physical erosion of the turbine blades
- but high boiler pressures are required for high efficiency tends to lead to a high wetness ratio
- to improve the exhaust steam conditions, the steam can be reheated with the expansion carried out in two steps

Rankine Cycle with Regeneration

- Carnot cycle has efficiency: $\eta = 1 T_L/T_H$
 - add Q_H at as high a T_H as possible
 - reject Q_L at as low a T_L as possible
- the Rankine cycle can be used with a *Feedwater Heater* to heat the high pressure sub-cooled water at the pump exit to the saturation temperature
 - most of the heat addition (Q_H) is done at high temperature

Feedwater Heaters

There are two different types of feedwater heaters

- 1. **OPEN FWH:** the streams mix \rightarrow high temperature steam with low temperature water at constant pressure
- 2. *CLOSED FWH:* a heat exchanger is used to transfer heat between the two streams but the streams do *not* mix. The two streams can be maintained at different pressures.

OPEN FWH:

- working fluid passes isentropically through the turbine stages and pumps
- steam enters the first stage turbine at state 5 and expands to state 6 where a fraction of the total flow is bled off into an open feedwater heater
- the rest of the steam expands into the second stage turbine at state point 7 this portion of the fluid is condensed and pumped as a saturated liquid to the FWH at state 2
- a single mixed stream exists the FWH at state point 3

CLOSED FWH: two variations exist

Case 1: pump the condensate back to the high pressure line

- a steam trap is inserted in the condensed steam line that allows only liquid to pass
- liquid is passed to a low pressure region such as the condenser or a low pressure heater

Case 2: the incoming feedwater does not mix with the extracted steam

- both streams flow separately through the heater
- the two streams can have different pressures

Binary Cycle

- involves two Rankine cycles running in tandem with different working fluids such as mercury and water
- why:
 - typically a boiler will supply energy at $1300 1400~^\circ C$
 - but $T_{critical}$ for water is 374.14 °C
 - * most energy is absorbed below this temperature
 - * high ΔT between the boiler source and the water leads to a major source of irreversibilities
 - $T_{critical}$ for mercury is about 1500 °C
 - * no need for superheating

PROBLEM STATEMENT:

Water is the working fluid for a Rankine cycle process where the turbine and the pump have isentropic efficiencies of 85% and 70%, respectively. Superheated vapor enters the turbine at 8 *MPa* and 500 °*C*. The condenser pressure is 7.5 *kPa*. The net power output of the cycle is 100 *MW*. Determine for the cycle:

- a) the mass flow rate of the steam [kg/s], for a net power output of 100 MW.
- b) the rate of heat transfer [MW] to the working fluid passing through the steam generator.
- c) the thermal efficiency.
- d) the mass flow rate of the condenser cooling water [kg/h], if the cooling water enters the condenser at 15 °C and exits at 35 °C, with negligible pressure change.

