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Background

Bessel functions are named for Friedrich Wilhelm Bessel (1784 - 1846), however, Daniel
Bernoulli is generally credited with being the first to introduce the concept of Bessels func-
tions in 1732. He used the function of zero order as a solution to the problem of an oscillating
chain suspended at one end. In 1764 Leonhard Euler employed Bessel functions of both zero
and integral orders in an analysis of vibrations of a stretched membrane, an investigation
which was further developed by Lord Rayleigh in 1878, where he demonstrated that Bessels
functions are particular cases of Laplaces functions.

Bessel, while receiving named credit for these functions, did not incorporate them into his
work as an astronomer until 1817. The Bessel function was the result of Bessels study of a
problem of Kepler for determining the motion of three bodies moving under mutual gravita-
tion. In 1824, he incorporated Bessel functions in a study of planetary perturbations where
the Bessel functions appear as coefficients in a series expansion of the indirect perturbation
of a planet, that is the motion of the Sun caused by the perturbing body. It was likely
Lagrange’s work on elliptical orbits that first suggested to Bessel to work on the Bessel
functions.

The notation Jz,n was first used by Hansen9 (1843) and subsequently by Schlomilch10 (1857)
and later modified to Jn(2z) by Watson (1922).

Subsequent studies of Bessel functions included the works of Mathews11 in 1895, “A treatise
on Bessel functions and their applications to physics” written in collaboration with Andrew
Gray. It was the first major treatise on Bessel functions in English and covered topics such
as applications of Bessel functions to electricity, hydrodynamics and diffraction. In 1922,
Watson first published his comprehensive examination of Bessel functions “A Treatise on
the Theory of Bessel Functions” 12.

9Hansen, P.A. “Ermittelung der absoluten Strungen in Ellipsen von beliebiger Excentricitt und Neigung,
I.” Schriften der Sternwarte Seeberg. Gotha, 1843.

10Schlmilch, O.X. “Ueber die Bessel’schen Function.” Z. fr Math. u. Phys. 2, 137-165, 1857.
11George Ballard Mathews, “A Treatise on Bessel Functions and Their Applications to Physics,” 1895
12G. N. Watson , “A Treatise on the Theory of Bessel Functions,” Cambridge University Press, 1922.
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Definitions

1. Bessel Equation

The second order differential equation given as

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

is known as Bessel’s equation. Where the solution to Bessel’s equation yields Bessel functions
of the first and second kind as follows:

y = A Jν(x) + B Yν(x)

where A and B are arbitrary constants. While Bessel functions are often presented in text
books and tables in the form of integer order, i.e. ν = 0, 1, 2, . . . , in fact they are defined
for all real values of −∞ < ν < ∞.

2. Bessel Functions

a) First Kind: Jν(x) in the solution to Bessel’s equation is referred to as a Bessel
function of the first kind.

b) Second Kind: Yν(x) in the solution to Bessel’s equation is referred to as a
Bessel function of the second kind or sometimes the Weber function or the
Neumann function.

b) Third Kind: The Hankel function or Bessel function of the third kind can be
written as

H(1)
ν (x) = Jν(x) + iYν(x) x > 0

H(2)
ν (x) = Jν(x) − iYν(x) x > 0

Because of the linear independence of the Bessel function of the first and second
kind, the Hankel functions provide an alternative pair of solutions to the Bessel
differential equation.
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3. Modified Bessel Equation

By letting x = i x (where i =
√−1) in the Bessel equation we can obtain the modified

Bessel equation of order ν, given as

x2
d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0

The solution to the modified Bessel equation yields modified Bessel functions of the first and
second kind as follows:

y = C Iν(x) + D Kν(x) x > 0

4. Modified Bessel Functions

a) First Kind: Iν(x) in the solution to the modified Bessel’s equation is referred
to as a modified Bessel function of the first kind.

b) Second Kind: Kν(x) in the solution to the modified Bessel’s equation is re-
ferred to as a modified Bessel function of the second kind or sometimes the
Weber function or the Neumann function.

5. Kelvin’s Functions

A more general form of Bessel’s modified equation can be written as

x2
d2y

dx2
+ x

dy

dx
− (β2x2 + ν2)y = 0

where β is an arbitrary constant and the solutions is now

y = C Iν(βx) + D Kν(βx)

If we let

β2 = i where i =
√

−1
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and we note

Iν(x) = i−νJν(ix) = Jν(i
3/2x)

then the solution is written as

y = C Jν(i
3/2x) + DKν(i

1/2x)

The Kelvin functions are obtained from the real and imaginary portions of this solution as
follows:

berν = Re Jν(i
3/2x)

beiν = Im Jν(i
3/2x)

Jν(i
3/2x) = berν x + i bei x

kerν = Re i−νKν(i
1/2x)

keiν = Im i−νKν(i
1/2x)

i−νKν(i
1/2x) = kerν x + i kei x
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Theory

Bessel Functions

Bessel’s differential equation, given as

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

is often encountered when solving boundary value problems, such as separable solutions
to Laplace’s equation or the Helmholtz equation, especially when working in cylindrical or
spherical coordinates. The constant ν, determines the order of the Bessel functions found in
the solution to Bessel’s differential equation and can take on any real numbered value. For
cylindrical problems the order of the Bessel function is an integer value (ν = n) while for
spherical problems the order is of half integer value (ν = n + 1/2).

Since Bessel’s differential equation is a second-order equation, there must be two linearly
independent solutions. Typically the general solution is given as:

y = AJν(x) + BYν(x)

where the special functions Jν(x) and Yν(x) are:

1. Bessel functions of the first kind, Jν(x), which are finite at x = 0 for all real values
of ν

2. Bessel functions of the second kind, Yν(x), (also known as Weber or Neumann func-
tions) which are singular at x = 0

The Bessel function of the first kind of order ν can be be determined using an infinite power
series expansion as follows:

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)

=
1

Γ(1 + ν)

(
x

2

)ν {
1 − (x/2)2

1(1 + ν)

(
1 − (x/2)2

2(2 + ν)

(
1 − (x/2)2

3(3 + ν)
(1 − · · ·

))}
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Figure 4.1: Plot of the Bessel Functions of the First Kind, Integer Order

or by noting that Γ(ν + k + 1) = (ν + k)!, we can write

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k!(ν + k)!

Bessel Functions of the first kind of order 0, 1, 2 are shown in Fig. 4.1.

The Bessel function of the second kind, Yν(x) is sometimes referred to as a Weber function
or a Neumann function (which can be denoted as Nν(x)). It is related to the Bessel function
of the first kind as follows:

Yν(x) =
Jν(x) cos(νπ) − J−ν(x)

sin(νπ)

where we take the limit ν → n for integer values of ν.

For integer order ν, Jν, J−ν are not linearly independent:

J−ν(x) = (−1)νJν(x)

Y−ν(x) = (−1)νYν(x)
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in which case Yν is needed to provide the second linearly independent solution of Bessel’s
equation. In contrast, for non-integer orders, Jν and J−ν are linearly independent and Yν

is redundant.

The Bessel function of the second kind of order ν can be expressed in terms of the Bessel
function of the first kind as follows:

Yν(x) =
2

π
Jν(x)

(
ln

x

2
+ γ

)
− 1

π

ν−1∑
k=0

(ν − k − 1)!

k!

(
x

2

)2k−ν

+

+
1

π

∞∑
k=0

(−1)k−1

[(
1 +

1

2
+ · · · +

1

k

)
+

(
1 +

1

2
+ · · · +

1

k + ν

)]
k!(k + ν)!

(
x

2

)2k+ν

Bessel Functions of the second kind of order 0, 1, 2 are shown in Fig. 4.2.
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Figure 4.2: Plot of the Bessel Functions of the Second Kind, Integer Order
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Relations Satisfied by the Bessel Function

Recurrence Formulas

Bessel functions of higher order be expressed by Bessel functions of lower orders for all real
values of ν.

Jν+1(x) =
2ν

x
Jν(x) − Jν−1(x) Yν+1(x) =

2ν

x
Yν(x) − Yν−1(x)

J ′
ν+1(x) =

1

2
[Jν−1(x) − Jν+1(x)] Y ′

ν+1(x) =
1

2
[Yν−1(x) − Yν+1(x)]

J ′
ν(x) = Jν−1(x) − ν

x
Jν(x) Y ′

ν(x) = Yν−1(x) − ν

x
Yν(x)

J ′
ν(x) =

ν

x
Jν(x) − Jν+1(x) Y ′

ν(x) =
ν

x
Yν(x) − Yν+1(x)

d

dx
[xνJν(x)] = xνJν−1(x)

d

dx
[xνYν(x)] = xνYν−1(x)

d

dx

[
x−νJν(x)

]
= −x−νJν+1(x)

d

dx

[
x−νYν(x)

]
= −x−νYν+1(x)

Integral Forms of Bessel Functions for Integer Orders n = 0, 1, 2, 3, . . .

First Kind

Jn(x) =
1

π

∫ π

0

cos(nθ − x sin θ) dθ =
1

π

∫ π

0

cos(x sin θ − nθ) dθ

J0(x) =
1

π

∫ π

0

cos(x sin θ) dθ =
1

π

∫ π

0

cos(x cos θ) dθ

J1(x) =
1

π

∫ π

0

cos(θ − x sin θ) dθ =
1

π

∫ π

0

cos(x sin θ − θ) dθ

=
1

π

∫ π

0

cos θ sin(x cos θ) dθ
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from Bowman, pg. 57

J0(x) =
2

π

∫ π/2

0

cos(x sin θ) dθ

=
2

π

∫ π/2

0

cos(x cos θ) dθ

Second Kind for Integer Orders n = 0, 1, 2, 3, . . .

Yn(x) = − 2(x/2)−n

√
πΓ

(
1

2
− n

)∫ ∞

1

cos(xt) dt

(t2 − 1)n+1/2
x > 0

Yn(x) =
1

π

∫ π

0

sin(x sin θ − nθ) dθ − 1

π

∫ π

0

[
ent + e−nt cos(nπ)

]
exp(−x sinh t) dt

x > 0

Y0(x) =
4

π2

∫ π/2

0

cos(x cos θ)
[
γ + ln(2x sin2 θ)

]
dθ x > 0

Y0(x) = − 2

π

∫ ∞

0

cos(x cosh t) dt x > 0

Approximations

Polynomial Approximation of Bessel Functions

For x ≥ 2 one can use the following approximation based upon asymptotic expansions:

Jn(x) =

(
2

πx

)1/2

[Pn(x) cos u − Qn(x) sin u]

where u ≡ x − (2n + 1)
π

4
and the polynomials Pn(x) and Qn(x) are given by
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Pn(x) = 1 − (4n2 − 12)(4n2 − 32)

2 · 1(8x)2

(
1 − (4n2 − 52)(4n2 − 72)

4 · 3(8x)2

(

1 − (4n2 − 92)(4n2 − 112)

6 · 5(8x)2
(1 − · · · )

))

and

Qn(x) =
4n2 − 12

1!(8x)

(
1 − (4n2 − 32)(4n2 − 52)

3 · 2(8x)2

(
1 − (4n2 − 72)(4n2 − 92)

5 · 4(8x)2

(

(1 − · · · )
)

The general form of these terms can be written as

Pn(x) =
(4n2 − (4k − 3)2) (4n2 − (4k − 1)2)

2k(2k − 1)(8x)2
k = 1, 2, 3 . . .

Qn(x) =
(4n2 − (4k − 1)2) (4n2 − (4k + 1)2)

2k(2k + 1)(8x)2
k = 1, 2, 3 . . .

For n = 0

sin u =
1

√
2
(sin x − cos x)

cos u =
1

√
2
(sin x + cos x)

J0(x) =
1

√
πx

[P0(x)(sin x + cos x) − Q0(x)(sin x − cos x)]
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or

J0(x) =

(
2

πx

)1/2 [
P0(x) cos

(
x − π

4

)
− Q0(x) sin

(
x − π

4

)]

P0(x) = 1 − 12 · 32

2!(8x)2

(
1 − 52 · 72

4 · 3(8x)2

(
1 − 92 · 112

6 · 5(8x)2
(1 − · · · )

))

Q0(x) = − 12

8x

(
1 − 32 · 52

3 · 2(8x)2

(
1 − 72 · 92

5 · 4(8x)2
(1 − · · · )

))

For n = 1

sin u =
1

√
2
(sin x + cos x)

cos u =
1

√
2
(sin x − cos x)

J1(x) =
1

√
πx

[P1(x)(sin x − cos x) − Q1(x)(sin x + cos x)]

or

J1(x) =

(
2

πx

)1/2 [
P1(x) cos

(
x − 3π

4

)
− Q1(x) sin

(
x − 3π

4

)]

P1(x) = 1 +
3 · 5

2 · 1(8x)2

(
1 − 21 · 45

4 · 3(8x)2

(
1 − 77 · 117

6 · 5(8x)2
(1 − · · · )

))

Q1(x) =
3

8x

(
1 − 35

2 · 1(8x)2

(
1 − 45 · 77

5 · 4(8x)2
(1 − · · · )

))
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Asymptotic Approximation of Bessel Functions

Large Values of x

Y0(x) =

(
2

πx

)1/2

[P0(x) sin(x − π/4) + Q0(x) cos(x − π/4)]

Y1(x) =

(
2

πx

)1/2

[P1(x) sin(x − 3π/4) + Q1(x) cos(x − 3π/4)]

where the polynomials have been defined earlier.

Power Series Expansion of Bessel Functions

First Kind, Positive Order

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)

=
1

Γ(1 + ν)

(
x

2

)ν {
1 − (x/2)2

1(1 + ν)

(
1 − (x/2)2

2(2 + ν)

(
1 − (x/2)2

3(3 + ν)
(1 − · · ·

))}

The General Term can be written as

Zk =
−Y

k(k + ν)
k = 1, 2, 3, . . .

Y = (x/2)2

where

B0 = 1

B + 1 = Z1 · B0

B2 = Z2 · B1

...

Bk = Zk · Bk−1

13



The approximation can be written as

Jν(x) =
(x/2)ν

Γ(1 + ν

U∑
k=0

Bk

First Kind, Negative Order

J−ν(x) =
∞∑

k=0

(−1)k(x/2)2k−ν

k!Γ(k + 1 − ν)

=
1

Γ(1 − ν)

(
x

2

)−ν {
1 − (x/2)2

1(1 − ν)

(
1 − (x/2)2

2(2 − ν)

(
1 − (x/2)2

3(3 − ν)
(1 − · · ·

))}

The General Term can be written as

Zk =
−Y

k(k − ν)
k = 1, 2, 3, . . .

Y = (x/2)2

where

B0 = 1

B + 1 = Z1 · B0

B2 = Z2 · B1

...

Bk = Zk · Bk−1

The approximation can be written as

J−ν(x) =
(x/2)−ν

Γ(1 − ν)

U∑
k=0

Bk

where U is some arbitrary value for the upper limit of the summation.
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Second Kind, Positive Order

Yν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
, ν �= 0, 1, 2, . . .

Roots of Bessel Functions

First Kind, Order Zero, J0(x) = 0

This equation has an infinite set of positive roots

x1 < x2 < x3 . . . < xn < xn+1 . . .

Note: xn+1 − xn → π as n → ∞

The roots of J0(x) can be computed approximately by Stokes’s approximation which was
developed for large n

xn =
α

4

[
1 +

2

α2
− 62

3α4
+

15116

15α6
− 12554474

105α8
+

8368654292

315α10
− . . .

]

with α = π(4n − 1).

An approximation for small n is

xn =
α

4

[
1 +

2

α2
− 62

3α4
+

7558

15α6

]

First Kind, Order One, J1(x) = 0

This equation has an infinite set of positive, non-zero roots

x1 < x2 < x3 < . . . xn < xn+1 < . . .
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Note: xn+1 − xn → π as n → ∞

These roots can also be computed using Stoke’s approximation which was developed for large
n.

xn =
β

4

[
1 +

6

β2
+

6

β4
− 4716

5β6
+

3902418

35β8
− 895167324

35β10
+ . . .

]

with β = π(4n + 1).

An approximation for small n is

xn =
β

4

[
1 − 6

β2
+

6

β4
− 4716

10β6

]

The roots of the transcendental equation

xnJ1(xn) − BJ0(xn) = 0

with 0 ≤ B < ∞ are infinite in number and they can be computed accurately and
efficiently using the Newton-Raphson method. Thus the (i + 1)th iteration is given by

xi+1
n = xi

n − xi
nJ1(x

i
n) − BJ0(x

i
n)

xi
nJ0(xi

n) + BJ1(xi
n)

Accurate polynomial approximations of the Bessel functions J0(·) and J1(·) may be em-
ployed. To accelerate the convergence of the Newton-Raphson method, the first value for
the (n + 1)th root can be related to the converged value of the nth root plus π.

Aside:

Fisher-Yovanovich modified the Stoke’s approximation for roots of J0(x) = 0 and J1(x) =
0. It is based on taking the arithmetic average of the first three and four term expressions

For Bi → ∞ roots are solutions of J0(x) = 0

δn,∞ =
α

4

{
1 +

2

α2
− 62

3α4
+

15116

30α6

}
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with α = π(4n − 1).

For Bi → 0 roots are solutions of J1(x) = 0

δn,0 =
β

4

{
1 − 6

β2
+

6

β4
− 4716

10β6

}

with β = π(4n + 1).

Potential Applications

1. problems involving electric fields, vibrations, heat conduction, optical diffraction plus
others involving cylindrical or spherical symmetry

2. transient heat conduction in a thin wall

3. steady heat flow in a circular cylinder of finite length
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Modified Bessel Functions

Bessel’s equation and its solution is valid for complex arguments of x. Through a simple
change of variable in Bessel’s equation, from x to ix (where i =

√−1), we obtain the
modified Bessel’s equation as follows:

x2
d2y

dx2
+ x

dy

dx
+ ((ix)2 − ν2)y = 0

or equivalently

x2
d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0

The last equation is the so-called modified Bessel equation of order ν. Its solution is

y = AJν(ix) + BYν(ix) x > 0

or

y = CIν(x) + DKν(x) x > 0

and Iν(x) and Kν(x) are the modified Bessel functions of the first and second kind of order
ν.

Unlike the ordinary Bessel functions, which are oscillating, Iν(x) and Kν(x) are exponen-
tially growing and decaying functions as shown in Figs. 4.3 and 4.4.

It should be noted that the modified Bessel function of the First Kind of order 0 has a value
of 1 at x = 0 while for all other orders of ν > 0 the value of the modified Bessel function
is 0 at x = 0. The modified Bessel function of the Second Kind diverges for all orders at
x = 0.
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Figure 4.3: Plot of the Modified Bessel Functions of the First Kind, Integer Order

0 0.5 1 1.5 2 2.5 3
x

0.5

1

1.5

2

2.5

K
�
x
�

K0

K1

K2

Figure 4.4: Plot of the Modified Bessel Functions of the Second Kind, Integer Order
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Relations Satisfied by the Modified Bessel Function

Recurrence Formulas

Bessel functions of higher order can be expressed by Bessel functions of lower orders for all
real values of ν.

Iν+1(x) = Iν−1(x) − 2ν

x
Iν(x) Kν+1(x) = Kν−1(x) +

2ν

x
Kν(x)

I ′
ν(x) =

1

2
[Iν−1(x) + Iν+1(x)] K′

ν(x) = −1

2
[Kν−1(x) + Kν+1(x)]

I ′
ν(x) = Iν−1(x) − ν

x
Iν(x) K′

ν(x) = −Kν−1(x) − ν

x
Kν(x)

I ′
ν(x) =

ν

x
Iν(x) + Iν+1(x) K′

ν(x) =
ν

x
Kν(x) − Kν+1(x)

d

dx
[xνIν(x)] = xνIν−1(x)

d

dx
[xνKν(x)] = −xνKν−1(x)

d

dx

[
x−νIν(x)

]
= x−νIν+1(x)

d

dx

[
x−νKν(x)

]
= −x−νKν+1(x)

Integral Forms of Modified Bessel Functions for Integer Orders n = 0, 1, 2, 3, . . .

First Kind

In(x) =
1

π

∫ π

0

cos(nθ) exp(x cos θ) dθ

I0(x) =
1

π

∫ π

0

exp(x cos θ) dθ

I1(x) =
1

π

∫ π

0

cos(θ) exp(x cos θ) dθ
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Alternate Integral Representation of I0(x) and I1(x)

I0(x) =
1

π

∫ π

0

cosh(x cos θ) dθ

I1(x) =
dI0(x)

dx
=

1

π

∫ π

0

sinh(x cos θ) cos θ dθ

Second Kind

Note: These are also valid for non-integer values of Kv(x).

Kn(x) =

√
π(x/2)n

Γ

(
n +

1

2

)∫ ∞

0

sinh2n t exp(−x cosh t) dt x > 0

Kn(x) =

∫ ∞

0

cosh(nt) exp(−x cosh t) dt x > 0

K0(x) =

∫ ∞

0

exp(−x cosh t) dt x > 0

K1(x) =

∫ ∞

0

cosh t exp(−x cosh t) dt x > 0
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Approximations

Asymptotic Approximation of Modified Bessel Functions

for Large Values of x

In(x) =
ex

√
2πx

[
1 − 4n2 − 12

1(8x)

(
1 − (4n2 − 32)

2(8x)

(
1 − (4n2 − 52)

3(8x)
(1 − . . . )

))]

I0(x) =
ex

√
2πx

[
1 +

1

8x

(
1 +

9

2(8x)

(
1 +

25

3(8x)
(1 + . . . )

))]

I1(x) =
ex

√
2πx

[
1 − 3

8x

(
1 +

5

2(8x)

(
1 +

21

3(8x)
(1 + . . . )

))]

The general term can be written as

−4n2 − (2k − 1)2

k(8x)

Power Series Expansion of Modified Bessel Functions

First Kind, Positive Order

Iν(x) =
∞∑

k=0

(x/2)ν+2k

k!Γ(ν + k + 1)

=
1

Γ(1 + ν)

(
x

2

)ν {
1 +

(x/2)2

1(1 + ν)

(
1 +

(x/2)2

2(2 + ν)

(
1 +

(x/2)2

3(3 + ν)
(1 + · · ·

))}

The General Term can be written as

Zk =
Y

k(k + ν)
k = 1, 2, 3, . . .

Y = (x/2)2

22



where

B0 = 1

B + 1 = Z1 · B0

B2 = Z2 · B1

...

Bk = Zk · Bk−1

The approximation can be written as

Iν(x) =
(x/2)ν

Γ(1 + ν)

U∑
k=0

Bk

where U is some arbitrary value for the upper limit of the summation.

First Kind, Negative Order

I−ν(x) =
∞∑

k=0

(x/2)2k−ν

k!Γ(k + 1 − ν)

=
1

Γ(1 − ν)

(
x

2

)−ν {
1 +

(x/2)2

1(1 − ν)

(
1 +

(x/2)2

2(2 − ν)

(
1 +

(x/2)2

3(3 − ν)
(1 + · · ·

))}

The General Term can be written as

Zk =
Y

k(k − ν)
k = 1, 2, 3, . . .

Y = (x/2)2

23



where

B0 = 1

B + 1 = Z1 · B0

B2 = Z2 · B1

...

Bk = Zk · Bk−1

The approximation can be written as

I−ν(x) =
(x/2)−ν

Γ(1 − ν)

U∑
k=0

Bk

where U is some arbitrary value for the upper limit of the summation.

Second Kind, Positive Order

Kν(x) =
π[I−ν(x) − Iν(x)]

2 sin νπ

Alternate Forms of Power Series Expansion for Modified Bessel Functions

First Kind

In(x) =
zn

n!

[
1 +

z2

1(n + 1)

(
1 +

z2

2(n + 2)

(
1 +

z2

3(n + 3)

(
1 +

z2

4(n + 4)
(1 + . . . )

)))]

I0(x) = 1 + z2

(
1 +

z2

2 · 2

(
1 +

z2

3 · 3

(
1 +

z2

4 · 4

(
1 +

z2

5 · 5
(1 + . . . )

))))

I1(x) = z

[
1 +

z2

1 · 2

(
1 +

z2

2 · 3

(
1 +

z2

3 · 4

(
1 +

z2

4 · 5
(1 + . . . )

)))]
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Second Kind

When n is a positive integer

Kn(x) =

(
π

2x

)1/2

e−x

[
1 +

(4n2 − 12)

1(8x)

(
1 +

(4n2 − 32)

2(8x)

(
1 +

(4n2 − 52)

3(8x)
(1 + . . . )

))]

K0(x) =

(
π

2x

)1/2

e−x

[
1 − 1

8x

(
1 − 9

2(8x)

(
1 − 25

3(8x)

))]

K1(x) =

(
π

2x

)1/2

e−x

[
1 +

3

8x

(
1 − 5

2(8x)

(
1 − 21

3(8x)

))]

Series expansions based upon the trapezoidal rule applied to certain forms of the integral
representation of the Bessel functions can be developed for any desired accuracy. Several
expansions are given below.

For x ≤ 12, 8 decimal place accuracy is obtained by

15J0(x) = cos x + 2
7∑

j=1

cos(x cos jπ/15)

15J1(x) = sin x + 2
7∑

j=1

sin(x cos jπ/15) cos(jπ/15)

For x ≤ 20, 8 decimal place accuracy is obtained by

15I0(x) = cosh x + 2
7∑

j=1

cosh(x cos jπ/15)

15I1(x) = sinh x + 2
7∑

j=1

sinh(x cos jπ/15) cos(jπ/15)
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For x ≥ 0.1, 8 decimal place accuracy is obtained by

4K0(x) = e−x + e−x cosh 6 + 2
11∑

j=1

exp[−x cosh(j/2)]

4K1(x) = e−x + cosh 6e−x cosh 6 + 2
11∑

j=1

exp[−x cosh(j/2) cosh(j/2)]

Potential Applications

1. displacement of a vibrating membrane

2. heat conduction in an annular fin of rectangular cross section attached to a circular
base
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Kelvin’s Functions

Consider the differential equation

x2
d2y

dx2
+ x

dy

dx
− (ik2x2 + n2)y = 0 i =

√
−1

This is of the form of Bessel’s modified equation

x2
d2y

dx2
+ x

dy

dx
− (β2x2 + n2)y = 0 i =

√
−1

with β2 = ik2. Since the general solution of Bessel’s modified equation is

y = AIn(βx) + BKn(βx)

the general solution of the given equation can be expressed as

y = AIn(
√

i kx) + BKn(
√

i kx)

Also, since

In(x) = i−nJn(ix) ⇒ inIn(x) = Jn(ix)

we may take the independent solutions of the given equation as

y = AJn(i3/2 kx) + BKn(i1/2 kx)

when x is real, Jn(i3/2x) and Kn(i1/2x) are not necessarily real. We obtain real functions
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by the following definitions:

bern = Re Jn(i3/2x)

bein = Im Jn(i3/2x)

Jn(i3/2x) = bern x + i bei x

kern = Re i−nKn(i1/2x)

kein = Im i−nKn(i1/2x)

i−nKn(i1/2x) = kern x + i kei x

It is, however, customary to omit the subscript from the latter definitions when the order n
is zero and to write simply

J0(i
3/2x) = ber x + i bei x

K0(i
1/2x) = ker x + i kei x

The complex function ber x + i bei x is often expressed in terms of its modulus and its
amplitude:

ber x + i bei x = M0(x)eiθ0(x)

where

M0(x) = [(ber x)2 + (bei x)2]1/2, θ0 = arc tan
bei x

ber x

Similarly we can write

bern x + i bern x = Mn(x)eiθn(x)

where
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Mn(x) = [(bern x)2 + (bein x)2]1/2, θn = arc tan
bein x

bern x

Kelvin’s Functions ber x and bei x

The equation for I0(t) is

t2
d2y

dt2
+ t

dy

dt
− t2y = 0

Set t = x
√

i and the equation becomes

x2
d2y

dx2
+ x

dy

dx
− i x2y = 0

with the solutions I0(x
√

i) and K0(x
√

i). The ber and bei functions are defined as follows.
Since

I0(t) = 1 +

(
t

2

)2

+
(t/2)2

(2!)2
+

(t/2)6

(3!)2
+ · · ·

we have real and imaginary parts in

I0(x
√

i) =

[
1 − (x/2)4

(2!)2
+

(x/2)8

(4!)2
− · · ·

]

+i

[
(x/2)2 − (x/2)6

(3!)2
+

(x/2)10

(5!)2
− · · ·

]

= ber x + i bei x

Equating real and imaginary parts we have

ber x = 1 − (x/2)4

(2!)2
+

(x/2)8

(4!)2
− · · ·

bei x = (x/2)2 − (x/2)6

(3!)2
+

(x/2)10

(5!)2
− · · ·
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Both ber x and bei x are real for real x, and it can be seen that both series are absolutely
convergent for all values of x. Among the more obvious properties are

ber 0 = 1 bei 0 = 0

and

∫ x

0

x ber x dx = x bei′ x,

∫ x

0

x bei x dx = −x ber′ x

In a similar manner the functions ker x and kei x are defined to be respectively the real
and imaginary parts of the complex function K0(x

√
i), namely

ker x + i kei x = K0(x
√

i)

From the definition of K0(x) we can see that

ker x = −[ln(x/2) + δ] ber x +
π

4
bei x +

∞∑
r=1

(−1)r(x/2)4r

[(2r)!]2
φ(2r)

and

kei x = −[ln(x/2) + δ] bei x − π

4
ber x +

∞∑
r=1

(−1)r(x/2)4r+2

[(2r + 1)!]2
φ(2r + 1)

where

φ(r) =
r∑

s=1

1

s
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Potential Applications

1. calculation of the current distribution within a cylindrical conductor

2. electrodynamics of a conducting cylinder
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Hankel Functions

We can define two new linearly dependent functions

H(1)
n (x) = Jn(x) + iYn(x) x > 0

H(2)
n (x) = Jn(x) − iYn(x) x > 0

which are obviously solutions of Bessel’s equation and therefore the general solution can be
written as

y = AH(1)
n (x) + BH(2)

n (x)

where A and B are arbitrary constants. The functions H(1)
n (x) and H(2)

n (x) are called
Hankel’s Bessel functions of the third kind. Both are, of course, infinite at x = 0, their
usefulness is connected with their behavior for large values of x.

Since Hankel functions are linear combinations of Jn and Yn, they satisfy the same recurrence
relationships.
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Orthogonality of Bessel Functions

Let u = Jn(λx) and v = Jn(µx) with λ �= µ be two solutions of the Bessel equations

x2u′′ + xu′ + (λ2x2 − n2)u = 0

and

x2v′′ + xv′ + (µ2x2 − n2)v = 0

where the primes denote differentiation with respect to x.

Multiplying the first equation by v and the second by u, and subtracting, we obtain

x2(vu′′ − uv′′) + x(vu′ − uv′) = (µ2 − λ2)x2uv

Division by x gives

x(vu′′ − uv′′) + (vu′ − uv′) = (µ2 − λ2)xuv

or

d

dx
[x(vu′ − uv′)] = (µ2 − λ2)xuv

Then by integration and omitting the constant of integration we have

(µ2 − λ2)

∫
xuv dx = x(vu′ − uv′)

or making the substitutions for u, u′, v and v′ we have

(µ2 − λ2)

∫
xJn(λx) Jn(µx) dx = x[Jn(µx) J ′

n(λx) − Jn(λx) J ′
n(µx)]
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This integral is the so-called Lommel integral. The right hand side vanishes at the lower
limit zero. It also vanishes at some arbitrary upper limit, say x = b, provided

Jn(µb) = 0 = Jn(λb)

or

J ′
n(λb) = 0 = J ′

n(µb)

In the first case this means that µb and λb are two roots of Jn(x) = 0, and in the second
case it means that µb and λb are two roots of J ′

n(x) = 0. In either case we have the
following orthogonality property

∫ b

a

xJn(λx)Jn(µx) dx = 0

This property is useful in Bessel-Fourier expansions of some arbitrary function f(x) over
the finite interval 0 ≤ x ≤ b. Further the functions Jn(λx) and Jn(µx) are said to be
orthogonal in the interval 0 ≤ x ≤ b with respect to the weight function x.

As µ → λ, it can be shown by the use of L’Hopital’s rule that

∫ x

0

xJ2
n(λx) dx =

x2

2

{[
J ′

n(λx)
]2

+

(
1 − n2

(λx)2

)
[Jn(λx)]2

}

where

J ′
n(λx) =

dJn(r)

dr
with r = λx
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Assigned Problems

Problem Set for Bessel Equations and Functions

1. By means of power series, asymptotic expansions, polynomial approximations or Ta-
bles, compute to 6 decimal places the following Bessel functions:

a) J0(x) e) Y0(x)

b) J1(y) f) Y1(y)

c) I0(z) g) K0(z)

d) I1(z) h) K1(z)

given

x = 3.83171

y = 2.40482

z = 1.75755

2. Compute to 6 decimal places the first six roots xn of the transcendental equation

x J1(x) − B J0(x) = 0 B ≥ 0

when B = 0.1, 1.0, 10, and 100.

3. Compute to 4 decimal places the coefficients An(n = 1, 2, 3, 4, 5, 6) given

An =
2B

(x2
n + B2) J0(xn)

for B = 0.1, 1.0, 10, and 100. The xn are the roots found in Problem 2.
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4. Compute to 4 decimal places the coefficients Bn(n = 1, 2, 3, 4) given

Bn =
2AnJ1(xn)

xn

for B = 0.1, 1.0, 10, and 100. The xn are the roots found in Problem 2 and the
An are the coefficients found in Problem 3.

5. The fin efficiency of a longitudinal fin of convex parabolic profile is given as

η =
1

γ

I2/3(4
√

γ/3)

I−2/3(4
√

γ/3)

Compute η for γ = 3.178.

6. The fin efficiency of a longitudinal fin of triangular profile is given by

η =
1

γ

I1(2
√

γ)

I0(2
√

γ)

Compute η for γ = 0.5, 1.0, 2.0, 3.0, and 4.0.

7. The fin efficiency of a radial fin of rectangular profile is given by

η =
2ρ

x(1 − ρ2)

{
I1(x)K1(ρx) − K1(x)I1(ρx)

I0(ρx)K1(x) + I1(x)K0(ρx)

}

Compute the efficiency for x = 2.24, ρx = 0.894.

Ans: η = 0.537

8. Show that

i) J ′
0(x) = −J1(x)

ii)
d

dx
[xJ1(x)] = xJ0(x)
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9. Given the function

f(x) = xJ1(x) − B J0(x) with B = constant ≥ 0

determine f ′, f ′′, and f ′′′. Reduce all expressions to functions of J0(x), J1(x) and
B only.

10. Show that

i)

∫
x2J0(x) dx = x2J1(x) + xJ0(x) −

∫
J0(x) dx

ii)

∫
x3J0(x) dx = x(x2 − 4) J1(x) + 2x2J0(x)

11. Show that

i)

∫ 1

0

xJ0(λx) dx =
1

λ
J1(λ)

ii)

∫ 1

0

x3J0(λx) dx =
λ2 − 4

λ3
J1(λ) +

2

λ2
J0(λ)

12. If δ is any root of the equation J0(x) = 0, show that

i)

∫ 1

0

J1(δx) dx =
1

δ

ii)

∫ δ

0

J1(x) dx = 1

13. If δ(> 0) is a root of the equation J1(x) = 0 show that

∫ 1

0

xJ0(δx) dx = 0
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14. Given the Fourier-Bessel expansion of f(x) of zero order over the interval 0 ≤ x ≤ 1

f(x) = A1 J0(δ1x) + A2 J0(δ2x) + A3 J0(δ3x) + . . .

where δn are the roots of the equation J0(x) = 0. Determine the coefficients An

when f(x) = 1 − x2.

15. Show that over the interval 0 ≤ x ≤ 1

x = 2
∞∑

n=1

J1(δn)

δn J2(δn)

where δn are the positive roots of J1(x) = 0.

16. Obtain the solution to the following second order ordinary differential equations:

i) y′′ + xy = 0

ii) y′′ + 4x2y = 0

iii) y′′ + e2xy = 0 Hint: let u = ex

iv) xy′′ + y′ + k2y = 0 k > 0

v) x2y′′ + x2y′ +
1

4
y = 0

vi) y′′ +
1

x
y′ −

(
1 +

4

x2

)
y = 0

vii) xy′′ + 2y′ + xy = 0

17. Obtain the solution for the following problem:

xy′′ + y′ − m2by = 0 0 ≤ x ≤ b, m > 0

with

y(0) �= ∞ and y(b) = y0
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18. Obtain the solution for the following problem:

x2y′′ + 2xy′ − m2xy = 0 0 ≤ x ≤ b, m > 0

with

y(0) �= ∞ and y(b) = y0

19. Show that

I3/2(x) =

(
2

πx

)1/2 (
cosh x − sinh x

x

)

I−3/2(x) =

(
2

πx

)1/2 (
sinh x − cosh x

x

)
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