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Abstract

Simple, geometric rules are presented for obtain-
ing bounds for the body-gravity function for lami-
nar boundary layer flow of high Prandtl number flu-
ids over three-dimensional convex isothermal bod-
ies. The upper bound is based on the maximum
body perimeter horizontal to the gravity vector. The
lower bound for axisymmetric bodies is based on the
maximum flow distance, and for nonsymmetric bod-
ies, it is based on the harmonic mean of the max-
imum flow distances corresponding to the two axes
which are perpendicular to the gravity vector. The
bounds differ by less than twenty percent for a wide
range of body shapes in vertical and horizontal ori-
entations. The lower bound values are close to the
theoretical and experimental values with differences
of approximately five percent for a wide range of
body shapes and orientations.

Nomenclature
A = surface area of the body; m?
A = area fraction
A; = area fraction of the i-th component

characteristic length of the body; m

B(z,y) = Beta function
Dpazy = maximum flow distances along axes
Donas2 perpendicular to gravity vector; m
Dias = maximum flow distance;

[(Drter + Driea)/2] s m
F(Pr) = Prandtl number function

[0.670/[1 + (0.50/ Pr)9/1€]%/9]
g = gravitational acceleration; m/s?

t Fellow AIAA, Distinguished Professor Emeritus
Copyright ©2000 by the author. Published by the
American Institute of Aeronautics and Astronautics, Inc.

with permission.

Gz = laminar boundary layer body-gravity
function based on v A

Ge = body-gravity function based on
arbitrary body length £

h = heat transfer coefficient; W/m?.K

k = thermal conductivity; W/m-K

Nu,z = Nusselt number, hvVA/k

P(6) = local perimeter; m

Priax = maximum perimeter perpendicular
to gravity vector, m

Pr = Prandtl number; v/a

Ra 7 = Rayleigh number; ﬂ(_ﬂ'g%(gf_zl

S*\/Z = dimensionless shape factor, Sv/A/A

Teo = ambient temperature; K

To = surface temperature; K

Ty = film temperature, (Tp + T )/2; K

Greek Symbols

a = thermal diffusivity; k/pcp; m?/s

B = volumetric expansion coefficient; K ~?!

8 = angle between gravity vector and
outward normal to surface; rad

v = kinematic viscosity, u/p; m?/s

p = mass density; kg/m>

¢ = dimensionless temperature excess,

(T(r) = Too)/ (To — To)

Miscellaneous Symbols

bot = bottom surface area of body
rect plate = value for rectangular plate
side = side surface area of body
top = top surface of body

total = total surface area of body

Subscripts and Superscripts

VA = based on VA4, the characteristic length
D = cylinder and sphere diameter

- = dimensionless quantity
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Figure 1:
Introduction

Steady laminar natural convection from isothermal
convex bodies of complex shape, such as those shown
in Fig. 1, has been the subject of numerous exper-
imental and theoretical studies. A recent, compre-
hensive experimental program has reported air data
for a wide range of body shapes in different orien-
tations over several decades of the Rayleigh num-
ber. Chamberlain® and Chamberlain et al.? reported
air data for spheres, vertical bispheres and cubes in
three different orientations. Clemes® and Clemes
et al.? reported air data for horizontal, relatively
long cylinders of different cross-sections (circular,
square, semi-circular, etc) in different orientations.
Hassani® and Hassani and Hollands® reported air
data for a vertical prolate spheroid and horizontal
oblate spheroids, finite circular cylinders and disks
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Summary of Body Shapes

in vertical and horizontal orientations, circular cylin-
der with hemispherical ends in vertical and horizon-
tal orientations, and thin square disk in vertical and
horizontal orientations. Jafarpur’ and Yovanovich
and Jafarpur®—10 reported air data for thin horizon-
tal elliptical disks, vertical thin circular disks, thin
oblate spheroids and cones facing upward and down-
ward. Several of these body shapes in two orienta-
tions are shown in Fig. 1.

Models were proposed by Raithby and
Hollands!?? for prediction of the Nusselt-Rayleigh
relations for different body shapes. The laminar-
turbulent model of Raithby and Hollands!!'1? is a
multi-step procedure which requires several semi-
empirical parameters to be computed. In general
they do not provide simple correlation equations.

Jafarpur!® reviewed the modified Raithby-
Hollands model® which is also a multi-step proce-
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dure requiring several semi-empirical parameters for
proper implementation.

Jafarpur’ also reviewed the simple two term lam-
inar model proposed by Yovanovich!3~1® which is
based on the linear superposition of the dimension-
less shape factor'® corresponding to pure conduc-
tion from the body and the thin, laminar boundary-
layer asymptote which consists of the product of the
Prandtl number function, the body-gravity function
and the Rayleigh number!3—15,

Lee et al.l” re-derived the thin, laminar
boundary-layer solution and demonstrated that the
body length scale which best characterizes the natu-
ral convection from isothermal convex bodies is the
square root of the active surface area; a length scale
first proposed by Yovanovich!3—16,

Jafarpur” demonstrated that the Yovanovich
model with the appropriate dimensionless shape fac-
tor and body-gravity function predicts all air data
over the full range of the Rayleigh number with very
good to excellent agreement.

Mathematical Problem and
Asymptotic Solutions

The mathematical problem statement is based on
steady laminar flow of a constant property fluid over
an isothermal convex body which is surrounded by
a large extent of stationary fluid. The Boussinesq
approximation is used for the fluid mass density.

The general natural convection problem is com-
plex because the partial differential equations are
nonlinear and coupled (momentum and energy)
through the temperature:

Continuity:
vV.v=90 (1)
Momentum:
(V-V)V=gB(To-Ta)$+vV?V  (2)
Energy:
(V-V)¢=aVvi (3)

with dimensionless temperature excess
¢ = (T(r) — Too) / (To — Teo)
The thermal-fluid boundary conditions are:
¢=1,

at points on the body, and

V=0

$—0, V-0,

3
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for points remote from the body. The coupled non-
linear equations cannot be solved for a wide range of
Prandtl, Grashof and Rayleigh numbers. Approxi-
mate analytical methods must be employed to find
the dimensionless steady heat transfer rate from the
total body surface:

QL
kE(To—-Tw) A
L
a f /,; —Vé-ndA
L 04
A / /_.4 on da
where L is some characteristic scale length based on
one or more of the body dimensions. In general, the
normal gradient 3¢ /dn of the dimensionless temper-
ature at points on the surface of the body varies with
position in some complex manner.

If the fluid velocity goes to zero, V — 0, then
Grc and Rag — 0, and the set of equations reduces
to the energy equation only, and it becomes V2¢ = 0
which corresponds to pure conduction from the sur-
face of the isothermal body into the surrounding sta-
tionary medium.

The dimensionless heat transfer rate is found
from the dimensionless shape factorl:

sc
A

Qr

4)

Qc=5c=

If the maximum fluid velocity is such that the
Grashof number lies in the range 10* < Grc < 1011,
then the buoyancy-induced flow over the body sur-
face is laminar and it is confined to a very thin hy-
drodynamic layer attached to the body surface. If
the Prandtl number is large, Pr >> 1, there is a
very thin thermal boundary layer within the hydro-
dynamic boundary layer. Under these conditions the
dimensionless heat transfer rate is called the Nusselt
number:

where the area-average heat transfer coefficient is
defined as
Q

A(T) — Two)

Solutions of the governing equations for the full
range of Grashof number 0 < Grgy < 10° and
Prandtl number 0 < Pr < oo are not available for
arbitrary three-dimensional convex bodies in arbi-
trary orientations. The dimensionless heat transfer
rate has the following asymptotic relations:

h=

t =St as Grg—0
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and
% — Nug = CcRal/* for 10% < Grg < 10°

The coefficient C is related to a thermal-fluid
boundary layer parameter called the body-gravity
function, denoted G¢, and a Prandtl number func-
tion, F(Pr), that accounts for the interplay be-
tween the thermal and hydrodynamic boundary lay-
ers. The body-gravity function was developed for
10* < Gre < 10° and with Pr — oo. It depends on
the body shape, it’s orientation with respect to the
gravity vector, and the choice of £. The coefficient
was found to have the following asymptotic relations
for very small and very large values of the Prandtl
number”17:

Ce

_ { CoPr'/t for Pr— 0
Ge

Cwo for Pr — o0

where Cy and Cy are constants.

The Prandtl number function was introduced
to connect the asymptotic solutions. The univer-
sal form of the Prandtl number function applicable
to a wide range of body shapes was proposed by
Churchill and Churchill?® and recommended by Lee
at al.1?

0.670

Fbn= [1+ (0.5/Pr)o/16)*/®’

0< Pr<o

(8)
This form of the Prandtl number function has the
following asymptotic relations”7:

0.797Pr'/% for Pr — 0

F(Pr)= {
0.670 for Pr — oo

To illustrate how the various solutions are com-
bined into a comprehensive correlation equation
valid for the full range of Prandtl number and the
laminar flow range of the Grashof and Rayleigh num-
bers, the solutions for the isothermal sphere of di-
ameter D will be considered. If the characteristic
body length is chosen as £ = D, then the asymp-
totic solutions are:

H — Sp Grp — 0

and

% — Nup = F(Pr)GpRa}*, 10*< Grp < 10°

(7)
The small and large Prandtl number solutions for
thin laminar boundary layers are given as

NUD={

CoGDRag4Pr1/4 for Pr—0
CwGpRay4 for Pr = oo

4
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where Co = 0.800 and C, = 0.670 are constants.

It was shown that natural convection heat trans-
fer can be predicted accurately by the linear super-
position of the solutions for the conduction problem
and the laminar thin boundary layer flow. For air
(Pr = 0.71), F(Pr) = 0.513 and with Gp = 0.878,
the sphere correlation equation becomes:

Nup = 1/4
up =2+ 0.450 Raj (8)
This simple, two-term relation is in excellent agree-
ment with the dry air data of Chamberlain!'?, for
the Rayleigh number range: 10 < Rap < 108. The
RMS percent difference is about 2.5% and the max-
imum absolute percent difference is approximately

4%.
Model and General Equation

The general correlation equation for natural convec-
tion from isothermal convex bodies into a large sta-
tionary medium proposed by Yovanovich!3~1% con-
sists of the linear superposition of the dimensionless
shape factor and the thin laminar boundary layer
asymptote:

Nug = St + F(Pr)G¢Ral/* 9)

0< Rac <10, 0<Pr<oo

The dimensionless shape factor S% is the solution
of the three-dimensional Laplace equation VZ¢ = 0
which corresponds to zero values of the Grashof and
Rayleigh numbers. Many solutions and methods?® of
finding the dimensionless shape factor are available.
The Prandtl number function proposed by Churchill
and Churchill*® and recommended by Lee et al.17 is
used. Methods for finding the body-gravity function
for many complex three-dimensional bodies are also
available”—10:13-15,17 414 they will be discussed be-
low.

Body-Gravity Function

The body-gravity function developed by Lee,
Yovanovich and Jafarpur!? has the general form:

en= |5/,

and it is valid for axisymmetric and two-dimensional
geometries. The two parameters which make the
body-gravity difficult to evaluate symbolically are
the local perimeter P(#) and sin6 which represents
the local tangential component of the body force

3/4

P@) . \?
7a sin 0) dA (10)
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near the body surface. When the product P(8) sin 8
is discontinuous over portions of the body surface,
for example, a horizontal cube or a vertical solid
cylinder of finite length, it is necessary to partition
the total body surface into component surfaces: the
horizontal top and bottom components and the ver-
tical side component. Over the vertical side com-
ponent sinf = 1, and the integration over the side
surface can be done with relative ease, while over
the horizontal components sin# is zero, and there-
fore the integrations cannot be accomplished sym-
bolically without introduction of some approxima-
tions or empirical information.

Lee, Yovanovich and Jafarpur!” also presented
two rules for application of the theoretical expres-
sion, Eq. (10). When N component surfaces of
the body are arranged in series flow, then the body-
gravity function relation must be employed:

N 3/4
_ 4/3 37/6
= [; G A

where G VA, Tepresent the component values of the

(11)

body-gravity functmn and 4; represents the area
fraction and N 4; =1

For component surfa.ces arranged in parallel flow,
e.g. a horizontal finite circular cylinder with flat
ends, the overall body-gravity function is obtained
from the relation:

N
~7/8
G\/Z= ZG\/K.'A"/

=1

(12)

It was demonstrated by Jafarpur?, Yovanovich and
Jafarpur®—19, and Lee, Yovanovich and Jafarpur®?
that when the relations given above are used to pre-
dict natural convection from a wide range of isother-
mal, convex bodies, the agreement between the the-
oretical and experimental values is very good to ex-
cellent over a wide range of Rayleigh number for
Pr =0.71.

Although the relationships given above for the
body-gravity function provide accurate predicts, the
method is not easy to implement without the aid of
Computer Algebra Systems (CAS) such as Maple!®
and Mathematica2?®

The body-gravity function reduces to a sim-
ple geometric relation when the body is a vertical,
isothermal rectangular plate of height H parallel to
the gravity vector, and width W. For this body,
sin@ = 1 over the entire surface, and the body-
gravity function, Eq. (10), gives:

w8
Grect plate = [_] (13)

H

5
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when heat transfer occurs from one side only. A
factor of 21/8 appears when both sides of the rect-
angular plate are active.

Two examples are presented to illustrate the
complex analysis required to obtain the body-gravity
function. The first example is the isothermal sphere
which is representative of axisymmetric bodies such
as oblate spheroids and vertical prolate spheroids.
The second example is the horizontal, isothermal
cube which is representative of bodies which have
horizontal surfaces such as vertical finite length cir-
cular or elliptical solid cylinders with flat ends.
The second example will illustrate the series flow
arrangement and the need to partition the total
surface area into component parts to calculate the
body-gravity function.

Sphere

The determination of the body-gravity function for
spheres of diameter D requires the local geometric
parameters:

2

P(f) =nDsinf, dA= DTsinGdBdwlj

and the surface area A = D%, The general expres-
sion, Eq. (10), becomes

2w prm D 9 3/4
7D sin
Ga= [WD2/ / [ ] 4 sm0d0d1/)]

which reduces to

1/ 3/4
Ga= ————/ sm5/30d0]

0
Recognizing that the integral can be represented by
the beta function B(z, y)?! allows transformation of
the integral and the above expression to the compact
form:

xl/8

o7 [B(4/3,1/2)P*

Gva=
The final result can be evaluated by means of Com-
puter Algebra Systems to find G,z = 1.014. This
value is within 1.4% of the value for a vertical square
plate (H = W) having a surface area equal to that of
the sphere. It appears that it may be possible to find
a close approximate value for the sphere by means
of simple geometric rules which map the surface of
the sphere on to an equivalent vertical rectangular
plate having identical total surface area.

American Institute of Aeronautics and Astronautics
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Horizontal Cube

A cube of side dimensions s has total surface area
A = 65?2, and maximum perimeter perpendicular to
the gravity vector Py, = 43. The determination
of the body-gravity function for the horizontal cube
requires the series flow arrangement relation which
for the cube is written as:

GBS 3/4

bot ““bot

4 G316

G\/Z = [ stde““side + G:QA;‘Z:]

(19)
The area fraction for the four vertical sides of the
cube is A,;4¢ = 4/6, and the area fraction for the
horizontal top and bottom surfaces is fitop = Apot =
1/6. The component body-gravity function for the
vertical sides comes directly from Eq. (10). With
8in@ = 1, Gyides = 4'/8. The body-gravity func-
tions for the horizontal top and bottom surfaces are
empirically based”~10, and they are approximated
by the relations: Giop = 2Y/% and Goot = Giop/2-
Substituting these relations into the series flow ar-
rangement expression gives:

[(21/8)4/3 (5"
Q)"
4 (41/8)4/3 (%)7/6] 3/4 5

0.984

ch be

This numerical value has been confirmed by means
of the air data of Chamberlain!:? and the comparison
is reported in Lee et al.}” The computed value of the
body-gravity function for the cube is approximately
3% smaller than the value for a sphere having iden-
tical total surface area, and it is approximately 1.6%
smaller than the value for the vertical square plate
having identical total surface area. The close rela-
tionships between the vertical square plate, sphere
and horizontal cube suggests that it may be possible

6
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to develop methods for obtaining approximate val-
ues for the body-gravity functions of other convex
bodies.

To obtain numerical values of the body-gravity
function for other body shapes such as oblate and
prolate spheroids, and horizontal thin elliptical disks
requires evaluations of complex integrals which often
lead to special functions such as incomplete elliptic
integrals?! which frequently require numerical com-
putations.

There is clearly a requirement to find a simpler
method of estimating the body-gravity function for
all isothermal convex bodies. In the subsequent sec-
tion, simple rules will be established for obtaining
upper and lower bounds for the body-gravity func-
tion by means of certain geometric characteristics of
the body such as the maximum perimeter perpendic-
ular to the gravity vector, and the maximum fluid
flow distance over the body.

Bounds for the Body-Gravity
Function

The schematic in Fig. 2 illustrates how bounds can
be established with the sphere as the example of
a three-dimensional convex body. The simple rela-
tion for the body-gravity function for the vertical
rectangular plate will be used to establish bounds
for the body-gravity function, Eq. (10), for a range
of body shapes and orientations. The surface area
of the equivalent rectangular plate HW will be set
equal to the total surface area of the body A such
that HW = A.

An Upper Bound
An upper bound on the body-gravity function is
found by setting the width of the equivalent vertical

rectangular plate equal to the maximum perimeter

of the body:
Winer = Prmas (16)

The corresponding minimum height of the equiva-
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lent rectangle is found from the area equality:

A

Hm‘“ = Wmaa:

7)

This simple procedure maps the surface of a given
convex body on to a vertical rectangular plate with
the largest width and the smallest height. The body-
gravity function for this rectangular plate should
have body-gravity function values which are greater
than the true value for the body of interest.
Substituting the relations into the body-gravity
function for the rectangular plate gives a simple up-

per bound relation for all three-dimensional convex
bodies:

upper bound = | — -

A VA

A very simple relation has been found for an upper
bound on the body-gravity function. It is based
on two body geometric parameters which are easily
found for all three-dimensional bodies.

(18)

A Lower Bound

A lower bound on the body-gravity function is ob-
tained by setting the height of the equivalent rect-
angular plate equal to the maximum flow distance
from the lowest stagnation point to the highest point
on the surface of the body as shown in Fig. 2. For
axisymmetric bodies shown in Fig. 1, such as ver-
tical prolate spheroids, oblate spheroids and verti-
cal cylinders of constant cross-section, the maximum
flow distance is relatively simple to find. For non-
symumetric horizontal bodies shown in Fig. 1, such
as cuboids (e.g. cube), circular cylinders with flai
ends or hemispherical ends, and vertical circular and
square disks, there are two possible maximum flow
distances corresponding to the two axes. Let the
two possible maximum flow distances be denoted as
Dppaz1 and Dyge2. These two relations can be com-
bined in the following manner to get the effective
maximum flow distance:

1/ 1 1 -t
D =|=
mae [2 (Dma:t:l + DmawZ)]

This definition of the effective maximum flow dis-
tance will ensure that D,,4, will approach the value
of the smaller value of Dy,4,1 and Dyngge2 for long
horizontal circular and square cylinders. The max-
imum height of the equivalent vertical rectangular
plate is found from the relation:

(19)

Hppor = Dinas (20)

7
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The corresponding minimum width of the equivalent
rectangular plate is found from the area equality:

A
Hmaz

This simple procedure produces a vertical rectan-
gular plate which has the greatest height and the
smallest width. The body-gravity function value for
this rectangular plate is expected to be comparable
or smaller than the true value of the body-gravity
function for the given body. When the body has
horizontal surfaces and they represent a significant
fraction of the total surface, this procedure may not
give acceptable values.

Substituting the relations into the body-gravity
function for the rectangular plate gives a lower
bound relation:

Whin =

(21)

1/4

VA
Dma:c

A 1/8
Glower bound — [D%mx] (22)

A simple relation has been found for a lower bound
on the body-gravity function which is also based on
two geometric parameters of the body which can be
found easily for all three-dimensional convex bodies.

Bounds for Vertical and Horizontal
Bodies

The body-gravity function for any convex body is
expected to be related in some manner to the estab-
lished bounds which are obtained through simple
rules from the geometric characteristics of the body.
The upper and lower bound relations given above
will be used to find bounds for several finite length
bodies in vertical and horizontal orientations with
respect to the gravity vector. The study begins with
the sphere.

Sphere

The total surface area is A = 7D?, the maximum
perimeter perpendicular to the gravity vector is
Ppor = wD and the maximum particle flow dis-
tance from pole to pole is Dy, = nD/2. The
upper and lower bounds values are found to be
Gup = 1.1538 and G p = 1.0307 which differ by ap-
proximately 12%. The theoretical and experimental
values” 141517 are Gypeo = 1.014 and Gegpe = 1.023
respectively. The theoretical value is approximately
1.6% smaller than the lower bound value.

Vertical Prolate Spheroid

The vertical prolate spheroid has semi-axes: a,b
with a > b. The major axis is parallel to the gravity
vector as shown in Fig. 1. The maximum perimeter
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is Ppes = 2mb and the maximum flow distance is

given by
b2
Dpgr = 20F 1- ol

where E(k)%! is the complete elliptic integral of the
second kind of modulus k. The surface area is ob-
tained from

(23)

A=2mb? |14+ —=L st I-0/|,
V1= b%/a?
0<2<1
a

For a prolate spheroid with a/b = 1.93, the upper
and lower bound values are found to be Gyg = 1.083
and Grp = 0.992. The upper and lower bound val-
ues differ by approximately 9%. The theoretical
and experimental values”%17 are Gipeo = 1.003
and Gezpt = 1.012. The agreement between the
lower bound value and the theoretical and experi-
mental values are within 2%.

Vertical Oblate Spheroid

The vertical oblate spheroid has semi-axes: g, c with
¢ < a. The minor axis is parallel to the gravity vec-
tor as shown in Fig. 1. The maximum perimeter is
Prar = 2ma and the maximumn flow distance is

c?
Dmas = 2aE (41— =
a

The surface area is obtained from

—(c/ a)* cosh™? 2]

V1—c2/a?

For the oblate spheroid with ¢/a = 0.5, the upper
and lower bound values are found to be Gyp = 1.209
and Grp = 1.050. The theoretical and experimental
values™%17 are Gepeo = 0.954 and Gegpe = 0.973.
The upper and lower bound values differ by ap-
proximately 15%. The theoretical and experimental
values differ by approximately 2%. The lower bound
value and the theoretical and experimental values
differ by approximately 10% and 7.9% respectively.

A=2ra® |1+

Horizontal Cube

The horizontal cube of side dimension s shown in
Fig. 1 has total surface area A = 652 and maxi-
mum perimeter Pp,, = 48. There are two max-
imum particle flow distances. The shorter maxi-
mum particle flow distance is the distance from the

8
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midpoint of the lower face to the midpoint of one
edge plus the distance up one side plus the distance
from the midpoint of the corresponding edge to the
midpoint of the top face. This maximum flow dis-
tance i8 Dyyq71 = 28. The longer maximum particle
flow distance is the distance from the midpoint of
the lower face to a corner plus the distance along
an edge connecting the lower and upper surfaces
plus the distance from the corner to the midpoint
of the upper surface. This maximum flow distance
18 Dyar2 = (\/5 + 1) 8. The upper bound value is
Gup = 1.131. There are three possible values of
the lower bound corresponding to the two maximum
flow distances given above, and maximum distance
which is based on the harmonic mean of these two
maximum flow distances. The three values of the
lower bound are Grp = 1.004,Grp = 1.052 and
Grp = 1.029. The third value is recommended.
It lies approximately 9.9% below the upper bound
value.

The upper and lower bound values are com-
pared against the theoretical and experimental
values” 117, Gupeo = 0.984 and Gegpr = 0.951,
respectively in Table 1. The theoretical value lies
below the lower bound value and it is approximately
4.6% smaller. The calculated lower bound value is
not a true lower bound for the horizontal cube.

Cube On Side

The cube on its side (see Fig. 1) has four faces
which are inclined to the gravity vector and two

- faces which are parallel to the gravity vector. The

cube in this orientation is representative of a coms-
plex convex body. For this orientation where the
diagonal connecting two edges is parallel to the
gravity vector, Ppq, = 2{1 + \/5)3, and Dyaz1 = 28
and Dpgz2 = (1+2\/§)3. According to the proposed
transformation rules the upper and lower bound val-
ues are Gyp = 1.185 and G = 0.983 which differ
by approximately 20%. These values are compared
with the theoretical value™%17, Gipeo = 1.080 and
the experimental value” %17, Gezpt = 0.990 in Ta-
ble 1. The reported theoretical value appears to be
too large, however the experimental value is within
1% of the calculated lower bound value.

Cube On Corner

The cube oriented such that the gravity vector is
parallel to one of its corner-to-corner diagonals as
shown in Fig. 1 has all six faces inclined to the
gravity vector. This orientation is also represen-
tative of a complex convex body with complex
fluid flow over its six faces. For this orientation
where the diagonal connecting two opposite corners
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is parallel to the gravity vector, Pp4; = 43, and
Dinar1 = Dmazz = (1 + v2)s. According to the
established rules the upper and lower bound values
are Gup 1.130 and Grp = 1.004 which differ
by approximately 13%. These values compare with
the theoretical value”%7, Gipeo = 1.091 and the
experimental va.lue7'15’17, Gezpt = 1.014. The theo-
retical value appears to be too large; however, the
experimental value is within 1.5% of the calculated
lower bound value.

Vertical Finite Length Circular Cylinder

The vertical finite length circular cylinder with flat
ends has length L equal to the diameter D. The
maximum perimeter 18 P, = 7D and the maxi-
mum particle flow distance i8 Do = D + L. The
upper bound value, Gyp = 1.097, and the lower
bound value, Grp = 1.021, differ by approximately
7.5%. The theoretical value of the body-gravity
function which is based on the series flow arrange-
ment and the following relations for the component
values of the body-gravity function:

1 D 1/8
EGtOP’ Giide = 7l/8 ('jl')

is given by the relation:

Gtop = 2%, Giop

_ 1/8(0-2571 + L/D)**
(0.500+ L/D)™/®"’

L/D>0

(24)
For L = D the theoretical value is Gipeo = 0.961
which is approximately 5.9% smaller than the lower
bound value. The agreement between the theoreti-
cal and experimental values is excellent.

Gya

Horizontal Finite Length Circular Cylinder
The horizontal circular cylinder has the maximum
perimeter Pp,,, = 2(D + L) which lies in the plane
perpendicular to the gravity vector. The maxi-
mum flow distance 18 based on the two relations:
Dypazy = 7D/2 and Dyu4,2 = D+ L. Substitution of
the relation L = D into the upper and lower bound
relations gives the upper bound value, Gyp = 1.165,
and the lower bound value, G p = 1.054, which dif-
fer by approximately 11%. The two circular end sur-
faces and the circular side surface are in the parallel
flow arrangement. The following component body-
gravity functions are recommended:

Gena = 1.021  for each end

L\ /8
G,ige = 0.900 <-5)
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Using the parallel flow arrangement relation leads to
the following expression for the theoretical value:

0(2/3+L/D)

G = 090023+ L/D)
VA 0.5+ L/D)7/®

L/D>0 (25)

The theoretical value for the body-gravity func-
tion i8 G¢peo = 1.052 which is approximately 2.9%
greater than the lower bound value.

Circular Disk: Axis Horizontal

The circular disk of length L = 0.1D with axis hori-
zontal is shown in Fig. 1. The relations given above
for the horizontal finite circular cylinder are used to
find the upper and lower bound values of the body-
gravity function: Gyp = 1.125 and Grp = 1.015
which differ by approximately 11%. The theoretical
value Gipeo = 1.079 is approximately 6.3% greater
than the lower bound value. The experimental value
Gezpt = 1.01671%17 i3 in very close agreement with
the lower bound value.

Vertical Bispheres

The vertical bispheres consist of two tangent spheres
of diameter D, one above the other as shown in
Fig. 1. The maximum perimeter is Pp,,e = 7D
and the maximum flow distance from the south
pole of the lower sphere to the north pole of the
upper sphere is8 Dyar = wD. The upper bound,
Gup = 1.058, and the lower bound, Grp = 0.945
differ by approximately 12%. The theoretical
value Gireo = 0.930 lies approximately 1.6% be-
low the lower bound value. The experimental value,
Gexpt = 0.928, is in very good agreement also.

Horizontal Bisphere

The horizontal bisphere consists of two tangent
spheres of diameter D which lie in a plane which
is perpendicular to the gravity vector. The maxi-
mum perimeter i8 Ppqa, = 27D and the maximum
flow distance is based on the two particle flow dis-
tances: Dpmary = 7D/2 and Dyaz2 = wD. The
upper bound, Gyp = 1.258, and the lower bound,
Grp = 1.046, differ by approximately 20%. The
theoretical value Gipeo = 1.106 lies approximately
5.7% above the lower bound value. The experimen-
tal value is not available.

Vertical Circular Cylinder with
Hemispherical Ends

The vertical circular cylinder of length L has hemi-
spherical ends of diameter D as shown in Fig. 1. The
total surface area is

A=nDL + nD?

American Institute of Aeronautics and Astronautics
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Table 1: Summary of Values of Body-Gravity Function

Body, Orientation Gus | GLB | Gtheo | Geapt
Sphere 1.154 | 1.031 | 1.014 | 1.023
Prolate Spheroid, 1.93:1, major axis vertical {| 1.083 | 0.992 | 1.003 | 1.012
Oblate Spheroid, 1:2, minor axis vertical 1.209 | 1.050 | 0.954 | 0.973
Bisphere, 2:1, axis vertical 1.058 | 0.945 | 0.930 | 0.928
Bisphere, axis horizontal 1.258 | 1.046 | 1.106 | n.a.
Cylinder-Flat, 1:1, axis vertical 1.097 | 1.021 | 0.961 | 0.967
Cylinder-Flat, axis horizontal 1.165 | 1.054 | 1.052 | 1.019
Cylinder-Hem., 2:1, axis vertical 1.058 | 0.994 | 0.995 | 1.012
Cylinder-Hem., axis horizontal 1.197 | 1.065 | 1.039 | 1.049
Cube, face horizontal 1.131 | 1.029 | 0.984 | 0.951
Cube, edge horizontal 1.185 (| 0.983 | 1.080 | 0.990
Cube, corner-corner vertical 1.130 | 1.004 | 1.091 | 1.014
Cir. Disk, L = 0.1D, axis horizontal 1.125 | 1.015 | 1.079 | 1.016
Sq. Disk, L = 0.185, side horizontal 1.092 | 1.022 | 1.088 | 1.039
Sq. Disk, L = 0.18, corner-corner vertical 1.183 | 0.974 | 1.048 | 1.058
Long Sq. Cyl., L = 10.138, horizontal 1.359 | 1.178 | 1.163 | n.a.
Long Cir. Cyl., L = 10.23D, horizontal 1.402 | 1.204 | 1.230 | n.a.

The maximum perimeter is P, = 7D and the
maximum flow distance i8 Dpyee = #D/2 + L. The
upper bound Gyp = 1.058 and the lower bound
Grp = 0.994 differ by approximately 6.4%. The
following theoretical body-gravity function relation
is based on the series flow arrangement:

(1+1.188L/D)*/*
(1+L/D)™®

Gvert cyl = 1.014 , (26)

L

D < 00

The theoretical value Gipeo = 0.995 and the lower
bound value are in excellent agreement. The experi-
mental value Gezpr = 1.012 is also close to the lower
bound value.

0<

Horizontal Circular Cylinder with
Hemispherical Ends

The horizontal circular cylinder of length L has
hemispherical ends of diameter D as shown in Fig. 1.
The maximum perimeter in the plane perpendic-
ular to the gravity vector is Pp,, = 2L + 7D
and the maximum flow distance is based on the
two maximum flow distances: Dy4,1 = 7#D/2 and
Dpaz2 = L+7D/2. The upper bound Gyp = 1.197

10

and the lower bound Grp = 1.065 differ by approx-
imately 12.4%.

The theoretical body-gravity function is based
the parallel flow arrangement; it is given by the re-
lation:

(1.014 + 0.891L/ D)
(1+ L/D)"/®

<

(27
The theoretical value Gineo = 1.039 is approxi-
mately 2.5% smaller than the lower bound value.
The experimental value Gezp: = 1.049 is also close
to the lower bound value.

y 0L

L
Ghor eyl = D

Horizontal Long Circular Cylinder

The horizontal long circular cylinder with L/D =
10.23 shown in Fig. 1 will be used to verify the pro-
posed method of finding bounds. In this case the re-
lations given above for the finite horizontal cylinder
can be used. The upper bound value Gyp = 1.402,
and the lower bound value Gyp = 1.205 differ by
approximately 15%. The corresponding theoretical
value Gineo = 1.230 is within 2.1% of the lower
bound value. The experimental value is not avail-

able.
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Horizontal Long Square Cylinder
The horizontal long square cylinder of length-to-side
ratio L/S = 10.13 shown in Fig. 1 will also be used
to verify the proposed method of finding bounds. In
this case the relations given above for the finite hor-
izontal square cylinder can be used. The maximum
perimeter i8 Ppq, = 2(L+S), and the two maximum
flow distances are Dygz1 = 25 and Dppaze = L+ S.
The upper bound value Gyp = 1.359, and the lower
bound value Gpp = 1.178 differ by approximately
15%.

The theoretical value for the long square cylinder
with two sides horizontal is given by the relation:

/4
L\ 43 I\ /3 3
[0.625 (g) + (1 + §)
N
(1 =+ 2§)
(28)

The corresponding theoretical value Gipeo = 1.163
is approximately 1.3% smaller than the lower bound
value. The experimental value is not available. All
calculated values for the two bounds, the theoret-
ical and experimental values are given in Table 1.
In Table 1, for cubes: C denotes corner-to-corner
orientation, H denotes horizontal orientation, and S
denotes from side-to-side orientation. The symbols
H and V denote horizontal and vertical orientations
respectively. Also n.a. denotes not available.

qu. cyl.=21/8

Summary and Discussion

Two simple rules are presented for finding ap-
proximations for the body-gravity function based
on the vertical rectangular plate result for three-
dimensional convex bodies in vertical and horizontal
orientations.

The first rule sets the width of the equivalent
rectangle equal to the maximum perimeter of the
body perpendicular to the gravity vector, and the
height is found from the area equivalence. The
first rule provides a true upper bound for the body-
gravity function because all values are greater than
the theoretical and experimental values. The upper
bound values are approximately 6% to 20% greater
than the lower bound values.

The second rule sets the height of the equivalent
rectangular plate equal to the maximum flow dis-
tance from the lowest point to the highest point on
the body when the body is axisymmetric such as ver-
tical spheroids and cylinders. For non-axisymmetric
bodies such as horizontal cylinders, the maximum
flow distance is based on the harmonic mean of the

11

AIAA-2000-2581

two maximum flow distances corresponding to the
two axes of the horizontal body which are perpen-
dicular to the gravity vector. The second rule is not
a true lower bound; it, however, provides lower esti-
mates of the body-gravity function, and the values
are found to be close to the theoretical and exper-
imental values for a range of body shapes and ori-
entations. The lower bound values are found to be
within £5% of the theoretical and experimental val-
ues.

The body-gravity functions of all three-
dimensional convex bodies shown in Fig. 1 can
be estimated with acceptable accuracy by means of
the lower bound rule. The theoretical and avail-
able experimental values fall above and below the
lower bound values. The largest difference is less
than 8%, and the average percent difference is less
than 3%. From Table 1 we observe that the lower
bound values for all bodies (except the horizontal
long circular and square cylinders) lie in the rela-
tively narrow range: 0.945 < Grp < 1.065. The
difference between the largest and smallest values is
approximately 12.7%.

Since the lower bound rule provides accept-
able engineering approximations of the body-gravity
function for a wide range of convex bodies in the ver-
tical and horizontal orientations, it is recommended
for all three-dimensional bodies except those which
are horizontal and thin. The following general corre-
lation equation for natural convection from isother-
mal convex bodies is proposed:

1/4
)" i

VA
o)

max

for the ranges:
OSRa\/:;<1011 and 0<Pr<oo
The effective maximum particle low distance is ob-
tained from the relation:
1 1
2

Dmaa:

[ 1 + 1
Dmazl Dmaarz

where Dar1, Dmar2 represent two estimates of the
maximum particle flow distance corresponding to
the two axes of the body. If one of the two values is
much larger than the other, say Dyaz0 >> Dpasi,
then D4z — Dper1 which is the smaller maximum
flow distance.

If the body is axisymmetric (e.g., oblate and
prolate spheroids, sphere and vertical circular cylin-
ders), then Dpgaz1 = Dpmag2. This correlation equa-
tion is expected to give values of the Nusselt number
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which are accurate to within +5% of the experimen-
tal values based on the results reported in Table 1.

If we consider air with Pr = 0.71 and F(Pr) =
0.513, and if we take the average value of all values
of the body-gravity functions (except the values for
the long circular and square cylinders) reported in
Table 1, then the Nusselt-Rayleigh number relation
can be approximated by

Nuz = Stz +0.52Ra’}

(30)
which is consistent with the observations made by
Lienhard?? and Yovanovich!®. The theoretical rela-
tions for the body-gravity function are also presented
for several convex bodies.

The proposed rules should not be applied to hor-
izontal thin bodies such as the circular and square
disks shown in Fig. 1. Further work is required
to establish a simple procedure for estimating body
gravity functions for thin horizontal convex bodies.
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