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New models for predicting the thermal-hydraulic characteristics of offset strip fin arrays
are developed. These models are developed by combining the asymptotic behaviour for
the laminar and turbulent wake regions. Models in these two regions are developed by
considering the offset strip fin as an array of short ducts or channels. The proposed
models are compared with published experimentai data for nineteen configurations of
the rectangular offset strip fin. Model predictions are within =+ 20 percent for 96 percent
of friction factor data and 82 percent for Colburn j factor data. Extension of the new
models for offset strip fins having non-rectangular subchannels is also discussed.
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INTRODUCTION

Many compact heat exchangers take advantage of
the offset strip fin (OSF) to provide heat transfer
enhancement. This device provides enhancement
by means of increased surface area along with
larger heat transfer coefficients due to the short
interrupted channels. In many applications the
designer must optimize heat transfer for a given
pumping power or mass flow rate. Optimization of
a new design incorporating these devices is best
achieved with analytic or empirical models.

A review of the literature reveals that the only
analytic model available was developed by Joshi

* Corresponding author. e-mail: yuri@engl. mun.ca

261

and Webb (1987). However, this model is very
complex and requires several parameters which are
presented graphically. Although the model repre-
sents the correct behavior for very small and very
large values of the Reynolds number, the model is
unable to predict the data which fall in the
transition region. A number of empirical correla-
tions have also been developed by Wieting (1975),
Joshi and Webb (1987), and Manglik and Bergles
(1990, 1995). The primary disadvantage of the
multiple regression correlations is that they are
based upon experimental data for 21 OSF configu-
rations found in Kays and London (1984).
Sinte the regression models are based on actual
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experimental data, they are only valid in the
Reynolds number range typical of the experiments
200 < Re < 10000.

With the exception of the correlations developed
by Manglik and Bergles (1990, 1995), none of the
models or corrleations are valid in the transition
region. Later, it will be shown that the correlations
of Manglik and Bergles (1990, 1995) underpredict
the data for Re <200 and Re > 10000. If a new
configuration does not fall within the range of
parameters for which these correlations were
developed, considerable uncertainty in the results
must be expected. Finally, all of the correlations
developed in the literature assume that the sub-
channels formed by the interrupted fin are rec-
tangular. However, in many applications the
shape is not necessarily rectangular. If an offset
fin array is developed from other shapes such as
sinusoidal and trapezoidal cross-sections, then
these correlations are generally not applicable.

A new model has been developed which over-
comes the limitations of the present analytic and
empirical models. This new model has been devel-
oped by considering the OSF as an array of short
channels or straight ducts. Simple analytic models
have been developed for the laminar wake and
turbulent wake regions which accurately predict
the f and j characteristics of the array. The asy-
mptotic models are then combined using the
Churchill and Usagi (1972) correlation method to
provide a model which is valid in the transition
region. This new model is also applicable to OSF
arrays which contain non-rectangular subchannels.
The new model is able to predict most OSF data in
Kays and London (1984) within +/— 20 percent for
96 percent of fdata and 82 percent of j data.

REVIEW OF PUBLISHED MODELS

Manglik and Bergles (1990,1995) provide an
extensive summary of the past experimental,
numerical, and analytical work involving offset
strip fins. Only a few models for the offset strip fin
arrangement are analytically based. The simplest

of these models was first proposed by Kays (Kays
and Crawford, 1993). This model treats the fin as a
flat plate and does not consider the effect of the
channel walls.

Kays (Kays and Crawford, 1993) proposed the
following simple model based upon forced con-
vection over a flat plate:

1328 tCp
f= ’_ReL,+E (1)

and

. 0.664

ji= SR, ()

where Cp = 0.88 is the drag coefficient for a flat
plate based upon the potential flow solution
(Milne-Thomson, 1968) and L, is the fin length.
The potential flow solution for the drag coefficient
is also in good agreement with experimental data
for rectangular plates having small ¢/L, ratios
(Blevins, 1984). These models only consider heat
transfer and friction from the fin surfaces and do
not consider the contributions from the channel
walls. Equations (1) and (2) are only valid in the
laminar region and were proposed for comparative
purposes only.

Wieting (1975) developed multiple regression
correlations based upon data from 21 offset strip
fin configurations. Wieting (1975) presented corre-
lations for both the laminar and turbulent regions
and also developed correlations for the critical
Reynolds number. The correlations for the laminar
and turbulent regions are presented below:

Laminar Reg, < 1000
f= 7-661(Lf/d;,)—0'384(s/H)‘°'°92Re;h°‘712 3)
j= 0-483(lf/d;,)_0‘162(s/H)_o‘mRe;ho‘m @)
Turbulent Reg, > 2000
f= 1-136(Lf/d;,)_0'781(t/d;,)o's“Re;hO'ws (5)

j = 0_242(l:f/dh)—0.322(t/dh)0.089Re;h0.368 (6)
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The critical Reynolds numbers for the intersec-
tion of the laminar and turbulent asymptotes for
the f and j factors are:

Re;‘“f — 41(lf/dh)0.772(s/H)—0.179(t/dh)—l.04 (7)
Rej,; = 619y /) *(s/H) ™ (/)% (8)

In addition to developing an analytic model,
Joshi and Webb (1987) also developed multiple
regression correlations for the laminar and turbu-
lent regions. The correlations for the laminar and
turbulent regions are:

Laminar Rey, < Rej,
f= 8.12(Lf/dh)_°‘41(s/H)_o'ozRe;hO'm 9)
j= 0.53(l¢/dh)_o'ls(s/H)_O’“Regho‘s (10)
Turbulent Reg, > Rej, + 1000
f= 1.12(l¢/dh)_o'65(t/d;,)o‘”Re;hO'“ (11)
j= 0.21(l‘f/dh)—0-24(t/dh)0.02Re;1_"0.40 (12)

The value of the critical Reynolds number Rej,
is determined from the following expression

Res, = 257(%)1.23<é)0.5s

o
(t+ (1.328Lf/Regz)) 13)

Finally, Manglik and Bergles (1990, 1995) also
developed correlations based upon multiple
regression analysis of available data. Their correla-
tions differ from those of Wieting (1975) and Joshi
and Webb (1987) in the definition of the hydraulic
diameter as well as providing better geometric
correlation. Correlations for the laminar and
turbulent regions are:

Laminar Reg, < Re"';h

f = 9.624(S/H)—0'186(t/Lf)0.305(t/s)_0_266
Re‘;ho.742 (14)
j= 0‘652(5./”}1‘)—0.154(t/lf)0.150(t/s)_o.%s

Turbulent Reg, > Re:}h + 1000

f= 1'870(S/H)_0'094(t/Lf)°'682(t/s)‘0'242
Re;h04299 )

j= 0.244(s/H)‘0'104(t/lf)o'l%(t/s)'o'm
Rez>4% (17)
The value of the critical Reynolds number Rej,
is defined by the expression developed by Joshi
and Webb (1987), given earlier. In addition,
Manglik and Bergles (1990, 1995) aiso combined
the laminar and turbulent correlations using the
method proposed by Churchill and Usagi (1972) to
provide a correlation which is valid in the transi-
tion region. The resulting correlations which in-
clude the transition region are:

f = 9.624(s/H) 18 (¢/L;)%3% (¢/5) 2%

R e;hO.742

[1 +7.669 x 107%(s/H)**?
(t/Lf)3'77(t/s)°'236Re$;43]0'1 (18)

Jj= 0.652(s/H)‘°-lﬂ(t/g)O.lso(t/s)_o'oﬁ

—0.540
Re,,

[1+ 5.63 x 10~5(s/H)**!
(t/lf)o.%(t/s)—0.106Re‘11;l34 0.1 (19)

Equations (18) and (19) are now widely accepted
for modelling the characteristics of the offset strip
fin array. Since these correlations are the only ones
capable of predicting data in the transition region,
they will be compared with the new models
developed in this work. In all of the above
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TABLE I Definitions of hydraulic diameter for offset strip fin models

Model Definition of dj,

Wieting (1975) (2sH/(s+ H)) @)
Joshi and Webb (1987) (2(s — )HLg/(sLs+ HLs+ tH)) @ii)
Manglik and Bergles (1990) (4sHLg(2(sLs+ HLp+ tH) + 1)) (iti)

correlations a different definition for d), has been
chosen. A summary of these definitions is given in
Table I. The present work adopts the definition of
the hydraulic diameter proposed by Manglik and
Bergles (1990), since it is consistent with the
definition for complex channels and ducts, i.e.,
dy=4 Vfree/Awet-

Examination of the correlations developed by
Wieting (1975), Joshi and Webb (1987) and
Manglik and Bergles (1990, 1995) reveals that the
Re— 0 and Re — co behaviour departs from the
theoretical behaviour. In the low Reynolds or
laminar region, the correlations predict that as
Re — 0, fand j, are approximately proportional to
1/Re** and 1/Re'?, respectively. In this limit, the
results should be proportional to 1/Re which is
characteristic of fully developed duct flow. In the
high Reynolds or turbulent region, the correlations
predict that as Re — oo, fand j, are approximately
proportional to 1/Re**® and 1/Re*, respectively.
In this limit the results for fshould have a Reynolds
number exponent between —1/5 and 0 depending
upon the effects fin edge thickness, and —1/5 for j.
As a result, f and j predictions using the above
correlations will be lower than expected values,
outside of the 200 < Re < 10000 range. This is due
to the empirical nature of the correlation pro-
cedure. The Joshi and Webb (1987) model over-
comes these limitations since it is analytically
derived, however, due to its complexity and its in-
ability to predict data in the transition region, a new
model is proposed in the sections which follow.

MODEL DEVELOPEMENT

In this section the details of the model develop-
ment for the OSF geometry are discussed. A

— T
w
FIGURE 1 OSF Geometry.

typical OSF type geometry is shown in Figure 1.
The OSF is characterized by the fin length Ly, the
channel height H, the fin spacing s, and the fin
thickness ¢. The new model will be compared
with data obtained from Kays and London
(1984) for nineteen configurations of the rectan-
gular offset strip fin array. The vast majority of
these data were first published by Kays (1960),
Briggs and London (1961), and London and
Shah (1968).

The following assumptions are made in the
model development: ideal surfaces i.e., no burrs or
scarfed edges, uniform surface dimensions through-
out the array, complete destruction of boundary
layers in the wake, negligible edge contributions,
perfect contact at channel walls, and isothermal
surfaces. The presence of burrs in real systems
cannot be ignored, and the experimental data of
Kays and London (1984) are likely to be affected to
some degree by the presence of burrs.

FRICTION FACTOR

Since the OSF is essentially an array of short
rectangular (or other non-noncircular) ducts, the
friction factor should possess characteristic behav-
iour of duct flow at low Reynolds numbers. In the



MODELING f AND j OF THE OFFSET FIN 265

limit Rey, — 0 the value of f should approach the
value for fully developed flow in a rectangular
channel. In the limit of Rey, — oo the value of f
should approach a constant value which is repre-
sentative of the form drag component due to the
finite fin thickness. Webb and Joshi (1982) devel-
oped a simple model by combining these asymp-
totic limits using the Churchill and Usagi (1972)
correlation method. However, this model was only
valid for OSF arrays having a channel aspect ratio
s/H < 0.25. At larger values of the channel aspect
ratio s/H > 0.25 the model provides poor correla-
tion of the available data. The present model
overcomes the deficiencies of the Webb and Joshi
(1982) model by including additional terms in the
laminar and turbulent asymptotes which capture
the true physical behavior of the OSF array.

Laminar Region

In the laminar region, the flow field develops
within each subchannel much the same as it does
in a plain channel or duct. A boundary layer is
initiated on the subchannel walls and begins to
grow. Depending upon the length of the subchan-
nel, the flow may eventually become fully devel-
oped or remain partially developed when it leaves
the subchannel. This suggests that an analytic
result obtained by Shapiro et al. (1954) for the
hydrodynamic entrance region may be used to
model the flow. The simple result of Shapiro et al.
(1954) for the apparent friction factor in the
hydrodynamic entrance region of straight ducts is

3.44

fapp = \/—Z—‘E (20)
where z* = Lg/(DyRep,) is the dimensionless sub-
channel length, and D, is the hydraulic diameter of
the subchannel, i.e., D,=4A4_./P, where A, is the
free flow cross-sectional area of the subchannel
and P is the wetted perimeter of the subchannel.
Figure 2 provides a comparison of a typical set
of data obtained from Kays and London (1984)
with several laminar and turbulent flow solutions.

Comparison of the hydrodynamic entrance solu-
tion obtained by Shapiro et al. (1954), Eq. (20),
with OSF data from Kays and London (1984)
shows that this solution overpredicts the friction
factor. This overprediction is due to the fact that
the entrance region solution not only accounts for
the wall shear but also the increase in momentum
of the inviscid core. The solution of Shapiro et al.
(1954) also assumes a uniform entrance velocity
distribution which is not present in the OSF appli-
cation, (refer Fig. 3). Kays (Kays and Crawford,
1993) suggested better correlation is achieved
by modelling the fin surface as a flat plate and
accounting for the form drag component due to
the finite edge thickness. However, this approach
did not account for the low Reynolds number
behavior which is apparent from Figure 2.

The proposed laminar region model is taken to
be a linear superposition of the Blasius solution for
a flat plate and the fully developed friction factor
for a rectangular duct (Muzychka, 1999),

-1/
ﬁamzwﬂ.ns(zeedh%) " (1)

Rey,

where fRep, is the fully developed friction factor
Reynolds number for the rectangular subchannel,
D, is the hydraulic diameter of the rectangular
subchannel, d;, is the hydraulic diameter of the
OSF array, and Ly is the fin length in the sub-
channel. The above model represents the correct
physical behavior for Rey, — 0 or Ly > 0.05DyRep,
and as Rey, increases or L, decreases.

The proposed model may be interpreted in the
following way. Upon leaving the subchannel the
flow divides and enters two new subchannels. At
this point, the velocity entering the new subchan-
nel is zero at the centerline due to wall shear in the
previous subchannel, (refer to Fig. 3). Since the
centerline velocity is zero, the inlet velocity
distribution is not uniform, which is a requirement
for the hydrodynamically developing flow solu-
tion, Eq. (20). As the flow begins to develop in the
new subchannel, the velocity in the core region is
much less than that which would occur if the inlet
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distribution were uniform. As a result of this lag,
the boundary layer development is not affected by
the inviscid core in the same way, and is similar to
boundary layer development over a flat plate. In
Shapiro et al. (1954) the authors point out that in
the entrance region of a duct very near the inlet,
boundary layer growth is very similar to that of a
flat plate. However, as the core begins to accel-
erate, the boundary layer is unable to develop at
the same rate as that for an isolated flat plate, since
it is affected by the accelerating core.

Turbulent Region

The turbulent or non-laminar region may be
modelled in a similar manner as done for the

an OSF array, (Webb and Joshi, 1982).

laminar region. The non-laminar region is gen-
erally characterized as having a turbulent wake
(Joshi and Webb, 1987). In this region, the bound-
ary layers which are formed are predominantly
laminar but due to the wake effect, the behavior
of the OSF is similar to that of a turbulent
boundary layer. Performing a force balance on
a subchannel results in the following expression

(Kays and Crawford, 1993):
(&2)~o (%)
(22)

where Awan=2Li[(H+5), Awet~2L/(H+s), and
Aproie = Ht +5t/2.

T Twall

1/2)pw? ~ (1/2)pw?

Aproﬁle

Awet

Awall
Awet
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This expression may be written in terms of the
turbulent boundary layer friction factor and drag
coefficient given earlier. Equation (22) may be
further simplified by assuming that Ay.n/Adwe =1
since the contribution of fin thickness to the total
surface area, Ay, is usually small, < 5%, to give

B L\ (Ht+5t/2)
Jour = 0.074 (Red,, 21;) + m‘(:p (23)

where H is the channel height, s is the width of the
sub-channel, 7 is the thickness of the fin, and Cp is
the form drag coefficient taken to be Cp=0.88.
Figure 2 shows the turbulent friction factor
asymptote along with data for a typical OSF array
from Kays and London (1984). The data are in
good agreement with the above expression in the
region defined by Rey, > 3000.

Transition Region

A general model which predicts the friction factor
over the entire range of Reynolds numbers is de-
veloped by combining the laminar and turbulent
friction factors using the Churchill and Usagi
(1972) correlation method.

The proposed model which is valid for the
laminar-transition-turbulent region is given by

f= [{ (fRep, (dn/ D))

Rey,

—1/2yn
+1.328 (Red,, fi—’f) }
h

-1/5
+ {0.074 (Red,, fi—f)
h .

(Ht+st/2) Y"1/
@) C"} ] @)

where n is the correlation parameter. Values for n
which minimize the RMS percent difference
between predicted and experimental results for
each data set have been found to vary between
1.3<n<5. A single value of n=3 provides
excellent correlation for all 19 data sets from Kays

and London (1984). This results in an RMS error
of 11.64 percent for all of the friction factor data.
Joshi and Webb (1987) reported an RMS percent
difference of 16.8 percent for all friction factor
data. Comparison of the proposed model with
data from Kays and London (1984) and the
correlations developed by Manglik and Bergles
(1990, 1995) will be provided after the develop-
ment of a model for the analogous Colburn j
factor.

COLBURN j FACTOR

The Colburn j factor model is developed in
essentially the same manner as the Fanning
friction factor model. Since the OSF is essentially
an array of short rectangular (or non-noncircular)
ducts, the Colburn j factor should possess char-
acteristic behaviour of duct flow at low Reynolds
numbers. In the limit Re;, — 0 the value of j
should approach the value for fully developed flow
in a rectangular channel. In the limit Re;, — oo the
value of j should approach a value typical of
turbulent boundary layer flow.

Laminar Region

In the laminar region, the Colburn j factor should
possess characteristics of laminar duct flow. Kays
(Kays and Crawford, 1993) suggested that the
OSF can be modelled as a series of flat plates and
that the j factor can be predicted by the analytical
solution for a flat plate given by

J = 0.664(Rey,) "/ (25)

where Ly is the fin length.

However, this relation tends to overpredict the
data of Kays and London (1984), as shown in
Figure 4, and it has been suggested by Shah (1985),
that better agreement with the data for OSF arrays
is obtained using thermally developing flow
solutions, such as the generalized Leveque type
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solution proposed by Shah and London (1978):

1/3
f Rep, &} (26)

j=0.641[Re%th

where f Rep, is the fully developed friction factor
Reynolds number group for the subchannel. This
result implies that a fully developed hydrodynamic
boundary layer exists, whereas the flat plate model
assumes that both hydrodynamic and thermal
boundary layers develop simultaneously. In the
laminar region the thermally developing flow
solution underpredicts the data of Kays and
London (1984). Both the flat plate model and the
thermally developing flow asymptotic solutions
are shown in Figure 4 along with the turbulent
boundary layer model and the fully developed
laminar duct flow limit which is satisfied in the
limit Reg, — 0. It is clear from Figure 4 that both
the fully developed laminar flow asymptote and
the thermally developing flow asymptote charac-
terize the laminar flow region.

If both the low Reynolds number limit Re;, — 0
and the thermally developing flow asymptote are
taken into consideration, then the model devel-
oped by Muzychka and Yovanovich (1998) for
thermally developing flows in non-circular ducts

gives:

_ Kwy

Jtam = Reg Pri/3
fReg3< a2 )1/3)5]1/5
+ {0641 — | H_ (27)
( Re}* \Dily

where f Rep, is the fully developed friction factor
Reynolds number for the subchannel, Nup, is the
fully developed Nusselt number for the subchan-
nel, D, is the hydraulic diameter of the subchannel,
dy, is the hydraulic diameter of the array, and Pr is
the Prandtl number. The above model represents
the correct physical behavior for Rey — 0 or
Ly > 0.05D4Rep, and represents the correct physi-
cal behavior as Rey increases or L, decreases.
Equation (27) also reveals that for low Reynolds
number flows, Prandtl number effects begin to
emerge.

The proposed model may be interpreted in the
following way. The data show that for Re;, < 1000
the flow is laminar. As the Reynolds number is
decreased, the flow becomes more hydrodynami-
cally developed. A typical OSF array has a fin
length which is on the order of 110 mm, while the
subchannel has a hydraulic diameter on the order
of 2—-3 mm. Using the approximate expression for
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predicting entry lengths, Ly, =~ 0.05D;Rep,, sug-
gests that for most arrays the flow becomes
hydrodynamically developed for Rep, < 100. This
suggests that if Rep, < 100, the thermal boundary
layer is more likely to be in a state of thermally
developing flow. At Rep, > 100 the flow is more
likely to be in a state of simultaneously developing
flow and thus the flat plate model is more appli-
cable. However, examination of Figure 4 shows
that the results for Eqgs. (25) and (26) are very close
to each other in the region 100 < Rep, < 1000 and
both may predict results within 20 percent. Thus
a model composed of the fully developed and
thermally developed limits is more appropriate
than one composed of the fully developed limit
and the flat plate limit.

Turbulent Region

The turbulent or non-laminar region may be
modelied in a similar manner as done for the
friction factor. The non-laminar region is generally
characterized as having a turbulent wake. In this
region, the boundary layers which are formed are
predominantly laminar but due to the wake effect,
the behavior of the OSF is similar to that of a
turbulent boundary layer. In the turbulent region
the Colburn j factor is modelled using the
Reynolds analogy j=f/2. Using the turbulent skin
friction relation presented earlier gives:

L -1/5
Jrur = 0.037 (Red,, E—) (28)
h

where Ly is the fin length and dj, is the hydraulic
diameter of the array. The turbulent model is
shown in Figure 4 along with data from Kays
and London (1984). In the region defined by
Reg, > 5000, the data agree well with Eq. (28).

Transition Region

A general model which predicts the Colburn j
factor over the entire ranege of Revyvnolds numbers

is developed by combining the the laminar and
turbulent models using the Churchill and Usagi
(1972) correlation method.

The resulting model which is valid for the
laminar-transition-turbulent region is given by

- [((caism)

N (0.641fRe11,/h3( & )1/3)5}m/5
Ref‘,,{3 DpLy
]4 -1/5ymyl/m
+ {0.037(Redhd—) } ] (29)
h

where m is the correlation parameter. Values for
m which minimize the RMS percent difference
between predicted and experimental results have
been found to vary between 2 <m < 5. A single
value of m=7/2 provides excellent correlation for
19 data sets from Kays and London (1984). This
results in an RMS error of 14.7 percent for all of
the Colburn j factor data. Joshi and Webb (1987)
reported an RMS percent difference of 11.5
percent for all Colburn j factor data. Comparisons
of the proposed model with the data from Kays
and London (1984) and the correlations developed
by Manglik and Bergles (1995) are given in the
next section.

COMPARISON OF MODELS
WITH DATA

The proposed models are now compared with
nineteen sets of data for the OSF configuration
which are available in tabular and graphical form
in Kays and London (1984). Table II presents a
summary of the optimal value of the correlation
parameters for combining the laminar and turbu-
lent models for each OSF data set. The values
reported in Table II result in the root mean square
(RMS) percent difference being minimized. Ex-
cellent correlation is obtained for the friction
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TABLE II Comparison of models with data with optimal value of blending parameter

f i
Designation ' n RMS m RMS
1/8-15.61 18 ‘ 7.13 3.2 9.17
1/8-19:86 22 3.09 2.9 10.79
1/9-22.68 23 4.28 48 8.28
1/9-24.12 1.7 4.42 3.6 17.76
1/9-25.01 1.5 5.62 25 5.43
1/10-19.35 5.0 8.11 3.6 10.44
1/10-19.74 1.9 7.98 46 26.35
1/10-27.03 1.5 6.70 2.0 1.83
3/32-12.22 1.3 4.34 4.7 21.19
1/2-11.94 D 5.0 3.28 4.1 1.83
1/4-15.40 D 5.0 4.68 5.0 12.77
1/6-12.18 D 4.7 6.64 45 19.03
1/7-1575D 5.0 6.03 3.5 2.09 ,
1/8-16.00 D 2.9 1.7 22 4.85 o
1/8-16.12 D 2.9 1.26 48 15.14
1/8-19.82 D 1.3 5.62 2.3 2.89
1/8-20.06 D 23 372 2.6 4.17
1/8-16.12 T 1.8 6.76 38 13.03
501 MOD 3.6 4.71 4.8 17.79

factor data for most configurations. Examination and 1/8-19.82 D devices show possible effects
of the data from Kays and London (1984) shows  of burred edges at high Reynolds numbers,
that the 1/8-15.61, 1/9-24.12, 1/9-25.01, 1/10-19.74,  Muzychka (1999). If the fin edges are burred, an

TABLE III Comparison of models with data with fixed value of blending parameter

f(Eq. (24), n=3) i(Eq. (29), m=7/2)
Designation RMS {min/max} RMS (min/max) i
1/8-15.61 8.89 0.47/18.33 9.41 —13.90/11.95
1/8-19.86 4.61 2.96/7.35 10.63 -18.33/11.97
1/9-22.68 4.10 —1.11/7.48 9.49 —13.47/0.14
1/9-24.12 10.19 4.25/19.28 17.92 —29.06/10.87
1/9-25.01 13.33 9.17/22.52 8.17 —4.20/16.69
1/10-19.35 15.41 ~19.54/—5.38 10.60 —19.73/7.12
1/10-19.74 9.92 —2.71/24.34 28.26 —45.35/2.50
1/10-27.03 13.58 8.76/18.30 10.58 6.29/16.07
3/32-12.22 16.65 12.13/20.11 22.60 —50.49/—2.03
1/2-1194 D 10.85 —14.51/-245 2.40 —3.64/4.29
1/4-1540 D 13.18 —16.41/-4.19 15.28 -24.10/0.10
1/6-12.18 D 13.87 - 18.22/1.15 20.17 —39.46/—1.54
1/7-1575 D 15.43 —-20.81/-2.74 2.10 —2.53/4.25
1/8-16.00 D 4.06 —6.61/4.48 10.35 0.48/15.68 e
1/8-16.12 D 1.53 —2.13/-0.43 17.05 ~24.87/-0.92
1/8-19.82 D 20.56 13.29/30.77 8.91 2.50/14.61
1/8-20.06 D 3.34 —0.38/7.30 7.16 —0.35/13.16
1/8-16.12' T 9.60 3.77/15.64 13.53 —21.55/5.11

501 MOD 4.76 —17.31/5.29 19.14 —29.57/8.14
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effective increase in the fin thickness will result
in higher form drag contributions.

Good agreement between the proposed model
and the OSF data is also achieved for all but five
data sets for the Colburn j factor. Examination of
the data from Kays and London (1984) shows that
for the 1/9-24.12, 1/10-19.74, 3/32-12.22, 1/6-12.18
D, and 501 MOD devices, the model overpredicts
at low values of the Reynolds number. At higher
values of the Reynolds number, the data agree well
with the model. This discrepancy may be due to

experimental error. The experimental data pro-
vided in Kays and London (1984) were obtained
using air (Pr=0.71) as a test fluid. At low
velocities, tests conducted with air may experience
a phenomena referred to as “rollover”, (Shah,
1985). This phenomena results in measurements
for the j factor which are lower than expected.
Other factors, as outlined by Shah (1985), which
may explain the trends in these data, are the effect
of passage to passage non-uniformity and the
presence of burrs.
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Table III presents the RMS and (min/max)
values of the percent differences for the case where
a fixed value of the correlation parameter is used
for all cases. The majority of the friction factor data
are predicted within + 20 percent. Five data sets
for the Colburn j factor data have predictions
exceeding + 30 percent. In these five cases the large
errors only occur in the region with Re < 1000, as
shown in Figure 5. Figures 5-14 compare the
proposed models, Eqgs. (24) and (29). with the

correlations developed by Manglik and Bergles
(1995) with ten sets of data from Kays and London
(1984). Further comparisons may be found in
Muzychka (1999). The trends exihibited by these
plots is typical of the remaining data from Kays
and London (1984). In almost all cases the cor-
relations of Manglik and Bergles (1995) under-
predict in regions of small and large Reynolds
numbers. Since the correlations are empirical fits,
they are only valid within the range of the
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FIGURE 10 Comparison of Eqs. (24) and (29) with data of Kays and London (1984) for 1/9-22.68.

experimental data from which they were develop-
ed. In a number of cases the empirical correlations
of Manglik and Bergles (1995) provide poor cor-
relation over the range of the available data. It is
clear from Figures 5- 14 that the proposed model
captures the correct physical behavior of the data.
With the exception of five j data sets and two fdata
sets, in which the model either overpredicts or
underpredicts the data, excellent agreement be-
tween the proposed model and experimental data

is achieved over the entire range of Reynolds
numbers.

EFFECT OF SUBCHANNEL SHAPE

Most OSF arrays are composed of rectangular
sub-channels. However, in many applications,
other shapes such as trapezoidal and sinusoidal
may arise. The models developed for both the
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friction factor and the Colburn j factor may be
applied to the these and other non-circular passage
shapes, by simply providing the appropriate value
for the f Re;; and Nug, which appear in the models.

For a rectangular offset strip fin array the values
for fRep, and Nup, are given by following results
for fully developed flow in rectangular ducts, Shah
(1985):

fRep, = 23.94 — 30.05¢ + 32.37¢% — 12.08¢> (30)

and

Nup, = 7.45 — 16.9¢ + 22.1¢2 - 9.75¢*  (31)
where O0<e=s/H<1 for a rectangular sub-
channel. If subchannel is a geometry other than
rectangular, fRe and Nu should be replaced by
appropriate values for the particular geometry.
These two dimensionless parameters can be ac-
curately predicted using the models developed by
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Muzychka and Yovanovich (1998) or Muzychka
(1999). The geometric factor in Eq. (23), (Aprofite/
Ao, modifying the form drag coefficient, Cp,
should also be adjusted based upon the actual
profile area for the non-rectangular subchannel.

SUMMARY AND CONCLUSIONS

New models for predicting the f and j character-
istics of the offset strip fin array have been

developed. These models which are analytically
based, are much simpler than the analytical models
of Joshi and Webb (1987), and provide excellent
correlation of nineteen sets of OSF data from
Kays and London (1984) over the full range of
Reynolds numbers. Model predictions are within
+ 20 percent for 96 percent of the f data and
82 percent of the j data. The proposed models
account for the correct low Reynolds number
behaviour which is presently not accounted for in
the widely used multiple regression correlations.



276 Y. S. MUZYCHKA AND M. M. YOVANOVICH

Since the models are analytically based, they are
valid over the entire range of Reynolds number
unlike the empirical models which should only be
used within the range of the experimental data.
Finally, simple extension of the present models for
OSF arrays composed of non-rectangular sub-
channels was also discussed.
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NOMENCLATURE
A area, m>
Cp drag coefficient

D, hydraulic diameter of subchannel, =44/P

dy hydraulic diameter of OSF array, = 4V e/
AWC[

f friction factor = 7/((1/2)p#?)

H channel or fin height, m

h heat transfer coefficient, W/mzK

j Colburn factor, = St.Pr?/?

k thermal conductivity, W/mK

L length of channel, m

Ly fin length, m

L characteristic length scale, m

m, n  correlation parameter

Nug Nusselt number, = AL/k
P pressure, Pa
Pr Prandtl number, =v/a

Res Reynolds number, = wC/v

5 fin spacing, m

S, effective fin length, m
t fin thickness, m

V volume, m>

w average velocity, m/s

zz dimensionless duct length, = z/LRe,

Greek Symbols

thermal diffusivity, m?/s
aspect ratio, =s/H
dynamic viscosity, Ns/m?
kinematic viscosity, m?%/s
fluid density, kg/m?

wall shear stress, N/m?

b BT N ~ L B o)

Subscripts

app apparent

dy, D, based upon hydraulic diameter
f fin

hy hydrodynamic

Ly based upon the length L,

lam laminar
tur turbulent
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