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Introduction

The analysis of heat transfer from sliding and rolling contact
important in many tribological applications such as ball bear
and gear design. In these applications heavily loaded contact
typical and knowledge of the contact temperatures which re
from frictional heat generation is required for minimizing therm
related problems such as scoring, lubricant breakdown, and a
sive wear due to flash welding.

A review of typical tribology books such as the texts by Hallin
@1# and Williams@2#, and Handbook sections by Winer and Che
@3# and Cowan and Winer@4# shows that the analysis of hea
transfer from sliding or rolling contacts has not been extensiv
modelled. These reviews generally present equations and re
for only one configuration, the circular contact. Although this co
tact geometry arises quite frequently in tribology applicatio
others such as the elliptic contact are also quite common in
bearing and gear applications where non-conforming cont
prevail @5–7#.

The analysis for moving heat sources which is presented
number of tribology references@1–4#, is based upon the assump
tion that one of the contacts can be modelled as a stationary
source and the other as a fast moving heat source. In many p
lems the assumption of a fast moving heat source may not be v
and the analysis will incorrectly predict the average or maxim
contact temperature. With this in mind, Tian and Kennedy@8#
developed accurate correlations for the circular and square
source which predict the temperature for any speed. These c
lations were then used to formulate models for predicting fl
temperatures in sliding asperities.

In a recent paper@9#, a hybrid computational method for non
circular heat sources was developed. For this method, a nume
approach based upon the superposition of point heat sources
employed for the stationary portion and a transient finite elem
method was employed for the moving portion. This new appro
was then used to predict temperatures in a steel/bronze sli
contact problem, with sliding motion normal and parallel to t
grinding direction. The primary motivation for the work of Ned
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et al. @9# was that the conventional approach adopted in m
tribology references was not applicable to non-circular h
sources.

The present work discusses various aspects of heat transf
tribological applications involving stationary and sliding contac
In all cases heat is either supplied to the contact or is gener
through contact friction. This paper has four objectives. These
~i! provide a comprehensive review of the literature related
stationary and moving heat sources on half space,~ii ! examine the
effect that heat source shape and heat flux distribution have on
thermal resistance,~iii ! develop a model which is applicable to
heat source of arbitrary shape and flux distribution, and~iv! use
the proposed model to predict the flash temperature in a n
circular contact for real surfaces. In addressing these issue
number of gaps in the literature have been filled. In addition
clear and consistent approach to modeling arbitrary contacts
been developed. Presently, the field of tribology has only adop
a simplified approach in the prediction of contact temperatu
due to sliding. The present approach does not allow for the ef
of shape, aspect ratio, and flux distribution to be modelled eas
This was the primary motivation of the development of a hyb
numerical scheme by Neder et al.@9#. The expressions and
method developed in the present work have been validated ag
a small set of numerical data for real and ideal contacts. T
results of Neder et al.@9# are readily computed using the prese
approach with significantly less effort.

Governing Equations
A review of the literature@3,4,8,10–15#, reveals that extensive

analysis of the problem has been undertaken for various con
spot shapes and thermal boundary conditions for both statio
and moving heat sources.

The governing equation for a moving heat source may be
tained from the transient heat conduction equation with a tra
formation of variables@13#. The resulting equation for steady sta
conditions, is

]2T

]x2 1
]2T

]y2 1
]2T

]z2 5
V

a

]T

]x
, (1)

where the coordinate system is fixed to the heat source and
half space moves beneath it with velocityV, see Figs. 1 and 2.

,
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The thermal boundary conditions are constant or zero temp
ture in regions remote from the source, i.e.,r 5Ax21y21z2

→`, T→Tb , or T(x→6`,y→6`,z→`)5Tb50 and pre-
scribed heat fluxq over the source area]T/]zuz5052q(x,y)/k
while the region outside of the source area is assumed to
adiabatic]T/]zuz5050.

Solution to Eq.~1! is usually obtained by superposition of th
point heat source@11#

T2Tb5S Q

2pkr De2V/2a~r 2x! (2)

Fig. 1 Rectangular heat source

Fig. 2 Elliptic heat source
Journal of Heat Transfer
era-

be

e

over the region of contact, wherer 5Ax21y21z2. Solution of the
moving heat source by means of Eq.~2! is rather involved, requir-
ing numerical integration. Solutions for the square and circu
contact are tabulated in Tian and Kennedy@8#. A simpler ap-
proach based upon the combination of asymptotic solution
presented in a later section for the arbitrarily shaped heat sou

Asymptotic Solutions

Stationary Heat Sources. If the velocity of the heat source is
small (V/a→0), the governing equation reduces to Laplace
equation

]2T

]x2 1
]2T

]y2 1
]2T

]z2 50 (3)

with the same boundary conditions prescribed earlier.
Many solutions for stationary heat source problems have b

obtained by superposition of the point heat source@11# on a half
space

T2Tb5
Q

2pkr
, (4)

where r 5Ax21y21z2. Solutions for various heat flux distribu
tions and source shapes have been found@14–16#. Of particular
interest are the solutions for the rectangular and ellipti
heat sources which contain the limiting cases for the square
circular contacts.

Moving Heat Sources. If the velocity of the heat source is
large (V/a→`), Eq. ~1! simplifies to give

]2T

]z2 5
V

a

]T

]x
. (5)

Equation~5! is essentially the one dimensional diffusion equati
for a half-space witht5x/V. This equation assumes that he
conduction into the half space is one-dimensional and the solu
may be approximated by the equation for heat flow at the surf
of a half space with flux specified boundary conditions@11,12#

T2Tb5
2q

kAp
Aat, (6)

where t must be replaced by the effective traverse timet
52x8/V, andx8 is the distance from an arbitrary point within th
source to the leading edge of the source.

This approach was applied by Jaeger@12# for the strip and
square heat sources, by Archard@17# for the circular source for the
uniform heat flux distribution, and by Francis@18# for the circular
heat source having a parabolic heat flux distribution. Later, it w
be applied to obtain a solution for an elliptical heat source a
comparisons will be made with the solution of Jaeger@12# for a
rectangular source.

No solution was found for the equivalent isothermal movi
heat source for a circular contact. A solution for this bounda
condition may be obtained by extending the work of Francis@18#
or Tian and Kennedy@8# for the parabolic heat flux distribution
The solution for a moving elliptic heat source with uniform an
parabolic heat flux distribution will be obtained in a later sectio

The analysis based on Eq.~6! is only valid for large values of
the dimensionless group Pe5Va/a, or Peclet number. This group
may be interpreted as a measure of the relative thermal pen
tion depth,d/a, of heat into the half space. Beginning with th
definition, d5Apat, which is the thermal penetration depth fo
heat flow into a half space, the relative penetration depth fo
circular contact is

d

a
;

Apat

a
. (7)
AUGUST 2001, Vol. 123 Õ 625
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If the traverse time for a moving circular heat source is taken
be t52a/V, then Eq.~7! may be written as

d

a
;A2pa

Va
;

A2p

APe
. (8)

Thus if Pe→`, the penetrationd is small, and may be taken t
be one-dimensional since the spreading of heat into the half-s
is negligible. On the other hand, if Pe→0, the spreading of hea
into the substrate will be significant. A solution for all values
Peclet number can only be obtained numerically.

Review and Solution of Stationary and Moving Heat
Sources

A discussion of a number of important solutions for sliding he
sources is now presented. In many cases, gaps existed in th
erature, and the present authors have developed new solu
for a number of problems. These are discussed throughout
sections that follow.

Stationary Heat Sources„Pe\0…. Extensive analysis of
heat conduction from isolated heat sources on a half space
been performed by a number of researchers@11,14–16,19#. The
simplest contact geometry is the circular contact. The analysis
been performed for three heat flux distributions: the uniform h
flux, parabolic heat flux, and the inverse parabolic heat flux. T
inverse parabolic heat flux represents a uniform temperature
tribution over the contact area. The solutions for the dimensi
less thermal resistance for these three cases are summariz
Table 1.

The thermal resistance may be defined with respect to
average surface temperature such that

R̄5
T̄c2Tb

Q
(9)

or with respect to the maximum surface temperature such tha

R̂5
T̂c2Tb

Q
. (10)

A dimensionless thermal resistance may be defined as

R* 5RkL, (11)

whereL is an appropriate characteristic length related to the h
source area@5,6,14–16#. This thermal resistance is a spreadi
resistance due to the transfer of heat through a finite discrete p
of contact. Spreading resistance concepts appear in any ana
of stationary or sliding contact problems in heat transfer a
tribology, and form the basis for the field of thermal conta
conductance.

In most tribological applications involving frictional heat ge
eration, the average heat fluxq̄5Q/A is known. What may not be
known precisely, is the distribution of heat fluxq(x,y) over the
contact. If the contact is Hertzian, the distribution of friction

Table 1 Effect of boundary conditions on stationary circular
heat source †15‡
626 Õ Vol. 123, AUGUST 2001
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heat generation may be represented by Case C in Table 1@15#. In
most analyses the assumption of a uniform heat flux distributio
often made. The effect of heat flux distribution on the therm
resistance based upon the average contact temperature is s
The variation from the uniform flux distribution is27.4 percent
for the isothermal heat source and14.1 percent for the parabolic
heat source. Thus the uniform heat flux distribution may be ta
as representative of the mean value if the exact flux distributio
not known. If the resistance is based upon the maximum sou
temperature, the variation from the uniform flux distribution
221.4 percent for the isothermal heat source and117.9 percent
for the parabolic heat source. In both cases the maximum
minimum values for the average or maximum source tempera
are bounded by the solutions for Case A and Case C.

Table 2 presents a comparison of the dimensionless the
resistance for a circular and square heat source with unifor
distributed heat flux@11#. In both cases, the dimensionless therm
resistance is greater for the circular heat source than for the sq
source. The relative differences are 12.2 percent for the resist
based upon the average source temperature and 11.3 perce
the resistance based upon the maximum source tempera
Later, it will be shown that ifL5AA, the effects of source shap
and aspect ratio are minimized. This will eventually lead to
simplified model for an arbitrarily shaped moving heat source

If the shape of the heat source shown in Figs. 1 and 2 is allow
to vary with aspect ratioe5b/a, then the solutions are somewh
more complex than those given in Table 2. The solution for
dimensionless thermal resistance of a stationary rectang
uniform heat source@11# is

R̄ka5
1

2p H sinh21~e!

e
1sinh21~1/e!

1
1

3 F 1

e21e2
~11e2!3/2

e2 G J (12)

for the average contact temperature, and

R̂ka5
1

2p H sinh21~e!

e
1sinh21~1/e!J (13)

for the maximum contact temperature.
The solution for the elliptic heat source was obtained

Yovanovich@5,14–16# and is given by

R̂ka5
1

2p
K ~e8! (14)

for the isothermal contact, and

R̄ka5
16

3p3 K ~e8! (15)

and

R̂ka5
2

p2 K ~e8! (16)

Table 2 Effect of shape on isoflux stationary heat sources †11‡
Transactions of the ASME
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for the isoflux contact, wheree85A12e2, andK (e8) is the com-
plete elliptic integral of the first kind of complementary modul
e8. Equations~15! and ~16! were obtained by comparing the lim
iting case of the circular contact from Table 1 with the result
the isothermal contact. Equations~15! and~16! accurately predict
the numerical results presented in@16# for the elliptic contact
which were obtained using the method of superposition of po
heat sources. No solution was available for the parabolic
distribution. A solution for this configuration is easily obtained
analogy with the elastic contact problem@20#, or by comparison
with the solutions presented above. The effect of aspect ratio
stationary elliptic heat source is

f ~e!5
2

p
K ~e8! (17)

Thus the solution for the parabolic heat flux distribution is t
function f (e) multiplied by the values for the resistance for Ca
C in Table 1:

R̄ka5
9

16p
K ~e8! (18)

and

R̂ka5
3

4p
K ~e8!. (19)

Equation~19! may also be derived from the analogous elas
contact problem discussed in@20#, for the Hertzian pressure
distribution.

Moving Heat Sources„Pe\`…. Solutions for moving heat
sources have been obtained for a number of configurations
boundary conditions. All of the moving source solutions are w
ten in terms of the Peclet number. The Peclet number is define

Pe5
VL
a

, (20)

whereL is a characteristic length scale representative of the c
tact geometry. If the contact geometry is circular or square t
L5a, the radius of the contact or the half side length of t
square. Later, it will be shown that ifL5AA, the area of the hea
source, the effect of shape and aspect ratio on the dimensio
resistance is small.

The effect of heat flux distribution~uniform or parabolic! on the
thermal resistance for a moving circular heat source is given
Table 3. The solution for the uniform heat flux distribution w
obtained by Archard@17# and the solution for the parabolic he
flux distribution was obtained by Francis@18#. These solutions are
only valid for large values of the Peclet number. The effect of fl
distribution on the thermal resistance based upon the average
tact temperature is small. The relative difference being only
percent. The relative difference increases to 15.9 percent for
thermal resistance based upon the maximum source tempera

Table 3 Effect of boundary condition on a moving circular
heat source †17,18‡
Journal of Heat Transfer
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Finally, Table 4 presents a comparison of the asymptotic soluti
for the fast moving heat source for the circular and square h
sources. The results are 16.4 percent and 21.5 percent highe
the circular heat source for the thermal resistance based upo
average and maximum source temperatures, respectively.

If the contact is rectangular the thermal resistance will va
with aspect ratioe5b/a, where 0,e,`. The solution obtained
by Jaeger@12# for the strip source is applicable to a rectangu
heat source since the solution assumes one dimensional heat
into the half space, i.e., the penetration depth is small compa
with the characteristic dimension of the contact zone. The solu
for the finite rectangular source@12# is

R̄ka5
&

3Ap
S a

bD 1

APe
(21)

for the average contact temperature, and

R̂ka5
&

2Ap
S a

bD 1

APe
(22)

for the maximum contact temperature, where Pe5Va/a, is based
upon the half width of the rectangle in the direction of motion, s
Fig. 1.

No solution was found for the fast moving elliptical contact.
order to obtain a solution for the elliptical contact, the approa
developed by Jaeger@12# for the square source and by Archa
@17# for the circular contact was applied. In this case the effect
contact time is

t5
2x8

V
5

2Aa2S 12
y2

b2D
V

. (23)

Applying the approach of Jaeger@12# and Archard@17# gives

R̄ka5
1

p S a

bD 1

APe
(24)

for the dimensionless thermal resistance based upon the ave
contact temperature, and

R̂ka5
2&

p3/2 S a

bD 1

APe
(25)

for the dimensionless thermal resistance based upon the maxi
contact temperature. In both cases, Pe5Va/a is based upon the
half width of the heat source in the direction of motion, see Fig

Comparison of Eqs.~21! and ~22! and Eqs.~24! and ~25! with
the solutions for the square and circular heat source provide
Table 4, shows that the solutions are identical except for the t
(a/b). This factor accounts for the effect of heat source asp
ratio with respect to the direction of motion. These results may
applied to infer the following solutions for a fast moving ellipt
heat source with parabolic heat flux distribution:

Table 4 Effect of shape on isoflux moving heat sources
†12,17‡
AUGUST 2001, Vol. 123 Õ 627
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R̄ka50.323S a

bD 1

APe
(26)

and

R̂ka50.589S a

bD 1

APe
. (27)

In the next section, the results will applied to develop n
models applicable to a real contacts of non-circular shape.

Analysis of Real Contacts
In this section, application of the theory of moving heat sour

to real contacts is discussed. A simple approach to modelling
effects of shape, aspect ratio, orientation, and heat flux distr
tion is presented. It will be assumed that the shape of a real
tact is elliptic, and that classic Hertzian analysis for elastic con
of non-conforming surfaces may be used to predict the con
zone dimensions@21#.

Effect of Contact Shape. Hertzian theory may be used t
predict the contact size for elastic contact. However, this assu
the shape of the contact is elliptic. Depending on the surface
pography, this assumption may not be valid. Thus, it is desira
to examine the effect that shape and aspect ratio have on
overall resistance of moving heat sources.

Yovanovich et al.@16# examined the effect of the shape an
aspect ratio of an isolated stationary contact having a uniform
distribution. The geometry examined by Yovanovich et al.@16#
was the hyperellipse, defined as

S x

aD g

1S y

bD g

51, (28)

wherea and b are the semi-major and semi-minor axis length
respectively. The parameterg determines the shape of the conta
The values of the parameterg which were examined by Yovanov
ich et al.@16# wereg51/2, g51, andg52. If g→` the hyper-
ellipse becomes a rectangular contact. Yovanovich et al.@16#
showed that if the thermal resistance is non-dimensionalized u
the square root of the contact area, the solutions are weak f
tions of shape and aspect ratio.

Table 5 presents the dimensionless resistance based upo
average and centroidal values of temperature for different va
of the parameterg, Yovanovich et al.@16#. It is clearly seen that
the dimensionless resistance varies very little with aspect r
e5b/a and shape parameterg. The solutions for the isoflux
stationary elliptic heat source become

R̄skAA5
16

3p3 ApesK ~es8! (29)

for the average contact temperature, and

R̂skAA5
2

p2 ApesK ~es8! (30)

for the maximum contact temperature. If the flux distribution
parabolic, then the solutions presented earlier become

R̄skAA5
9

16p
ApesK ~es8! (31)

and

R̂skAA5
3

4p
ApesK ~es8!. (32)

If the heat source is rectangular, then the dimensionless the
resistance, Eqs.~12, 13! become
628 Õ Vol. 123, AUGUST 2001
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R̄sk AA5
Aes

p H sinh21~es!

es
1sinh21~1/es!

1
1

3 F 1

es
2 1es2

~11es
2!3/2

es
2 G J (33)

for the average contact temperature, and

R̂skAA5
Aes

p H sinh21~es!

es
1sinh21~1/es!J (34)

for the maximum contact temperature. Since the effect of asp
ratio is small, average values of the dimensionless resista
given in Table 5 may be used to approximate the resistance f
heat source with variable aspect ratio.

In the case of the moving heat source the Peclet number sh
also be based upon the square root of the contact area, i.eL
5AA in Eq. ~20!. Table 6 summarizes the results for the recta
gular and elliptic heat sources for different heat flux distributio
when the resistance is non-dimensionalized using the square

Table 5 Dimensionless resistance for stationary isoflux hy-
perelliptic contacts †16‡

Table 6 Dimensionless resistance of moving heat sources on
a half-space
Transactions of the ASME
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of the contact area. Comparisons of the dimensionless resist
R̂* are provided in Figs. 3 and 4 using the data for the ex
analytical solutions of a isoflux heat sources from Tian a
Kennedy@8#. Figure 3 shows a comparison of the results fo
circular and square heat source when the characteristic leng
L5a. In Figure 4, the results for each geometry have virtua
collapsed onto one another whenL5AA. Thus the effect of the
shape of the heat source is not a significant factor, when the
sults are appropriately non-dimensionalized.

If the heat source is rectangular or elliptical the Peclet num
must be replaced with a modified Peclet number Pe* defined as

PeAA
* 5~em!1/2PeAA . (35)

The aspect ratioem5b/a now accounts for the effect of th
shape and orientation of the heat source. Since a rectangul
elliptic heat source may be oriented in the direction of mot
parallel to the short or long axis of the heat source, the resista
must change based on orientation. Given the same source are
velocity, the Peclet number remains unchanged, but the resist
will decrease if the direction of motion is parallel to the short a
of the heat source. Thus, for a moving heat source, 0,em,`.
This is quite important for the moving heat source since the re
tance will increase with decreasingem , i.e., a.b, and decrease
with increasingem , i.e.,b.a. If the heat source is stationary, th
orientation of the contact is not important and 0,es,1.

Models for 0ËPeË`. In the previous sections the therm
resistances of isolated stationary and fast moving contacts w
presented. These solutions represent asymptotic solutions for

Fig. 3 R̂a* versus Pe a for a circular and square moving heat
source

Fig. 4 R̂AA* versus Pe AA for a circular and square moving heat
source
Journal of Heat Transfer
nce
act
nd
a

th is
lly

re-

ber

r or
on
nce
a and
nce
is

sis-

e

l
ere

arge

and small values of the Peclet number. If the contact is movin
moderate speeds 0.1,Pe,10, a composite solution is required
Tian and Kennedy@8# combined the asymptotic results for th
circular heat source using an equation which is a special cas
the more general form

1

Rt
n 5

1

Rs
n 1

1

Rm
n . (36)

Equation~36! is one form of the asymptotic correlation metho
proposed by Churchill and Usagi@22#. This method allows the
combination of asymptotic solutions, to generate a model whic
valid for all values of the dependent parameter.

A single value ofn52 was found to give excellent agreeme
between the approximate model and numerical results of Tian
Kennedy@8# over the entire range of Peclet numbers for the c
cular heat source having a uniform or parabolic heat flux distri
tion and a square heat source having a uniform heat flux distr
tion. Thus, the parametern does not appear to depend upon t
shape of the source or the flux distribution. The models develo
by Tian and Kennedy@8# are specifically for the circular hea
source for uniform and parabolic flux distributions. They are n
applicable to elongated contacts such as elliptic or rectang
contacts. In addition, Tian and Kennedy@8# presented their corre
lations in terms of contact temperatures; rather than thermal re
tance. The use of thermal resistance facilitates the calculatio
the partition of heat into the contacting bodies.

A general model for a moving heat source will now be obtain
by combining the dimensionless resistances for a stationary
fast moving heat sources in the form of Eq.~36!. As noted earlier,
the definition of aspect ratio is different for the moving and s
tionary heat sources. The aspect ratio of the stationary heat so
is now denoted byes5b/a such that 0,es,1, and the aspec
ratio of the moving heat source is now denoted byem such that
0,em,`. Also, since the effect of shape has been shown to
negligible, only the solution for the elliptic heat source will b
considered in the model development.

Combining the stationary and moving heat source solutions
both the average and maximum contact surface temperatures

R̄tkAA5
0.750

A~em!1/2PeAA16.05/~esK
2~es8!!

(37)

and

R̂tkAA5
1.200

A~em!1/2PeAA111.16/~esK
2~es8!!

(38)

for the uniform flux distribution, and

R̄tkAA5
0.762

A~em!1/2PeAA15.77/~esK
2~es8!!

(39)

and

R̂tkAA5
1.390

A~em!1/2PeAA110.79/~esK
2~es8!!

(40)

for the parabolic flux distribution. These expressions can now
applied to arbitrarily shaped heat sources for all values of
Peclet number.

Bounds on Thermal Resistance. The expressions develope
previously for the elliptic heat source assume that it is orien
with one of the axes parallel to the direction of motion, see Fig
Equations~37–40! are not valid for a heat source oriented at
angle to the direction of motion. The solution for this case
quires integration over the surfaces of the oblique orientati
However, Eqs.~37–40! may be used to bound the values by co
sidering the results for the two extreme cases ofem . The limiting
AUGUST 2001, Vol. 123 Õ 629
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cases may then be averaged in a number of ways. It is prop
that the bounding values be weighted using following express

R* 5Rx* cos2~u!1Ry* sin2~u!, (41)

where Rx* denotes the dimensionless resistance based upon
aspect ratio in thex-direction, andRy* denotes the dimensionles
resistance based upon the aspect ratio in they-direction. This for-
mulation is proposed since it reduces to the limiting cases fou
50 deg andu590 deg, and returns the arithmetic average au
545 deg. In the absence of an exact solution, Eq.~41! should
provide good results for the average or maximum tempera
prediction.

Prediction of Flash Temperatures. The concept of maxi-
mum or average flash temperature is discussed in detail in
chard @17#, Blok @23#, Winer and Cheng@3#, and Cowan and
Winer @4#. The computation of the flash temperature assumes
one of the contacting surfaces is a stationary heat source an
other a moving heat source. By accounting for the partition of h
into each of the surfaces, an estimate for the average or maxim
temperature may be obtained.

In the previous section a general model for an isolated mov
source for 0,Pe,` was developed. This model may now b
used to predict the average or maximum flash temperatures.
analysis begins by defining the total heat flow and the partition
each into the two contacting surfaces. The total heat generate
sliding friction is denotedQg5mFV, wherem is the coefficient of
friction, while the heat which flows into the stationary and movi
surfaces are denotedQs and Qm , respectively. Through conser
vation of energy, the total heat flow is then

Qg5Qs1Qm , (42)

which may be written in terms of the temperature excess
resistance in each surface

mFV5
~Ts2Tb,s!

Rs
1

~Tm2Tb,m!

Rm
. (43)

Now if perfect thermal contact is assumed at the interface, t
Ts5Tm5Tc at all points within the contact, and the expressi
given above may be solved forTc

Tc5

mFV1
Tb,s

Rs
1

Tb,m

Rm

1

Rs
1

1

Rm

. (44)

The general expression given above may be applied to
combination of slow, moderate or fast moving sources using
expressions developed earlier. If the bulk temperatures are e
Eq. ~44! may be further simplified. In the case of a typical slidin
asperity contact, the system is modelled as a stationary
source and a moving heat source in parallel. Equation~44! may be
written in terms of the dimensionless thermal resistan
R* 5RkAA to give

Tc5

mFV1
Tb,sAAks

Rs*
1

Tb,mAAkm

Rm*

AAks

Rs*
1

AAkm

Rm*

, (45)

which may be further simplified to give

Tc5
~mFVRs* Rm* !/AA1Tb,sksRm* 1Tb,mkmRs*

ksRm* 1kmRs*
, (46)

where the value forRs* is taken to be the appropriate value of th
stationary dimensionless resistance Eqs.~29–32! and Rm* is the
appropriate expression for the dimensionless resistance of a m
630 Õ Vol. 123, AUGUST 2001
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ing heat source Eqs.~37–40! which were presented in the prev
ous section. Thus,Tc may be computed for either the maximum
average value which occurs within the contact for either the is
lux or parabolic flux distribution. The validity of Eq.~46! may be
questioned on the grounds that the temperature distribution of
real contact will be skewed, however, models for the station
heat source resistance assume a symmetric temperature pr
For a slow moving contact Pe,0.1 the profile is nearly symmetric
and the partition of heat into each of the surfaces is equal ass
ing that each surface has the same thermal properties. For a
moving heat source Pe.10, the maximum temperature is locate
at or near the trailing edge. Most of the heat will be conduc
into the moving surface since it has a lower thermal resistance
the transition region 0.1,Pe,10, the effect of temperature distri
bution shape should be small since the maximum temperatu
located between the centroid and the trailing edge. Thus, Eq.~46!
may be applied for either the average or maximum contact t
perature basis. Also, due to the relatively short contact times
size of asperities, the penetration depth will be small and
assumption of a half-space is then reasonable.

Table 7 presents a comparison of results computed by Ja
@12# for mild steel k560.3 W/mK, a517.731026 m2/s, F
5400 g, andm50.23 for a square source with half side leng
a5131025 m. The maximum difference between the model a
the data of Jaeger@12# is 2.1 percent atV515 m/s. This error is
small considering that the values presented by Jaeger@12# were
based upon graphical results which are also subject to round
errors.

In the final example, the proposed model is compared w
numerical results reported by Neder et al.@9#. The system exam-
ined by Neder et al.@9# consisted of a bronze substrate (a
513.831026 m2/s, k550 W/mK) and a steel slider (a520.0
31026 m2/s, k562 W/mK). The maximum pressure considere
was P5450 MPa and the coefficient of frictionm50.25. Neder
et al. @9# considered sliding in directions perpendicular and par
lel to the grinding direction of a real surface. Some difficulty w
encountered interpreting the data reported by Neder et al.@9#. The
authors reported a range for the equivalent diameter of the lar
real contact spot in the direction parallel and perpendicular to
direction of sliding along with the contact width, 2a, in the slid-
ing direction only. The equivalent diameters which were tabula
by Neder et al.@9# have different values for each direction. It
assumed that if the same surface was considered, the equiv
diameter should be the same in both sliding directions, and
the contact spot aspect ratio may be computed assuming an
tic contact. The area is given byA5pDe

2/45pab. GivenDe and
2a, 2b is computed using (8mm,De,10mm) and (6mm
,2a,8 mm). These dimensions were examined for both slidi
directions and the maximum flash temperatures were comp

Table 7 Comparison of average flash temperature results †12‡
Transactions of the ASME
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using Eq.~54! along with the expressions for the dimensionle
resistance based upon the maximum contact temperature. Re
are summarized in Table 8. The predicted temperature range
excellent agreement with the reported values given by Neder e
@9#. Neder et al.@9# also reported values ofT̂532.8°C andT̂
537.5°C on two plots for theV510 m/s case, in the direction
perpendicular and parallel to the grinding direction, respectiv
These results are also within the range of temperatures comp
using the proposed model.

Summary and Conclusions
A review of the important literature for stationary and movin

heat sources was presented. The effects of shape and hea
distribution for elliptic and rectangular heat sources were exa
ined. It was shown that the dimensionless thermal resistance
weak function of shape for stationary and moving heat sour
when the results are non-dimensionalized using the square ro
the heat source area. A simple model for all values of the Pe
number was developed by combining the asymptotic solutions
stationary and moving heat sources. A method was proposed
predicting the thermal resistance of an elliptic heat source orie
at any angle with respect to the direction of motion. These res
were then applied to develop a general expression for determi
the flash temperature for real surfaces in sliding contact. The
posed model was compared with recent numerical data for
contacts of non-circular shape. Excellent agreement between
model and data was obtained for both elliptic and square conta
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Nomenclature

a 5 semi-major axis of ellipse or rectangle, radius of
circle, m

A 5 area, m2

b 5 semi-minor axis of ellipse or rectangle, m
E(•) 5 complete elliptic integral of the second kind

F 5 applied load,N
k 5 thermal conductivity, W/mK

K (•) 5 complete elliptic integral of the first kind
L 5 arbitrary length scale, m
P 5 pressure, MPa

PeL 5 Peclet number,[VL/a
PeL* 5 modified Peclet number,[AePe

q 5 heat flux, W/m2

q̄ 5 average heat flux,[Q/A
Q 5 heat flow rate, W
R 5 thermal resistance, K/W

R* 5 dimensionless thermal resistance,[RkL
t 5 time, s

T 5 temperature, K

Table 8 Comparison of maximum flash temperature results
†9‡
Journal of Heat Transfer
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Tb 5 bulk temperature, K
Tc 5 contact temperature, K
V 5 velocity, m/s

Greek Symbols

a 5 thermal diffusivity, m2/s
d 5 thermal penetration depth, m
e 5 ellipticity or aspect ratio,[b/a

e8 5 complementary modulus,[A12e2

em 5 aspect ratio, moving source, 0,b/a,`
es 5 aspect ratio, stationary source, 0,b/a,1
f 5 angle between principal planes of contact, rad
g 5 hyperellipse parameter
u 5 temperature excess, K
m 5 coefficient of friction
n 5 Poisson’s ratio
u 5 angle, rad

Superscripts

(•) 5 based on the average temperature
(• )̂ 5 based on maximum temperature

Subscripts

1,2 5 surface 1, surface 2
AA 5 based onL5AA

b 5 bulk
c 5 contact
g 5 generated
L 5 arbitrary length scaleL
m 5 moving
s 5 stationary
t 5 total
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