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Introduction et al. [9] was that the conventional approach adopted in most

. - . ribol referen was n licabl non-circular h
The analysis of heat transfer from sliding and rolling contactst bocoegsy eferences was not applicable to non-circular heat

important in many tribological applications such as ball bearing the present work discusses various aspects of heat transfer in
and gear design. In these applications heavily loaded contacts gjiso|ogical applications involving stationary and sliding contacts.
typical and knowledge of the contact temperatures which resylf a|| cases heat is either supplied to the contact or is generated
from frictional heat generation is required for minimizing thermajhrough contact friction. This paper has four objectives. These are
related problems such as scoring, lubricant breakdown, and adtig-provide a comprehensive review of the literature related to
sive wear due to flash welding. stationary and moving heat sources on half spé@degxamine the

A review of typical tribology books such as the texts by Hallingffect that heat source shape and heat flux distribution have on the
[1] and Williams[2], and Handbook sections by Winer and Chenghermal resistanceiii) develop a model which is applicable to a
[3] and Cowan and Winef4] shows that the analysis of heatheat source of arbitrary shapg and flux distribution, (aimhj use
transfer from sliding or rolling contacts has not been extensivel)¢ Proposed model to predict the flash temperature in a non-
modelled. These reviews generally present equations and res@if§ular contact for real surfaces. In addressing these issues, a

for only one configuration, the circular contact. Although this codjllggfgrr]gfcgﬁgi_ tignih:pgtr%?ctﬂrfohra\c/)%etﬁznafrig(iet?ér;nc%ictieiltci:(t)g,hzs
tact geometry arises quite frequently in tribology application Fen developed. Presently, the field of tribology has only adopted

othe_rs such as the elllp'_uc gontact are also quite common in bg simplified approach in the prediction of contact temperatures

bearing and gear applications where non-conforming contagige {4 sjiding. The present approach does not allow for the effect

prevail[5-7]. . . o ~of shape, aspect ratio, and flux distribution to be modelled easily.
The analysis for moving heat sources which is presented inTis was the primary motivation of the development of a hybrid

number of tribology referencdd—4], is based upon the assumpnumerical scheme by Neder et d9]. The expressions and

tion that one of the contacts can be modelled as a stationary hgrithod developed in the present work have been validated against

source and the other as a fast moving heat source. In many prabsmall set of numerical data for real and ideal contacts. The

lems the assumption of a fast moving heat source may not be vais$ults of Neder et a[9] are readily computed using the present

and the analysis will incorrectly predict the average or maximuapproach with significantly less effort.

contact temperature. With this in mind, Tian and Kenngdy

developed accurate correlations for the circular and square heat

source which predict the temperature for any speed. These Co'aﬁ*dverning Equations

lations were then used to formulate models for predicting flas . . .
temperatures in sliding asperities. A review of the literaturg3,4,8,10—1% reveals that extensive

In a recent papeli9], a hybrid computational method for ncm_analysis of the problem has been undertaken for various contact

circular heat sources was developed. For this method, a numerfpt shapeshand thermal boundary conditions for both stationary
approach based upon the superposition of point heat sources & hrg(;\/c')?/gm?n"g Z((;llj';aiiecfr.l for a moving heat source may be ob-
employed for the stationary portior} and a.transie.nt finite elem fined from the transient heat conduction equation with a trans-
method was employed for the moving portion. This new approaghlmation of variable§13]. The resulting equation for steady state
was then used to predict temperatures in a steel/bronze S“dlﬂ%ditions, is

contact problem, with sliding motion normal and parallel to the

grinding direction. The primary motivation for the work of Neder ¢92_T+ (92_T+ 32_T_ ! i
X2 ay? 972 a ox’

@
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over the region of contact, where= \X?+ y?+Z°. Solution of the

‘ moving heat source by means of E8) is rather involved, requir-
ing numerical integration. Solutions for the square and circular
contact are tabulated in Tian and Kenng@®j. A simpler ap-
proach based upon the combination of asymptotic solutions is
presented in a later section for the arbitrarily shaped heat source.

<= =) Asymptotic Solutions

Stationary Heat Sources. If the velocity of the heat source is
small (V/a—0), the governing equation reduces to Laplace’s
equation

PT  PT  *T

; a2 ay? T 922 0 3)
q with the same boundary conditions prescribed earlier.

Many solutions for stationary heat source problems have been

obtained by superposition of the point heat soyrtH on a half

@ . space
Y Q
z —T,.=
=T 27kr’ “)
T=0 wherer = x>+ y?+7?. Solutions for various heat flux distribu-

tions and source shapes have been foldrtl-16. Of particular

Fig. 1 Rectangular heat source interest are the solutions for the rectangular and elliptical

heat sources which contain the limiting cases for the square and
circular contacts.

The thermal boundary conditions are constant or zero temperanoving Heat Sources. If the velocity of the heat source is
ture in regions remote from the source, i.ex x“+y“+z° large (V/a—=), Eq. (1) simplifies to give
—w, T—T,, or T(X—*w,y—*w z-0)=T,=0 and pre- 5
scribed heat fluxg over the source areéT/dz|,—o,=—q(x,y)/k ﬂz ! ﬂ (5)
while the region outside of the source area is assumed to be 97> @ ox’
adiabaticaT/dz|,—,=0. ; - - ; ; e -

. - . . Equation(5) is essentially the one dimensional diffusion equation

_Solutlon to Eq.(1) is usually obtained by superposition of thel‘ocg a halg‘-gpace witH=¥</V. This equation assumes thzgt heat

point heat sourcél1] conduction into the half space is one-dimensional and the solution

Q Vet may be approximated by the equation for heat flow at the surface
T-Ty,= m)e alr=) (2) of a half space with flux specified boundary conditi¢h$, 127
2q
T-Ty=—=at, 6
b= J;F ©)
' where t must be replaced by the effective traverse time

=2x'/V, andx’ is the distance from an arbitrary point within the
source to the leading edge of the source.

This approach was applied by Jaed&®]| for the strip and
square heat sources, by Archaid] for the circular source for the
uniform heat flux distribution, and by Frandi&8] for the circular
heat source having a parabolic heat flux distribution. Later, it will

« » be applied to obtain a solution for an elliptical heat source and
comparisons will be made with the solution of JaedEt] for a
rectangular source.

No solution was found for the equivalent isothermal moving
heat source for a circular contact. A solution for this boundary
condition may be obtained by extending the work of Fraht8
or Tian and Kennedy8] for the parabolic heat flux distribution.

' The solution for a moving elliptic heat source with uniform and
parabolic heat flux distribution will be obtained in a later section.
q The analysis based on E@) is only valid for large values of
Wﬂ the dimensionless group P&/ a/a, or Peclet number. This group
may be interpreted as a measure of the relative thermal penetra-

K — tion depth, §/a, of heat into the half space. Beginning with the
v definition, 6= \/mat, which is the thermal penetration depth for

% heat flow into a half space, the relative penetration depth for a
circular contact is
— T=0
) mat -
Fig. 2 Elliptic heat source a a @)
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If the traverse time for a moving circular heat source is taken fimble 2 Effect of shape on isoflux stationary heat sources [11]
bet=2a/V, then Eq.(7) may be written as

o _ AT _VZW_ 8 R* Circular Square
(8)
a Va \/Ee
Thus if Pe—«, the penetratiod is small, and may be taken to
be one-dimensional since the spreading of heat into the half-space Rka 0.270 0.237

is negligible. On the other hand, if Pe0, the spreading of heat

into the substrate will be significant. A solution for all values of
Peclet number can only be obtained numerically. ~
Rka 0.318 0.282
Review and Solution of Stationary and Moving Heat

Sources

A discussion of a number of important solutions for sliding heat
sources is now presented. In many cases, gaps existed in theH#at generation may be represented by Case C in TaHlg]1In
erature, and the present authors have developed new solutigfisst analyses the assumption of a uniform heat flux distribution is
for a number of problems. These are discussed throughout @féen made. The effect of heat flux distribution on the thermal
sections that follow. resistance based upon the average contact temperature is small.
The variation from the uniform flux distribution is 7.4 percent

Stationary Heat Sources(Pe—0). Extensive analysis of . :
heat conduction from isolated heat sources on a half space h rsthe isothermal heat source and1.1 percent for the parabolic

been performed by a number of researctfas 14-16,19 The S SUEE LS ST B O ewibution i
simplest contact geometry is the circular contact. The analysis r?ast kﬁown If the resistance is based Ubon the maximum Source
been performed for three heat flux distributions: the uniform hef : P

: ; : mperature, the variation from the uniform flux distribution is
flux, parabolic heat flux, and the inverse parabolic heat flux. T __%21_4 percent for the isothermal heat source ari?.9 percent

inverse parabolic heat flux represents a uniform temperature df]gr the parabolic heat source. In both cases the maximum and

tribution over the contact area. The solutions for the dimension-, . .
less thermal resistance for these three cases are summarized'[fiTum values for the average or maximum source temperature
Table 1. are bounded by the solutions for Case A and Case C.
The thermal resistance may be defined with respect to tpee;‘zgﬁci ?szegfcﬁa(ﬁo%agﬁgrgfhtggt (im?gj'm{ﬁsjnti?gmsl
average surface temperature such that distributed heat flux11]. In both cases, the dimensionless thermal
. ?C_Tb resistance is greater for the circular heat source than for the square
R= —— (9) source. The relative differences are 12.2 percent for the resistance
Q based upon the average source temperature and 11.3 percent for
or with respect to the maximum surface temperature such thatthe resistance based upon the maximum source temperature.
Later, it will be shown that ifC= /A, the effects of source shape

Te—To and aspect ratio are minimized. This will eventually lead to a

R= Q (10) simplified model for an arbitrarily shaped moving heat source.
. . . ! If the shape of the heat source shown in Figs. 1 and 2 is allowed
A dimensionless thermal resistance may be defined as to vary with aspect ratie=b/a, then the solutions are somewhat
R* =RKL, (11) more complex than those given in Table 2. The solution for the

) ) o dimensionless thermal resistance of a stationary rectangular
where. is an appropriate characteristic length related to the hegiform heat sourcél1] is

source ared5,6,14—-18. This thermal resistance is a spreading

resistance due to the transfer of heat through a finite discrete point = 1 [sinh® (e) t+sinhei(1/
of contact. Spreading resistance concepts appear in any analysis a= oml T e sinh™ *(1/e)
of stationary or sliding contact problems in heat transfer and 5 31
tribology, and form the basis for the field of thermal contact N 11 e (1+€9) 12
conductance. 3|2 € &2 12)
In most tribological applications involving frictional heat gen-
eration, the average heat figr= Q/A is known. What may not be for the average contact temperature, and
known precisely, is the distribution of heat flaXx,y) over the ~ 1 (sinh(e)
contact. If the contact is Hertzian, the distribution of frictional Rka= Z{—+sinh‘1(1/e)] (13)
for the maximum contact temperature.
Table 1 Effect of boundary conditions on stationary circular The solution for the elliptic heat source was obtained by
heat source [15] Yovanovich[5,14—14 and is given by
Case Flux Distribution Rka Rka Rka= o K(e") (14)
1 1 1 for the isothermal contact, and
A - Isothermal S - =020 - =0250
sotherm. zq\/l_—_(W 1 B 16
Rka:wK(E,) (15)
B - Isoflux [ —8—5z0270 lz0318
3n T and
C- Parabolic Flux 33 A=/ — ~0281 5 0.375 - 2.,
2 2 8 Rka= ?K(e ) (16)
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for the isoflux contact, where' = /1_627 andK (') is the com- Table 4 Effect of shape on isoflux moving heat sources
plete elliptic integral of the first kind of complementary modulu§!2:171
€. Equations(15) and(16) were obtained by comparing the lim-

iting case of the circular contact from Table 1 with the result for

the isothermal contact. Equatiofib) and(16) accurately predict R* Circular Square
the numerical results presented [ih6] for the elliptic contact
which were obtained using the method of superposition of point

heat sources. No solution was available for the parabolic flux Tk 0.318 0.266
AR . . . o L ; . a
distribution. A solution for this configuration is easily obtained by 'Pe /Pe

analogy with the elastic contact probld@0], or by comparison
with the solutions presented above. The effect of aspect ratio on a

stationary elliptic heat source is Bka 0.508 0.399
2 v Pe v Pe
fle)=—K(e) 17)

Thus the solution for the parabolic heat flux distribution is th
function f(e) multiplied by the values for the resistance for Cas
C in Table 1:

Einally, Table 4 presents a comparison of the asymptotic solutions
for the fast moving heat source for the circular and square heat
sources. The results are 16.4 percent and 21.5 percent higher for
_ 9 the circular heat source for the thermal resistance based upon the
Rka= FK(E’) (18) average and maximum source temperatures, respectively.
T . . .
If the contact is rectangular the thermal resistance will vary
and with aspect ratice=b/a, where 0<e<e. The solution obtained
3 by Jaegef12] for the strip source is applicable to a rectangular
Rka= —K(€'). (19) heat source since the solution assumes one dimensional heat flow
4m into the half space, i.e., the penetration depth is small compared
ith the characteristic dimension of the contact zone. The solution

Equation(19) may also be derived from the analogous elasti
g (19) may g or the finite rectangular sourdé?2] is

contact problem discussed i20], for the Hertzian pressure

distribution. - Vi lal 1
Moving Heat Sources(Pe—). Solutions for moving heat Rka= Jr b \/__ (21)
. ; . 3V Pe
sources have been obtained for a number of configurations and
boundary conditions. All of the moving source solutions are wrifor the average contact temperature, and
ten in terms of the Peclet number. The Peclet number is defined as /A fal 1
N7 Rka= ——|—|— (22)
Pe=—, (20) 2\m\b/ Pe
o

) o ) for the maximum contact temperature, where=R&a/ «, is based
where, is a characteristic length scale representative of the calinon the half width of the rectangle in the direction of motion, see
tact geometry. If the contact geometry is circular or square thefy, 1.

L=a, the radius of the contact or the half side length of the No solution was found for the fast moving elliptical contact. In
square. Later, it will be shown that #= A, the area of the heat order to obtain a solution for the elliptical contact, the approach
source, the effect of shape and aspect ratio on the dimensionigggeloped by Jaegéf.2] for the square source and by Archard

resistance is small. S _ [17] for the circular contact was applied. In this case the effective
The effect of heat flux distributiofuniform or paraboliton the contact time is

thermal resistance for a moving circular heat source is given in

Table 3. The solution for the uniform heat flux distribution was 2 y?
obtained by Archard17] and the solution for the parabolic heat G 2ya’1- b2
flux distribution was obtained by Frandis8]. These solutions are t= v - v (23)

only valid for large values of the Peclet number. The effect of flux
distribution on the thermal resistance based upon the average cApplying the approach of Jaeggt2] and Archard 17] gives
tact temperature is small. The relative difference being only 1.6

percent. The relative difference increases to 15.9 percent for the 1

thermal resistance based upon the maximum source temperature. Rka= P

1

=

for the dimensionless thermal resistance based upon the average
contact temperature, and

a

5 (24)

Table 3 Effect of boundary condition on a moving circular

heat source [17,18] . 2v2(a\ 1
Rka= =|—= 25
7|5 Jpe (25)
R* Uniform Flux Parabolic Flux for the dimensionless thermal resistance based upon the maximum

contact temperature. In both cases=R&/« is based upon the
half width of the heat source in the direction of motion, see Fig. 2.
0.318 0.323 Comparison of Egs(21) and(22) and Egs.(24) and (25) with
the solutions for the square and circular heat source provided in
Table 4, shows that the solutions are identical except for the term
(a/b). This factor accounts for the effect of heat source aspect
- 0.508 0.589 ratio with respect to the direction of motion. These results may be
\/}_’—e applied to infer the following solutions for a fast moving elliptic
heat source with parabolic heat flux distribution:

3
=

3
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Table 5 Dimensionless resistance for stationary isoflux hy-

Rka= 0.323( g) \/%e (26) perelliptic contacts  [16] 7
and vy=1/2 y=1

A 1 ¢ RkvA RkvA RkvA RkvVA

Rka=0-589( 5) e @7 10 04440  0.5468 0.4728  0.5611

In the next section, the results will applied to develop new 0.8 0.4428 0.5458 0.4713 0.5597
models applicable to a real contacts of non-circular shape. 0.6 04376 0.5420 0.4651 0.5540
0.4 0.4237 0.5310 0.4487 0.5385

Analysis of Real Contacts 0.2 0.3860 0.5005 0.4052 0.4957

In this section, application of the theory of moving heat sources N =2 N =00
to real contacts is discussed. A simple approach to modelling the - _
effects of shape, aspect ratio, orientation, and heat flux distibu. ¢ RkvA RkVA RkvA RkVA
tion is presented. It will be assumed that the shape of a real con
tact is elliptic, and that classic Hertzian analysis for elastic contact 1.0 0.4787  0.5642 0.4732  0.5611
of non-conforming surfaces may be used to predict the contac
zone dimension21]. 0.8 04772 0.5624 0.4718 0.5590

Effect of Contact Shape. Hertzian theory may be used to 06 0.4711  0.5551 0.4658  0.5503
predict the contact size for elastic contact. However, this assume g4  (.4548 0.5360 0.4502 0.5279
the shape of the contact is elliptic. Depending on the surface to
pography, this assumption may not be valid. Thus, it is desirable 0.2  0.4112 0.4845 0.4082 0.4706

to examine the effect that shape and aspect ratio have on the
overall resistance of moving heat sources.
Yovanovich et al[16] examined the effect of the shape and

aspect ratio of an isolated stationary contact having a uniform flux Je. [ sintr Le))
distribution. The geometry examined by Yovanovich et[&F] Rk VA= _S[ > 4 sinhY(1/ey)
was the hyperellipse, defined as ™ €s
) (y)y + e + (1t 33
a g ~v (28) sate a2 (33)
wherea andb are the semi-major and semi-minor axis lengthdpr the average contact temperature, and
respectively. The parametgrdetermines the shape of the contact. Jeo [sint
The values of the parametgmwhich were examined by Yovanov- Rk VA= Vés|Sin (&) +sinh 1(1/ey) (34)
ich et al.[16] were y=1/2, y=1, andy=2. If y—o the hyper- s T s s

ellipse becomes a rectangular contact. Yovanovich efif] for the maximum contact temperature. Since the effect of aspect

showed that if the thermal resistance is non-dimensionalized usiNgis is small average values of the dimensionless resistance

:Ihi Sql];'arﬁ root r?fj the cotntra(t:it area, the solutions are weak fuﬂﬁien in Table 5 may be used to approximate the resistance for a
ons of shape and aspect ratio. . heat source with variable aspect ratio.
Table 5 presents_the dimensionless resistance k_)ased upon Mg e case of the moving heat source the Peclet number should
average and centroidal values of temperature for different valuglgo be based upon the square root of the contact areafi.e

of the parametey, Yovanovich et E.il[lf’]' Itis clearly seen that _ ovi, Eq. (20). Table 6 summarizes the results for the rectan-
the dimensionless resistance varies very little with aspect rafio}

—b/a and shape parameter. The solutions for the isoflux Qlar and elliptic heat sources for different heat flux distributions,
€=t shape p ex. when the resistance is non-dimensionalized using the square root
stationary elliptic heat source become

_ 16
Rk A= 3.3V TeK (&) (29)  Table s Dimensionless resistance of moving heat sources on
a half-space
for the average contact temperature, and
Rk A= % [reK(€l) (30) Shape (Boundary condition) RkvA RkvVA
for the maximum contact temperature. If the flux distribution is 0.752 1.130
parabolic, then the solutions presented earlier become Rectangular (Isoflux)
RicA= o= Ve () 31 Ve
= <~ \VTE €
T ler TS - 0.750 1.200
Elliptic (Isoflux)
and Pe* Pe*
VA VA
- 3
RekyA= ek (e). (32) o . 0762 1.390
& Elliptic (Parabolic Flux)
If the heat source is rectangular, then the dimensionless therma \/Pe:/;‘- \/Pe\/]

resistance, Eq$12, 13 become
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B B e LA N a ) By o o e e and small values of the Peclet number. If the contact is moving at
moderate speeds GIPe<10, a composite solution is required.
Tian and Kennedy[8] combined the asymptotic results for the
circular heat source using an equation which is a special case of
the more general form

L4 i1

w
fox. Y
T T T

. 1 1 1 a6
« S —_ = —.

i RRTRY (36)

iC

i T Equation(36) is one form of the asymptotic correlation method

sl -[J- squareSource . proposed by Churchill and Usa@22]. This method allows the

2 |- Clrculer Source 4 combination of asymptotic solutions, to generate a model which is

Data of Tian snd Kennedy (1994) valid for all values of the dependent parameter.
oot bt vl v evnl s ced A single value ofn=2 was found to give excellent agreement
.01 o4 P‘e 10 190 petween the approximate model and numerical results of Tian and

Kennedy[8] over the entire range of Peclet numbers for the cir-
Fig. 3 R® versus Pe , for a circular and square moving heat cular heat source having a uniform or parabolic heat flux distribu-
source tion and a square heat source having a uniform heat flux distribu-
tion. Thus, the parameter does not appear to depend upon the
shape of the source or the flux distribution. The models developed
. . . . by Tian and Kennedy8] are specifically for the circular heat
gf*the conta(_:t are_a. C_omparlsons of the dimensionless res'Staggﬁrce for uniform and parabolic flux distributions. They are not
R* are provided in Figs. 3 and 4 using the data for the exaghpjicable to elongated contacts such as elliptic or rectangular
analytical solu_tlons of a isoflux heat sources from Tian anghntacts. In addition, Tian and Kenne8] presented their corre-
Kennedy([8]. Figure 3 shows a comparison of the results for gyions in terms of contact temperatures; rather than thermal resis-
circular and square heat source when the characteristic lengthgsce The use of thermal resistance facilitates the calculation of
L=a. In Figure 4, the results for each geometry have virtually,o partition of heat into the contacting bodies.
collapsed onto one another wheh=JA. Thus the effect of the A general model for a moving heat source will now be obtained
shape of the heat source is not a significant factor, when the By combining the dimensionless resistances for a stationary and
sults are appropriately non-dimensionalized. fast moving heat sources in the form of E86). As noted earlier,
If the heat source is rectangular or elliptical the Peclet numbg{e gefinition of aspect ratio is different for the moving and sta-
must be replaced with a modified Peclet numbet Befined as  tjonary heat sources. The aspect ratio of the stationary heat source
- _ 12pa - is now denoted by =b/a such that 6<e,<1, and the aspect
Pea=(em)*Pem. (35) ratio of the moving heat source is now denoteddgysuch that
The aspect ratie,,=b/a now accounts for the effect of the 0< e, <. Also, since the effect of shape has been shown to be
shape and orientation of the heat source. Since a rectangulanegligible, only the solution for the elliptic heat source will be
elliptic heat source may be oriented in the direction of motiooonsidered in the model development.
parallel to the short or long axis of the heat source, the resistanceCombining the stationary and moving heat source solutions for
must change based on orientation. Given the same source areal@tt the average and maximum contact surface temperatures gives
velocity, the Peclet number remains unchanged, but the resistance
will decrease if the direction of motion is parallel to the short axis RKVA 0.750 (37)
of the heat source. Thus, for a moving heat source gQ<w. t N 17— 20 1
This is quite important for the moving heat source since the resis- (€m)Pea+6.05(eK*(e5))
tance will increase with decreasirgg,, i.e.,a>b, and decrease gnd
with increasinge,,, i.e.,b>a. If the heat source is stationary, the

orientation of the contact is not important anel 6,<1. . k\/— 1.200 (38)
RikVA= 8
Models for 0<Pe<w. In the previous sections the thermal ' V(em) ¥2Pez+11.16(eK?(el))
resistances of isolated stationary and fast moving contacts were . o
presented. These solutions represent asymptotic solutions for laigfethe uniform flux distribution, and
— 0.762
RkyA= ———— , (39)
19_ T T T TTTI T T T 11777 T T T TTTTT T T TTTTT (Em)lzpe\ﬁ+577(€SK2(ES))
i ] and
° I . 1.390
B - Rtk\/—: (40)

| V(em PPeg+10.79(eK?(€l))

4 for the parabolic flux distribution. These expressions can now be
applied to arbitrarily shaped heat sources for all values of the
Peclet number.

R

- [ - Square Source Bounds on Thermal Resistance. The expressions developed
Clrcular Source previously for the elliptic heat source assume that it is oriented
Data of Tlan and Kennedy (1994) i with one of the axes parallel to the direction of motion, see Fig. 2.

ol b Equations(37—40 are not valid for a heat source oriented at an

. 0.1 1 10 100 . . . . .

Pe angle to the direction of motion. The solution for this case re-
quires integration over the surfaces of the oblique orientation.

Fig. 4 R*z; versus Pe  for a circular and square moving heat However, Eqs(37—-40 may be used to bound the values by con-

source sidering the results for the two extreme caseg,f The limiting
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cases may then be averaged in a number of ways. It is propodetile 7 Comparison of average flash temperature results  [12]
that the bounding values be weighted using following expressior

. Eq. (46) (12]
R* =Ry cos( )+ R} sirf(6), D)y Pe TooC f=%= T.°C f=2=
b4 — ’ ~
where R; denotes the dimensionless resistance based upon tf 15 16.95 1399.7  0.740 1370 0.74
aspect ratio in thex-direction, andR;‘ denotes the dimensionless
resistance based upon the aspect ratio inytdgection. This for- 10 1130 1057.2 0.705 1040 0.70
mLSIadtion is §r0p90§%d sincedit reduceshto thehlimi_ting casegfor 7 7.91 816.3 0.675 810 0.67
=0 deg andd= eg, and returns the arithmetic average at
=45 deg. In the absence of an exact solution, &4) should 5 565  632.9 0.647 630 0.64
provide good results for the average or maximum temperatur 2 2.26  299.5 0.582 300 0.58
prediction. 1 113 1619 0548 160  0.54
Prediction of Flash Temperatures. The concept of m_a>_<i- 0.7 0.79 116.5 0.536 115 0.53
mum or average flash temperature is discussed in detail in A
chard [17], Blok [23], Winer and Chend3], and Cowan and 0.5 0.57 84.9 0.526 85 0.52
Winer [4]. The computation of the flash temperature assumes ths 0.2 0.23 35.0 0.517 35 0.51

one of the contacting surfaces is a stationary heat source and t
other a moving heat source. By accounting for the partition of heat
into each of the surfaces, an estimate for the average or maximum

temperature may be obtained. ] _ing heat source Eq$37—-40Q which were presented in the previ-

In the previous section a general modgl for an isolated movig,s section. Thusg, may be computed for either the maximum or
source for G<Pe<c was developed. This model may now beyyerage value which occurs within the contact for either the isof-
used to predict the average or maximum flash temperatures. T8 or parabolic flux distribution. The validity of Eq46) may be
analysis begins by defining the total heat flow and the partition %Pestioned on the grounds that the temperature distribution of the
each into the two contacting surfaces. The total heat generatedrgy| contact will be skewed, however, models for the stationary
sliding friction is denoteq= uFV, wherew is the coefficient of heat source resistance assume a symmetric temperature profile.
frlCthn, while the heat which flows into the Sta“onary and mOV|n@0r a slow moving contact Re0.1 the profile is near|y Symmetric
surfaces are denote@s and Qr,, respectively. Through conser-ang the partition of heat into each of the surfaces is equal assum-

vation of energy, the total heat flow is then ing that each surface has the same thermal properties. For a fast
Qu=0.+0Q (42) moving heat source Pel0, the maximum temperature is located
g s xme at or near the trailing edge. Most of the heat will be conducted

which may be written in terms of the temperature excess aio the moving surface since it has a lower thermal resistance. In

resistance in each surface the transition region 0& Pe<10, the effect of temperature distri-
bution shape should be small since the maximum temperature is
WFV= (Ts—Tho) I (T~ Tom) _ (43) located between the centroid and the trailing edge. Thus(4&.
R Rm may be applied for either the average or maximum contact tem-

erature basis. Also, due to the relatively short contact times and
e of asperities, the penetration depth will be small and the

sumption of a half-space is then reasonable.

Table 7 presents a comparison of results computed by Jaeger

Now if perfect thermal contact is assumed at the interface, th
T,=T,=T, at all points within the contact, and the expressiogs
given above may be solved far,

Tos Tom [12] for mild steel k=60.3W/mK, a=17.7x10 °m?/s, F
MEVH =+ 2= =400g9, andu=0.23 for a square source with half side length
T=———— — T (44) a=1x10">m. The maximum difference between the model and
i n i the data of Jaegdii2] is 2.1 percent a¥/=15m/s. This error is
Rs Rn small considering that the values presented by Jaeif8rwere

The general expression given above may be applied to based upon graphical results which are also subject to round off

combination of slow, moderate or fast moving sources using the
expressions developed earlier. If the bulk temperatures are equalerical results re

S - -~ ported by Neder et[&l]. The system exam-
Eq. (44) may be further simplified. In the case of a typical sliding,o " Neder et al[9] consisted of a bronze substrate (
asperity contact, the system is modelled as a stationary hes:

—6 12 — ; _
source and a moving heat source in parallel. Equgddhmay be _ 13._86>< 12? |:n—/§’2 \lj\/_/ S&W/%K) and_ a steel slidera(= 2(.)&0 d
written in terms of the dimensionless thermal resistance 0~ M7S, K= mK). The maximum pressure considere
R* = RkyA to give was P=450 MPa and the coefficient of frictiop=0.25. Neder

et al.[9] considered sliding in directions perpendicular and paral-
TosVAks  TpmVAKn lel to the grinding direction of a real surface. Some difficulty was
. ’ encountered interpreting the data reported by Neder €9lalThe

n the final example, the proposed model is compared with

MmEV+

* *
T.= Rs Rmn (45) authors reported a range for the equivalent diameter of the largest
¢ \/Kks \/ka ' real contact spot in the direction parallel and perpendicular to the
R + R direction of sliding along with the contact widtha2in the slid-
s m ing direction only. The equivalent diameters which were tabulated
which may be further simplified to give by Neder et al[9] have different values for each direction. It is

assumed that if the same surface was considered, the equivalent
diameter should be the same in both sliding directions, and that
the contact spot aspect ratio may be computed assuming an ellip-
tic contact. The area is given &= 7TD§/4= mab. GivenD, and
where the value foR? is taken to be the appropriate value of thea 2h is computed using (M<D,<10um) and (6um
stationary dimensionless resistance E@9-32 and R}, is the <2a<8 um). These dimensions were examined for both sliding
appropriate expression for the dimensionless resistance of a mdirections and the maximum flash temperatures were computed

T (MFVR: R%)/\/K'F Tb,sksRE'FTb,mka;C
e kR + kpRE ’

(46)
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Table 8 Comparison of maximum flash temperature results T, = bulk temperature, K

[9] T. = contact temperature, K

v D. % % Eq. (46) T V = velocity, m/s

o ° Greek Symbols
mfs _pm £ L ¢ < thermal diffusivity, nf/
a = thermal diffusivity, nf/s

1 8-10 6-8 10.7-12.5 3.83-4.81 433 5 = thermal penetration depth, m

1 8-10 10.7-12.5 6-8 3.87-4.86 5.06 e = ellipticity or aspect ratio=b/a

10 8-10 6-8 10.7-12.5 32.01-39.17 354 €' = complementary moduluss \1— €2

10 810 107-125 68  34.57-41.98 40.5 €m = @Spect ratio, moving source;b/a-<e

€; = aspect ratio, stationary sourcex®/a<1
= angle between principal planes of contact, rad
v = hyperellipse parameter

using Eq.(54) along with the expressions for the dimensionless ¢ = temperature excess, K

resistance based upon the maximum contact temperature. Results © = coefficient of friction

are summarized in Table 8. The predicted temperature range is in v = Poisson’s ratio

excellent agreement with the reported values given by Neder et al. ¢ = angle, rad

[9]. Neder et al.[9] also reported values of =32.8°C andT  Superscripts

=37.5°C on two plots for th&/=10m/s case, in the direction

perpendicular and parallel to the grinding direction, respectively. () = based on the average temperature
These results are also within the range of temperatures computed-) = based on maximum temperature

<

using the proposed model. Subscripts
Summary and Conclusions 1,2 = surface 1, surface 2
. . ) . ) JA = based onC= /A
A review of the important literature for stationary and moving "y = pyk

heat sources was presented. The effects of shape and heat flux - — contact

distribution for elliptic and rectangular heat sources were exam- — generated

ined. It was shown that the dimensionless thermal resistance is a ; — arpitrary length scal&

weak function of shape for stationary and moving heat sources m — moying

when the results are non-dimensionalized using the square root of g — gtationary

the heat source area. A simple model for all values of the Peclet ; — iotal

number was developed by combining the asymptotic solutions for

stationary and moving heat sources. A method was proposed for

predicting the thermal resistance of an elliptic heat source oriem]g%]c

at any angle with respect to the direction of motion. These result erences

were then applied to develop a general expression for determinin% \';'Véi‘l'l'i‘;‘r?]»SJ-j 12751’332%%'9?” g;ggib‘%'ﬁgglg”acg)i'f'g% %?]Lf\f::'s?{‘ II_Dt?éss

the flash temperature for real su_rfaces in sliding (_:ontaCt' The prolis] Winer, W. .O.,”and Cher?g, H. S? 1980, “gglm Thickness, antact étress and
posed model was compared with recent numerical data for real” surface Temperatures,” Wear Control HandbogkASME Press, New York,
contacts of non-circular shape. Excellent agreement between the pp. 81-141.

model and data was obtained for both elliptic and square contact$4l Cowan, R. S., and Winer, W. O., 1992, “Frictional Heating Calculations, " in
ASM Handbook, Volume 18 Friction, Lubrication, and Wear Technology
ASM International, pp. 39-44.
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