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Simplified Analytical Models for
Forced Convection Heat Transfer
From Cuboids of Arbitrary Shape
Three analytical models are presented for determining laminar, forced convection
transfer from isothermal cuboids. The models can be used over a range of Rey
number, including at the diffusive limit where the Reynolds number goes to zero, an
a range of cuboid aspect ratios from a cube to a flat plate. The models provide a si
convenient method for calculating an average Nusselt number based on cuboid d
sions, thermophysical properties and the approach velocity. Both the cuboid and
equivalent flat plate models are strongly dependent upon the flow path length wh
bounded between two easily calculated limits. In comparisons with numerical simula
the models are shown to be within66 percent over the range of 0<ReAA<5000 and
aspect ratios between 0 and 1.@DOI: 10.1115/1.1347993#
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Introduction

Numerous practical applications in the design of electronics
telecommunications equipment depend upon low-velocity, la
nar flow as a mechanism for dissipating heat. A diverse rang
applications are typically encountered, including heat tran
from printed circuit boards with low profile chip-on-board pac
ages, cooling of electronic packages, transformers, heat s
thermal spreaders plus many other complex components tha
quire some means of forced convection cooling to maintain s
operating temperature limits.

Several researchers have investigated forced convection
isothermal axisymmetric bodies, such as spheroids~Beg @1#!, cyl-
inders ~Refai-Ahmed and Yovanovich@2#! and disks~Wedekind
and Kobus@3# using a variety of predictive methods as review
in Yovanovich @4#. However, the number of studies for stea
laminar forced convection heat transfer from isothermal cuboid
very limited, with most research restricted to experimental stud
~Igarashi@5,6#! leading to empirical correlations or detailed n
merical procedures~Wong and Chen@7#!. Few simple, analytical
procedures are available because of the perceived difficult
modeling the vertical faces of the cuboid, perpendicular to
flow direction.

The principal objective of this paper is to present several, a
lytical models for calculating the overall rate of heat transfer fro
isothermal cuboids of varying aspect ratios. Models will be sim
functions of easily attainable information such as cuboid dim
sions, flow conditions and thermophysical properties.

The models presented are intended for isothermal boun
conditions but it is interesting to note that in spherical bodies
overall rate of heat transfer is identical for both isothermal a
isoflux boundary conditions. While the rate of heat transfer will
different for isothermal and isoflux conditions as the aspect r
is varied, the change is relatively small and in most instances
models can be used for nonisothermal conditions.

Contributed by the Electrical and Electronic Packaging Division for publication
the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received at ASME Head
quarters October 13, 2000. Associate Editor: R. Schmidt.
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Modeling Procedure
The overall rate of heat transfer from an isothermal, conv

body is a function of several fundamental modes of heat tran
including diffusion, convection and radiation. If we assume t
radiative component to be relatively small, an overall Nuss
number based on a general characteristic length,L can be defined
as a function of two limiting asymptotes, as shown in Eq.~1!.

NuL5@~S* !n1~Nubl!
n#1/n (1)

The first asymptote is based on the diffusion or conduction
heat as the flow velocity approaches zero, while the sec
asymptotic limit is based on laminar boundary layer flow f
flow velocities greater than zero. Yovanovich@8# ~forced convec-
tion, spheroids!, Yovanovich and Vanoverbeke@4# ~mixed con-
vection, spheroids!, Refai-Ahmed and Yovanovich@2# ~forced
convection, circular and square cylinders and toroids!, Wang et al.
@9# ~natural convection, heat sinks!, and Lee et al.@10# ~natural
convection, general body shapes! have all used this approach t
obtain analytical models that are applicable over a wide rang
flow conditions.

The procedure of combining limiting asymptotic solutions w
first employed by Churchill and Usagi@11#. The method presented
by Churchill and Usagi takes two analytical solutions that a
known to be ‘‘exact’’ at predefined limits and provides a means
transitioning smoothly between these two limits, thereby obta
ing a comprehensive analytical procedure that is a function o
single unknown constant,n, that is typically referred to as the
blending parameter. Equation~1! satisfies exactly both limiting
asymptotic solutions, however in the transition between the
limits the blending parameter,n can be used to minimize differ
ences between the model and known experimental or nume
data. Typical values for the blending parameter can vary betw
unity ~superposition! and real numbers in the range of 1–5. Th
higher the value of the blending parameter the greater the
dency for the model to map the asymptotic solutions near
intersection point of the two limiting models.

Based on comparisons between numerical validation data

in
© 2001 by ASME Transactions of the ASME
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the models presented herein, a value ofn51.3 has been found to
provide the best agreement over the full range of flow conditi
and geometric constraints.

Diffusive Limit. A general expression for calculating th
conduction shape factor~diffusive limit! of a cuboid with dimen-
sionsL13L23L3 can be determined based on procedures de
oped by Yovanovich~Rohsenow et al.@12#!. The procedure in-
volves first calculating the shape factor of an infinitely th
rectangular plate on the face of the cuboid with aspect ratio n
est to unity. This entails using the mean value of the shape fac
calculated for circumscribed and inscribed circles, as shown
Fig. 1. If we assume faceL12L2 has as an aspect ratio nearest
unity, two formulations are available for calculating the condu
tion shape factor based on the range of the aspect ratio,L1 /L2 ,
whereL1>L2 .

@SAA
* #plate5

A2

p
S 11AL1

L2
D 2

AL1

L2

, 1.0<
L1

L2
<5.0 (2)

5

2A2pAL1

L2

lnS 4
L1

L2
D , 5.0<

L1

L2
,` (3)

The shape factor for the infinitely-thin rectangular plate,
given in Eqs.~2! and~3! is then corrected to account for the thir
dimension of the cuboid using a procedure presented by Yova
ich ~Rohsenow et al.@12#! based on the right circular cylinde
model of Smythe@13,14#, such that

SAA
* 5uSAA

* uplate•F110.8688~L3 /DGM!0.76

A112L3 /DGM
G (4)

where DGM is the mean diameter of the inscribed and circu
scribed circles which is then extended along theL3 axis to form a
circular cylinder as shown in Fig. 1.

DGM5A2

p
~L11L2!•AL1

21L2
2 (5)

Boundary Layer Forced Convection. Three unique ap-
proaches to modeling forced convection heat transfer from
thermal cuboids of arbitrary aspect ratio will be presented. T
models range in their level of simplicity and in their ability t
accurately predict heat transfer over the full range of aspect ra

Fig. 1 Procedure for calculating the conduction shape factor
of a cuboid
Journal of Electronic Packaging
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The procedures used to model forced convection from cuboids
shown schematically in Fig. 2, with the three models identified

1 Equivalent Spheroid Model: A spheroid of equivalent surfa
area to a cuboid is modeled based on formulations presente
Yovanovich@8#.

2 Cuboid Model: A cuboid model is presented based on bou
ary flow using a flow length established between the stagna
points at the leading and trailing surfaces of the cuboid.

3 Equivalent Flat Plate Model: A flat plate of equivalent su
face area to a cuboid is modeled based on boundary layer for
lations for an isothermal plate where the flow length is establis
based on the geometry of the cuboid.

Equivalent Spheroid Model.Given a cuboid with dimensions
H3L3W, as shown in Fig. 3, an equivalent spheroid can
obtained where the total surface area is preserved. Yovanovic@8#
presents a correlation equation for steady, axisymmetric, lam
forced convection from isothermal spheroids in the Reyno
number range: 0<ReL<105, where the characteristic lengthL is
the square root of the wetted surface area of the body. The
vanovich correlation can be used for a range of aspect ra
including oblate spheroids (AR,1), spheres (AR51) and pro-
late spheroids (AR.1). Yovanovich combines two range specifi
equations developed by Yuge@15# using the blending procedur
to produce a single correlation equation for Nusselt number wh
is accurate to within65 percent.

Fig. 2 Modeling procedures for boundary layer flow

Fig. 3 Cuboid dimensions
SEPTEMBER 2001, Vol. 123 Õ 183



e

d

w
a

a
h

o

ot
alue

um
t

he
are

x at
ct’’
a
oss
alf

es-
NuAA5SAA
* 1@0.15~P/AA!1/2 ReAA

1/2

10.27~P/AA!0.4336ReAA
0.5664#Pr1/3 (6)

whereP is the maximum perimeter formed by the profile of th
body in the flow direction andA is the total surface area of th
body.

Although Eq.~6! was originally developed for laminar, force
convection from spheroids with aspect ratios, 0<AR<5, the
same equation can be used for cuboids where theP/AA is based
on the geometry of the cuboid and the conduction shape factor
be calculated based on Eqs.~2!–~5!.

Cuboid Model. A local Nusselt number, based on a flo
lengthx, can be written for laminar, boundary layer flow over
isothermal body of arbitrary shape such that

Nux5Rex
1/2F~Pr! (7)

Yovanovich et al.@16#, have demonstrated that using the tra
sient solution for heat diffusion from a homogeneous half spa
an analogous solution can be obtained for boundary layer fl
with Pr→` such that

F~Pr!5
1

Ap•C
Pr1/3 (8)

Combining Eqs.~7! and ~8! yields

Nux5
1

Ap

x

AaCxPr1/3

U`

(9)

where an effective residence time,te can be introduced with the
path length,Lp , substituted forx.

te5
Lp~C•Pr1/3!

U`
(10)

Combining Eqs.~9! and ~10! leads to a local Nusselt numbe
defined as

Nux5
1

Ap

x

Aate

(11)

and the average Nusselt number based on an arbitrary chara
istic length,L, is written as

NuL5
2

Ap

L
Aate

(12)

or in terms of dimensionless parameters, ReL and Pr as

NuL5
2

Ap

1

A Lp•C

ReLPr2/3L

(13)

Lee et al.@10# demonstrated that the square root of the surf
area of a body is a superior choice as the characteristic lengt
the case of a cuboid the characteristic length is

L5A2~H•L1H•W1L•W! (14)

The length of the flow path, characterized as the distance
tween the stagnation points on the front and rear surfaces
body, is bounded between two extremes defined as the minim
and maximum path lengths. As shown in Fig. 4, the minimum a
maximum path lengths for a cuboid are given as

Lpmin
5H1L (15)

Lpmax
5L1AW21H2 (16)
184 Õ Vol. 123, SEPTEMBER 2001
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The choice of the most effective value of path length is n
clearly defined based solely on analysis and can be any v
between and inclusive ofLp min and Lp max. Numerical simula-
tions of cuboids of various aspect ratios indicate that the minim
path length, as defined in Eq.~15!, provides the best agreemen
with the model predictions.

If we maintain the plan profile of the cuboid as a square~i.e.,
L5W! and define an aspect ratio asAR5H/L, the characteristic
length and the flow path length can be defined as

L5L•A2~AR11! (17)

Lp5L•~AR11! (18)

which combined with Eq.~13! gives

NuAA5
2

Ap

1

A~AR11!•C

A2~AR11!

ReAA
1/2Pr1/3 (19)

The boundary layer parameter,C can be shown~Schlichting
@17#! to be equivalent to

C5
U`

ue
(20)

whereue is an effective velocity based on a linearization of t
laminar boundary layer momentum equation. Two methods
available for obtaining a numerical value forC. A value of C
52.77 is obtained for high Prandtl numbers when the heat flu
the surface of the body is assumed to be that of the ‘‘exa
solution of Pohlhausen@18#. The second method which gives
value ofC52.13 is based on an enthalpy heat flux balance acr
the thermal boundary layer for transient heat diffusion in a h
space.

Table 1 shows the influence of varyingC on Nusselt number
for forced convection over the range of Reynolds number inv

Fig. 4 Shortest and longest path

Table 1 Influence of C on the convective component of the
Nusselt number

ReAA
Body C 1 10 100 1000 5000

cube 2.13 0.76 2.41 7.63 24.14 53.97
2.5 0.70 2.23 7.05 22.28 49.82
2.77 0.67 2.12 6.69 21.17 47.33

plate 2.13 0.82 2.59 8.20 25.94 58.00
2.5 0.76 2.39 7.57 23.94 53.54
2.77 0.72 2.27 7.19 22.75 50.86
Transactions of the ASME
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tigated in this study. A maximum difference of 12 percent
Nusselt number is observed at ReAA55000. Using a simple aver
age of the two extremes, i.e.,C52.5 results in a maximum dif-
ference of66 percent on Nusselt number.

Equivalent Flat Plate Model. The average Nusselt number fo
forced convection boundary layer flow over an isothermal
plate of flow lengthLp is given as

NuLp
5C ReLp

1/2Pr1/3 (21)

where Yovanovich and Teertstra@19# have demonstrated that us
ing a linearization of the energy and momentum equations,
~21! can be recast as

NuLp
52F~Pr!ReLp

1/2 (22)

with F~Pr! expressed as in Eq.~8! for high Prandtl number fluids
~i.e., Pr→`!.

Using a value ofC52.5, Eq.~22! can be written as

NuLp
50.714 ReLp

1/2Pr1/3 (23)

Changing the characteristic length,Lp to AA, to be more com-
patible with the other solution procedures, we obtain an aver
Nusselt number

NuAA50.714•S Lp

AA
D 21/2

• ReAA
1/2Pr1/3 (24)

Equation~24! is functionally dependent onLp , the flow length
which is bounded by two limiting values. An upper bound on t
Nusselt number is obtained by simulating a plate with the sa
surface area as that of a cuboid and overall dimensionsLplate
3Wplate, where the width of the plate is equivalent to the ma
mum perimeter of the cuboid on a plane perpendicular to the fl
direction. In effect, the leading edge surfaces formed by the pla
of the cuboid are preserved and the resultant plate length is
tained by maintaining the overall surface area of the cuboid. In
case of a plate with both planar surfaces active, the width of
plate should be halved, forming a single-sided plate folded in h
The lower bound on Nusselt number can be obtained by form
a plate of equivalent surface area to a cuboid but where the le
of the plate is determined based on the flow length establis
between the stagnation points on the leading and trailing edg
the cuboid, as given in Eq.~15!.

Table 2 summarizes the plate dimensions for calculating
upper and lower bound on the Nusselt number when using
equivalent flat plate model for plates with either a single act
surface i.e., one side insulated or both sides of the plate are
tributing to the heat transfer.

Finite Volume Procedure. The validity of the analytical
models was assessed by comparing calculations for the ov
rate of heat transfer versus results obtained from simulations
formed using FLOTHERM@20#, a commercial, finite-volume

Table 2 Upper and lower bounds on Nusselt number for a flat
plate solution

Bound Lplate Wplate Active surfaces

upper H•L1H•W1L•W
H1W

2(H1W) 1-sided

(H1W) 2-sided

lower (L1H) 2(H•L1H•W1L•W)
L1H

1-sided

H•L1H•W1L•W
L1H

2-sided
Journal of Electronic Packaging
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based software package. The numerical simulations were use
determine heat transfer and fluid flow in the region surrounding
isothermal cuboid, as shown in Fig. 5.

The cuboid was modeled using four isothermal, no slip pla
in contact with the fluid regions for the leading, trailing, and la
eral surfaces, and symmetry was applied in the streamwise d
tion, as shown in Fig. 5. A uniform inlet velocityU` and uniform
free stream temperatureT` were applied at the upstream doma
boundary, and the downstream and lateral domain bounda
were set to atmospheric~zero! pressure, allowing heat and mass
freely exit the system. The cuboid and the ambient air tempera
were set toTs540°C andT`520°C, respectively, and all prop
erties were evaluated at a film temperature of 303 K.

In each of the CFD simulations, the surface area of the cub
was kept constant to allow comparison of the results for differ
aspect ratios, and equal dimensions for the length and width
mensions of the cuboid were specified. Three different cub
configurations were examined in the numerical study, with asp
ratios H/L50.167, 0.46 and 1.0. The limiting case of the fl
plate,H50, was also simulated to reveal solution trends for sm
aspect ratios.

Because of the large range of Reynolds number proposed
these simulations, 10<ReAA<5000, it was anticipated that differ
ent computational domain sizes would be required, depending
the Reynolds number. For small ReAA , the heat transfer is domi
nated by conduction, and a relatively large domain is required
simulate a conductive, full-space region. This same domain is
sufficient to model the limiting case of the diffusive limit, ReAA
→0, where the heat transfer is by conduction alone. For the sm
ReAA limit, the dimensions of the domain were specified as sho
in Table 3, based on steady-state conduction simulation res
presented by Yovanovich et al.@21#. For large Reynolds numbers
ReAA>1000, the bulk of the heat transfer from the cuboid is
convection through a thin, laminar boundary layer. The numer
simulation in this case requires many more control volumes n
the body surface to accurately resolve the large temperature

Fig. 5 Schematic of CFD solution domain

Table 3 Typical CFD solution domain dimensions

ReAA X/L Y/L Z/L

10 10 5 5
100 10 5 5

1000 5 1.5 1.5
5000 5 1.5 1.5
SEPTEMBER 2001, Vol. 123 Õ 185
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velocity gradients. In order to achieve this increased discretiza
while maintaining a reasonable number of control volumes,
dimensions of the solution domain were reduced as shown
Table 3. Through a convergence study it was demonstrated
the results were independent of domain size when the solu
domain dimensions presented in Table 3 were used for la
ReAA . A schematic of the CFD solution domain used in t
present simulations is presented in Fig. 5, nondimensionalized
ing the cuboid length in the flow directionL for the cube.

In order to demonstrate the independence of the results of
numerical simulations on the size and number of control volum
in the solution domain, a grid convergence studies was perfor
for an intermediate case,H5L5W for ReAA51000. The size of
the control volumes in the fluid region adjacent to the cuboid w
reduced in a systematic manner, until the variation in the aver
results was less than 1 percent between subsequent discretiz
levels. This level of grid refinement was used for all other geo
etries and Reynolds numbers throughout the remainder of
study.

The total heat flow from the cuboid was determined from
numerical results using integrated values provided by the C
software package for 4 planar control surfaces surrounding
cuboid. The net heat flow rates through each of these planar
faces were combined to give the total heat flow rate from
cuboid to its surrounding domain.

Discussion
The effectiveness of each of the three analytical models to

curately predict the rate of heat transfer from cuboids with asp
ratios 0<AR<1 is assessed through comparison with numer
predictions using a finite volume model. For each test case
surface area of the cuboid is held constant while the plan profil
the cuboid is maintained as a square (L5W) and the aspect ratio
(AR5H/L) is varied between 0~plate! and 1 ~cube!. The heat
transfer rate is calculated for a range of Reynolds numbers
tween 0 and 5000, where the Reynolds number is based o
approach velocity,U` , a characteristic length,AA and the kine-
matic viscosity calculated at 30°C. With the area of the t
cuboids held constant and the properties calculated at a con
temperature, the sole factor influencing a change in the Reyn
number is the approach velocity. As the approach velocity goe
zero the heat transfer from the cuboids is based entirely on
duction effects and the resulting Nusselt number is equivalen
the conduction shape factor of the body or the diffusive limit. T
conduction effect is an integral part of the Nusselt number for
tests, however its influence is minimized as convective heat tr
fer becomes more prominent at higher Reynolds numbers.

Yovanovich@8# has demonstrated that the spheroid model
be used with 5–10 percent confidence when compared wi
variety of published spheroid correlation models over a full ran
of Reynolds number and aspect ratios. Using the spheroid mo
given in Eq.~6!, a cuboid of any aspect ratio can be approxima
as a spheroid by superimposing the diffusive limit of the cub
along with a convective model, based on the ratio of the ma
mum perimeter of the body perpendicular to the flow direct
and the square root of the total surface area. In the case o
cuboid this ratio is given as
186 Õ Vol. 123, SEPTEMBER 2001
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AA
5

2~H1W!

A2~H•L1H•W1L•W!
(25)

Results obtained using the spheroid model given in Eq.~6! for
Reynolds number of 1000 are compared to numerical simulat
using a finite volume model as shown in Fig. 6. The numeri
results exhibit the correct trends with the simulation of the pl
(AR50) having the highest value of Nusselt number and the r
of heat transfer decreasing as the relative percentage of the su
area on the front and rear surfaces of the cuboid increases. Th
plate model of Yovanovich and Teertstra@19# is in excellent
agreement with the numerical results for the flat plate, with the
plate model being 1.4 percent higher than the numerical res
The equivalent spheroid model shows reasonable agreemen
aspect ratios greater that 0.5, with a maximum difference over
range of 3.6 percent atAR51. However, the inability of the
equivalent spheroid model to map the correct trends with cha
ing aspect ratio leads to a difference of greater than 12 perce
low aspect ratios. The equivalent spheroid model can be used
quick, approximate~63.6 percent! simulation of cuboids with as-
pect ratios greater that 0.33 but is not recommended as a ge
model for all cuboids, of arbitrary aspect ratio.

The cuboid convection model given in Eq.~19! is combined
with the diffusive limit of the cuboid using Eq.~1!, where a blend-
ing parameter ofn51.3 provides the best agreement for the fu
range of Reynolds number examined. While the blending par
eter,n and the boundary layer parameter,C52.5 have been opti-
mized for this particular study based on comparison of mo
results with numerical data, it should be noted that varying th
parameters over practical ranges i.e., 1<n<1.5 and 2.13<C
<2.77 can result in changes of Nusselt numbers of610 percent
most notably at intermediate values of Reynolds number midw
between the two defining asymptotic limits.

Fig. 6 Heat transfer results using the spheroid model for 0
ÏARÏ1 and ReAAÄ1000
id

00
31
.39
59
Table 4 Comparison of Nusselt number for the cuboid and numerical models

ReAA
H/L

0 (SAA
* ) 10 100 1000 5000

Num. Cuboid Num. Cuboid Num. Cuboid Num. Cuboid Num. Cubo

1.0 3.41 3.44 4.94 4.86 9.66 9.10 22.75 23.78 52.50 51.
0.46 3.42 3.41 4.96 4.91 9.63 9.38 23.12 24.78 51.94 53.
0.167 3.41 3.37 4.97 4.92 9.74 9.50 24.21 25.25 52.51 54
0.0 3.23 3.20 4.85 4.78 9.47 9.41 25.37 25.28 54.10 54.
Transactions of the ASME



8.69
6.12
4.96
4.62
Table 5 Comparison of Nusselt number for the equivalent flat plate and numerical models

ReAA
H/L

10 100 1000 5000

Num. LB UB Num. LB UB Num. LB UB Num. LB UB

1.0 4.94 4.86 5.14 9.66 9.10 10.12 22.75 23.79 27.18 52.50 51.03 5
0.46 4.96 4.92 5.02 9.63 9.38 9.75 23.12 24.80 26.03 51.94 53.33 5
0.167 4.97 4.92 4.94 9.74 9.50 9.57 24.21 25.26 25.50 52.51 54.42 5
0.0 4.85 4.78 4.78 9.47 9.41 9.41 25.37 25.29 25.29 54.10 54.62 5
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Table 4 presents a comparison of cuboid model results ve
numerical data for a range of Reynolds number between 0
5000. The model results at ReAA50 are the diffusive limit for the
cuboid as calculated using Eqs.~2!–~5!. The diffusive limit model
shows agreement to within61 percent of numerical validation
data obtained using FLOTHERM over the full range of asp
ratios examined. Each of the other entries of total Nusselt num
include the diffusive limit combined with the convective Nuss
number using a blending parameter ofn51.3.

The cuboid model shows excellent agreement with the val
tion data over the full range of Reynolds number and aspect ra
with a maximum discrepancy of 6 percent. The agreement
tween the model and the numerical validation data is less than
percent for the plate (AR50). The improved agreement at low
aspect ratio cuboids can primarily be attributed to the added c
fidence in the numerical data for low profile bodies.

The equivalent flat plate model provides a convenient met
for approximating laminar, flow over a cuboid. The solution f
Nusselt number given in Eq.~24! is dependent on fluid properties
the approach velocity and a geometric parameter that is a rat
the flow length of the plate and the square root of the total surf
area. In equating the cuboid to an equivalent flat plate, two s
narios are available for establishing the dimensions of the p
that provide an upper and lower bound on Nusselt number.
two bounding solutions are identical at an aspect ratio of zero
H→0 and the flow path length,Lp , is equivalent to the side
length of the cuboid,L, for both the upper and lower bound solu
tions. However, as the cuboid dimensions approach the c
(AR51) a minimum flow length ofLp52L is obtained for the
upper bound on the Nusselt number while a maximum flow len
of Lp5(11&)L is obtained for the lower bound on Nusse
number. Given the dependence of the Nusselt number onLp

21/2

the 25 percent difference in the flow length results in a differe
between the upper and lower bounds on the Nusselt of appr
mately 15 percent for the cube.

Table 5 presents a comparison of the Nusselt number calcu
using the equivalent flat plate model versus numerical data ov
range of Reynolds number and aspect ratio. The equivalent
plate model is used to calculate a lower bound~LB! and upper
bound~UB! on Nusselt using the plate dimensions given in Ta
2. It is interesting to note, that although the cuboid model and
equivalent flat plate model are very different in their developm
a near identical result is obtained with the two models when
minimum path length ofL1H is used as the flow length. Th
leading constant in both Eqs.~19! and ~24! differs by less than
0.05 percent over the full range of aspect ratios examined in
study.

Conclusions
A cuboid model is presented that provides a simple, accu

method for calculating the average Nusselt number for lamin
forced convection heat transfer from isothermal cuboids of v
ous aspect ratios. In addition, two limiting case models are p
sented for high and low aspect ratio bodies, i.e., the equiva
spheroid model forAR→1 and the equivalent flat plate model fo
AR→0. All three models are based on a blending of tw
asymptotic solutions, as shown in Eq.~1!, namely the diffusive
limit or the conduction shape factor of the cuboid given in Eq.~4!
Journal of Electronic Packaging
sus
and

ct
ber
lt

da-
tios
be-
1.5

on-

od
r

,
o of
ace
ce-
late
he
as

-
ube

gth
lt

ce
oxi-

ated
er a
flat

le
the
nt

the

this

ate
ar,
ri-
re-
lent
r
o

and the Nusselt number for boundary layer forced convec
~spheroid model, Eq.~6!, equivalent flat plate model, Eq.~24! and
the cuboid model, Eq.~19!!. A blending parameter ofn51.3 was
found to provide the best agreement between the models and
merical validation results over the full range of flow conditio
and geometric constraints.

The spheroid model exhibits limitations as the aspect ratio
proaches zero and should be used with caution for aspect r
less than 0.33. Both the cuboid model and the equivalent flat p
model show excellent agreement with validation data, with
maximum difference of 6 percent over the full range of Reyno
number and aspect ratios examined.
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Nomenclature

A 5 surface area of the body, m2

AR 5 aspect ratio,[H/L
C 5 boundary layer parameter,[U` /ue

DGM 5 mean diameter of inscribed and circumscribed
circles, m

F~Pr! 5 Prandtl number function
H 5 cuboid height, m
k 5 thermal conductivity, W/~m•K!
L 5 cuboid length~flow direction!, m

Lp 5 flow path length, m
L1 ,L2 ,L3 5 general cube dimensions, m

q 5 heat flux, W/m2

n 5 blending parameter
Nu 5 Nusselt number

P 5 perimeter perpendicular to bulk flow, m
Pr 5 Prandtl number
Re 5 Reynolds number
S* 5 dimensionless shape factor
te 5 effective residence time, s
T 5 temperature, °C

T` 5 free stream temperature, °C
ue 5 effective velocity, m/s

U` 5 free stream velocity, m/s
W 5 cuboid width, m
x 5 distance in flow direction, m

x, y, z 5 Cartesian coordinates
X, Y, Z 5 domain dimensions in numerical model, m

Subscripts

AA 5 characteristic length based on square root of area
bl 5 boundary layer
e 5 effective

max 5 maximum
min 5 minimum

plate 5 flat plate solution
s 5 surface

Greek Symbols

a 5 thermal diffusivity, m2/s
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Symbols

L 5 general characteristic length, m
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