J. R. Culham

Associate Professor and Director
Mem. ASME

M. M. Yovanovich

Distinguished Professor Emeritus
Fellow ASME

P. Teertstra

Research Associate

Microelectronics Heat Transfer Laboratory,
Department of Mechanical Engineering,
University of Waterloo,

Waterloo, ON, Canada

C.-S. Wang

Advanced Thermal Solutions, Newton, MA

G. Refai-Ahmed

Solinet Systems, Ottawa, ON, Canada
Mem. ASME

Simplified Analytical Models for
Forced Convection Heat Transfer
From Cuboids of Arbitrary Shape

Three analytical models are presented for determining laminar, forced convection heat
transfer from isothermal cuboids. The models can be used over a range of Reynolds
number, including at the diffusive limit where the Reynolds number goes to zero, and for
a range of cuboid aspect ratios from a cube to a flat plate. The models provide a simple,
convenient method for calculating an average Nusselt number based on cuboid dimen-
sions, thermophysical properties and the approach velocity. Both the cuboid and the
equivalent flat plate models are strongly dependent upon the flow path length which is
bounded between two easily calculated limits. In comparisons with numerical simulations,
the models are shown to be within6 percent over the range of<ORex=<5000 and
aspect ratios between 0 and IDOI: 10.1115/1.1347993

Ra-Min Tain

Nortel Metworks, Kanata, ON, Canada

Introduction Modeling Procedure

Numerous practical applications in the design of electronics andThe overall rate of heat transfer from an isothermal, convex
telecommunications equipment depend upon low-velocity, lanfody is a function of several fundamental modes of heat transfer
nar flow as a mechanism for dissipating heat. A diverse rangeibgluding diffusion, convection and radiation. If we assume the
applications are typically encountered, including heat transféidiative component to be relatively small, an overall Nusselt
from printed circuit boards with low profile chip-on-board packumber based on a general characteristic lengttan be defined
ages, cooling of electronic packages, transformers, heat sinf§, function of two limiting asymptotes, as shown in Eq.
thermal spreaders plus many other complex components that re-
quire some means of forced convection cooling to maintain safe
operating temperature limits.

Several researchers have investigated forced convection from
isothermal axisymmetric bodies, such as spher(ids [1]), cyl- The first asymptote is based on the diffusion or conduction of
inders (Refai-Ahmed and Yovanovicf2]) and disks(Wedekind heat as the flow velocity approaches zero, while the second
and Kobug 3] using a variety of predictive methods as reviewe@Symptotic limit is based on laminar boundary layer flow for
in Yovanovich[4]. However, the number of studies for steadylOW velocities greater than zero. Yovanovi@] (forced convec-
laminar forced convection heat transfer from isothermal cuboids j8M: SPheroids Yovanovich and VanoverbeKe] (mixed con-

very limited, with most research restricted to experimental studid§ction. spheroids Refai-Ahmed and Yovanovich2] (forced

(Igarashi[5,6]) leading to empirical correlations or detailed nu_convectlon, circular and square cylinders and torpidéang et al.

. . X [9] (natural convection, heat sinksand Lee et al[10] (natural
merlcgl procedureé/\(lc)rt])glz] agd Cherﬁ?])f. I;ew 5|mp!e, (;in;lf)f/.tlc?l convection, general body shapdmve all used this approach to
procedures are avallable because of the perceived difficulty ifyoin analytical models that are applicable over a wide range of

model_ing Fhe vertical faces of the cuboid, perpendicular to thg) conditions.
flow direction. . . The procedure of combining limiting asymptotic solutions was
The principal objective of this paper is to present several, angst employed by Churchill and Usafi1]. The method presented
lytical models for calculating the overall rate of heat transfer fI’OI‘By Churchill and Usagi takes two analytical solutions that are
isothermal cuboids of varying aspect ratios. Models will be simplenown to be “exact” at predefined limits and provides a means of
functions of easily attainable information such as cuboid dimemansitioning smoothly between these two limits, thereby obtain-
sions, flow conditions and thermophysical properties. ing a comprehensive analytical procedure that is a function of a
The models presented are intended for isothermal boundaingle unknown constanty, that is typically referred to as the
conditions but it is interesting to note that in spherical bodies th#ending parameter. Equatioil) satisfies exactly both limiting
overall rate of heat transfer is identical for both isothermal argsymptotic solutions, however in the transition between the two
isoflux boundary conditions. While the rate of heat transfer will bémits the blending parameten can be used to minimize differ-
different for isothermal and isoflux conditions as the aspect rat@fices between the model and known experimental or numerical
is varied, the change is relatively small and in most instances tfata. Typical values for the blending parameter can vary between

models can be used for nonisothermal conditions. unity (superpositionand real numbers in the range of 1-5. The
higher the value of the blending parameter the greater the ten-
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the models presented herein, a valusmefl.3 has been found to
provide the best agreement over the full range of flow conditions
and geometric constraints. Model 1: —

Equivalent Spheroid
Model

Diffusive Limit. A general expression for calculating the
conduction shape factddiffusive limit) of a cuboid with dimen-
sionsL;XL,X L3 can be determined based on procedures devel-
oped by YovanovichRohsenow et al[12]). The procedure in-

volves first calculating the shape factor of an infinitely thin Model2:
rectangular plate on the face of the cuboid with aspect ratio near- Minimum and )
est to unity. This entails using the mean value of the shape factors Length L L
calculated for circumscribed and inscribed circles, as shown in A b
Fig. 1. If we assume facke; —L, has as an aspect ratio nearest to
unity, two formulations are available for calculating the conduc- Model 3:
tion shape factor based on the range of the aspect tafif,,, Equivalent Flat
WhereL]_?Lz. Plate Model P
—| 1+ —
% ™ L, Ly ) .
[S\;;]pme: , 1.0= L_ <5.0 2 Fig. 2 Modeling procedures for boundary layer flow
Ll 2
\/L:2
E The procedures used to model forced convection from cuboids are
22
L, o= L, @) shown schematically in Fig. 2, with the three models identified as:
=——, 50s—<w
Ly L, 1 Equivalent Spheroid Model: A spheroid of equivalent surface
In 4L_ area to a cuboid is modeled based on formulations presented by
2 Yovanovich[8].

The shape factor for the infinitely-thin rectangular plate, as 2 Cuboid Model: A cuboid model is presented based on bound-
given in Egs.(2) and(3) is then corrected to account for the thirdary flow using a flow length established between the stagnation
dimension of the cuboid using a procedure presented by Yovan@ints at the leading and trailing surfaces of the cuboid.
ich (Rohsenow et al[12]) based on the right circular cylinder 3 Equivalent Flat Plate Model: A flat plate of equivalent sur-
model of Smythg 13,14, such that face area to a cuboid is modeled based on boundary layer formu-
1+0.8688L /D gy)°7 lations for an isothermal plate where the flow length is established

(4) based on the geometry of the cuboid.
JV1+2L5/D
37-6M Equivalent Spheroid Model.Given a cuboid with dimensions
where D¢y is the mean diameter of the inscribed and circumH XL XW, as shown in Fig. 3, an equivalent spheroid can be
scribed circles which is then extended along ltheaxis to form a obtained where the total surface area is preserved. Yovan®jch

STK: | S’:ﬂ plate’

circular cylinder as shown in Fig. 1. presents a correlation equation for steady, axisymmetric, laminar
> forced convection from isothermal spheroids in the Reynolds

Do = \/_ L tL.)- Ji2+L2 5) humber range: &Re,< 10°, where the characteristic lengthis
GM 7 (Ll Vhitls ®  the square root of the wetted surface area of the body. The Yo-

. . vanovich correlation can be used for a range of aspect ratios,
Boundary Layer Forced Convection. Three uniqueé ap- inclyding oblate spheroidsAR<1), spheres AR=1) and pro-
proaches to modeling forced convection heat transfer from isge spheroidsAR>1). Yovanovich combines two range specific
thermal cuboids of arbitrary aspect ratio will be presented. Tré"quations developed by Yudé5] using the blending procedure

models range in their level of simplicity and in their ability 10y, hroquce a single correlation equation for Nusselt number which
accurately predict heat transfer over the full range of aspect ratiQs o ccurate to within-5 percent.

GM
A 7
L
Ls
H
L1 L2 U
©O

Fig. 1 Procedure for calculating the conduction shape factor
of a cuboid Fig. 3 Cuboid dimensions
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Nugz=Siz+[0.15 P/ JA) V2 Rel minimum path
length=H +L

+0.27 P/ JA)*4330R 2% prid (6) A

whereP is the maximum perimeter formed by the profile of the / \ g
body in the flow direction and\ is the total surface area of the L
body. -

Although Eq.(6) was originally developed for laminar, forced
convection from spheroids with aspect ratioss AR<5, the ‘
same equation can be used for cuboids wherePth@ is based ; )
on the geometry of the cuboid and the conduction shape factor can : — maximum path
be calculated based on Eq8)—(5). // length

Cuboid Model. A local Nusselt number, based on a flow l =L+VW'+H
lengthx, can be written for laminar, boundary layer flow over an
isothermal body of arbitrary shape such that

Nu,=Rel?F (Pr) ™ W

Yovanovich et al[16], have demonstrated that using the tran- Fig. 4 Shortest and longest path
sient solution for heat diffusion from a homogeneous half space,
an analogous solution can be obtained for boundary layer flow
with Pr—co such that The choice of the most effective value of path length is not

clearly defined based solely on analysis and can be any value
F(Pr)= prl/3 8) t_aetween ano_l inclusiv_e of y min @nd L p max- _Numerical simgla-
w-C tions of cuboids of various aspect ratios indicate that the minimum

path length, as defined in E¢L5), provides the best agreement

Combining Eqs(7) and(8) yields with the model predictions.

1 % If we maintain the plan profile of the cuboid as a squame,
NUy = — ———— (9) L=W) and define an aspect ratio AR=H/L, the characteristic
\/; aCxPr3 length and the flow path length can be defined as
U L=L-y2(AR+1) a7
where an effective residence timg,can be introduced with the L,=L-(AR+1) (18)

th lengthL bstituted foix.
path engih,~p, Substitued Tow which combined with Eq(13) gives

Lo(C-P™3)
te:U— (10) 2 1
o NUuz=—
VA
Combining Egs(9) and (10) leads to a local Nusselt number Va (AR+1)-C

defined as m

Re/zPr? (19)

NuX=iL (11) _The boundary layer parameteE, can be shown(Schiichting
Jr Vat, [17]) to be equivalent to
and the average Nusselt number based on an arbitrary character- U,
istic length, £, is written as C= U (20)
2 L whereu, is an effective velocity based on a linearization of the
NULZJ_—\/__t (12)  |aminar boundary layer momentum equation. Two methods are
T NAle available for obtaining a numerical value f@. A value of C
or in terms of dimensionless parameters,.Red Pr as =2.77 is obtained for high Prandtl numbers when the heat flux at
the surface of the body is assumed to be that of the “exact”
2 1 solution of Pohlhausefil8]. The second method which gives a
NUEZ\/_— Y (13)  value ofC=2.13 is based on an enthalpy heat flux balance across
7" Lp-C the thermal boundary layer for transient heat diffusion in a half
Re PrP°3L space.

Table 1 shows the influence of varyir@on Nusselt number

Lee et al[10] demonstrated that the square root of the surfaggy forced convection over the range of Reynolds number inves-
area of a body is a superior choice as the characteristic length. In

the case of a cuboid the characteristic length is

L= \/2(H L+H-W+L-W) (14) Table 1 Influence of C on the convective component of the
) ) Nusselt number
The length of the flow path, characterized as the distance be

tween the stagnation points on the front and rear surfaces of a Reéa:

body, is bounded between two extremes defined as the minim&efy c 1 10 10 1000 5000
and maximum path lengths. As shown in Fig. 4, the minimum anglibe 2.13 0.76 2.41 7.63 24.14 53.97
maximum path lengths for a cuboid are given as 25 0.70 2.23 7.05 22.28 49.82
2.77 0.67 2.12 6.69 21.17 47.33
Lp =H+L (15) plate 2.13 0.82 2.59 8.20 25.94 58.00
mn 2.5 0.76 2.39 7.57 23.94 53.54
meax:L+\/W (16) 2.77 0.72 2.27 7.19 22.75 50.86
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Table 2 Upper and lower bounds on Nusselt number for a flat
plate solution

Bound L plate Woate Active surfaces
upper H'L+H_'~_W+L'W 2(H+W) 1-sided
- H+W
(H+W) 2-sided
lower (L+H) 2(H-L+H-W+L-W) 1-sided
C+H
H-L+H-W+L-W 2_sided
- L+H

tigated in this study. A maximum difference of 12 percent on
Nusselt number is observed at Re-5000. Using a simple aver-
age of the two extremes, i.eC=2.5 results in a maximum dif-
ference of==6 percent on Nusselt number.

Plane

Equivalent Flat Plate Model. The average Nusselt number for ] ' _ _
forced convection boundary layer flow over an isothermal flat Fig. 5 Schematic of CFD solution domain
plate of flow lengthL, is given as

— / . . .
NULp—C qupzpfll?’ (21)  pased software package. The numerical simulations were used to

. determine heat transfer and fluid flow in the region surrounding an
where Yovanovich and Teertstfa9] have demonstrated that US-jsothermal cuboid, as shown in Fig. 5.

ing a Iin%arization of the energy and momentum equations, Ed.The cuhoid was modeled using four isothermal, no slip planes
(21) can be recast as in contact with the fluid regions for the leading, trailing, and lat-
Nu = 2F(PrRe? 29 e_ral surfaces, E}nd symmetry was e_lpplled in t_he streamwise direc-
Lp (PD e‘tp (22) tion, as shown in Fig. 5. A uniform inlet velocity ., and uniform
with F(Pr) expressed as in E¢8) for high Prandtl number fluids free stream temperatuie. were applied at the upstream domain

(i.e., Prs). boundary, and the downstream and lateral domain boundaries

Using a value ofC=2.5, Eq.(22) can be written as were set to atmospherizerg pressure, allowing heat and mass to

freely exit the system. The cuboid and the ambient air temperature
Nu, =0.714 Rq’g’zPr“3 (23) were set tol;=40°C andT,.=20°C, respectively, and all prop-
P : erties were evaluated at a film temperature of 303 K.

Changing the characteristic length, to A, to be more com-  |n each of the CFD simulations, the surface area of the cuboid
patible with the other solution procedures, we obtain an averag@s kept constant to allow comparison of the results for different
Nusselt number aspect ratios, and equal dimensions for the length and width di-

1 mensions of the cuboid were specified. Three different cuboid
_ p 125.1/3 configurations were examined in the numerical study, with aspect
Nu\g0.714(ﬁ) ' ReiKPrl (24) ratios H/L=0.167, 0.46 and 1.0. The limiting case of the flat

plate,H=0, was also simulated to reveal solution trends for small

Equation(24) is functionally dependent obj, the flow length aspect ratios.
which is bounded by two limiting values. An upper bound on the Because of the large range of Reynolds number proposed for
Nusselt number is obtained by simulating a plate with the sanigese simulations, ¥0Re z<5000, it was anticipated that differ-
surface area as that of a cuboid and overall dimenslofg. ent computational domain sizes would be required, depending on
X Wopiae, Where the width of the plate is equivalent to the maxithe Reynolds number. For small Re the heat transfer is domi-
mum perimeter of the cuboid on a plane perpendicular to the flavated by conduction, and a relatively large domain is required to
direction. In effect, the leading edge surfaces formed by the plansimulate a conductive, full-space region. This same domain is also
of the cuboid are preserved and the resultant plate length is &jufficient to model the limiting case of the diffusive limit, Re
tained by maintaining the overall surface area of the cuboid. In the0, where the heat transfer is by conduction alone. For the small
case of a plate with both planar surfaces active, the width of tiR x limit, the dimensions of the domain were specified as shown
plate should be halved, forming a single-sided plate folded in hajii Table 3, based on steady-state conduction simulation results
The lower bound on Nusselt number can be obtained by formipgesented by Yovanovich et &21]. For large Reynolds numbers,
a plate of equivalent surface area to a cuboid but where the lengbz=1000, the bulk of the heat transfer from the cuboid is by
of the plate is determined based on the flow length establisheshvection through a thin, laminar boundary layer. The numerical
between the stagnation points on the leading and trailing edgesihulation in this case requires many more control volumes near
the cuboid, as given in Eq15). the body surface to accurately resolve the large temperature and

Table 2 summarizes the plate dimensions for calculating an
upper and lower bound on the Nusselt number when using the
equivalent flat plate model for plates with either a single active Table 3 Typical CFD solution domain dimensions
surface i.e., one side insulated or both sides of the plate are cen

tributing to the heat transfer. Rex XIL Y/L Z/L
Finite Volume Procedure. The validity of the analytical 1%)8 ig g g
models was assessed by comparing calculations for the overall 1500 5 15 15
rate of heat transfer versus results obtained from simulations per- 5000 5 1.5 1.5

formed using FLOTHERM[20], a commercial, finite-volume
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velocity gradients. In order to achieve this increased discretization 27
while maintaining a reasonable number of control volumes, the
dimensions of the solution domain were reduced as shown in 26
Table 3. Through a convergence study it was demonstrated that 26
the results were independent of domain size when the solution
domain dimensions presented in Table 3 were used for large 25.5
Rex. A schematic of the CFD solution domain used in the
present simulations is presented in Fig. 5, nondimensionalized us-
ing the cuboid length in the flow directidn for the cube. S04
In order to demonstrate the independence of the results of the Z

numerical simulations on the size and number of control volumes 24
in the solution domain, a grid convergence studies was performed

e AR

N
o

N
W
O T

— — — - Spheroid Model
Cuboid: Numerical Model

3]

= Flat Plate Model

for an intermediate caséj=L=W for Rez=1000. The size of 3.5

the control volumes in the fluid region adjacent to the cuboid was

reduced in a systematic manner, until the variation in the average

results was less than 1 percent between subsequent discretizatior 22.5

levels. This level of grid refinement was used for all other geom- T T l
etries and Reynolds numbers throughout the remainder of the 22 0.25 0.5 0.75 1

study. i~
The total heat flow from the cuboid was determined from the Aspect Ratio - H/L

numerical results using integrated values provided by the CREY, ¢ Haat transfer results using the spheroid model for 0
software package for 4 planar control surfaces surrounding ta€p<1 and Re z=1000

cuboid. The net heat flow rates through each of these planar sur- !

faces were combined to give the total heat flow rate from the

cuboid to its surrounding domain.

P 2(H+W)
Discussion VA V2(H- L+H-W+L-W)

The effectiveness of each of the three analytical models to ac-Results obtained using the spheroid model given in(Bgfor
curately predict the rate of heat transfer from cuboids with aspegeynolds number of 1000 are compared to numerical simulations
ratios 0<AR<1 is assessed through comparison with numericabking a finite volume model as shown in Fig. 6. The numerical
predictions using a finite volume model. For each test case thesults exhibit the correct trends with the simulation of the plate
surface area of the cuboid is held constant while the plan profile @iR=0) having the highest value of Nusselt number and the rate
the cuboid is maintained as a squakte<W) and the aspect ratio of heat transfer decreasing as the relative percentage of the surface
(AR=H/L) is varied between @plate and 1(cube. The heat area on the front and rear surfaces of the cuboid increases. The flat
transfer rate is calculated for a range of Reynolds numbers kate model of Yovanovich and Teertstfa9] is in excellent
tween 0 and 5000, where the Reynolds number is based onamreement with the numerical results for the flat plate, with the flat
approach velocitylU..,, a characteristic length/A and the kine- plate model being 1.4 percent higher than the numerical results.
matic viscosity calculated at 30°C. With the area of the teSthe equivalent spheroid model shows reasonable agreement for
cuboids held constant and the properties calculated at a cons@syiect ratios greater that 0.5, with a maximum difference over this
temperature, the sole factor influencing a change in the Reynoldsige of 3.6 percent aAR=1. However, the inability of the
number is the approach velocity. As the approach velocity goesequivalent spheroid model to map the correct trends with chang-
zero the heat transfer from the cuboids is based entirely on cong aspect ratio leads to a difference of greater than 12 percent at
duction effects and the resulting Nusselt number is equivalent ltiaw aspect ratios. The equivalent spheroid model can be used for
the conduction shape factor of the body or the diffusive limit. Thiguick, approximateé+3.6 percentsimulation of cuboids with as-
conduction effect is an integral part of the Nusselt number for glect ratios greater that 0.33 but is not recommended as a general
tests, however its influence is minimized as convective heat tramsedel for all cuboids, of arbitrary aspect ratio.
fer becomes more prominent at higher Reynolds numbers. The cuboid convection model given in E@L9) is combined

Yovanovich[8] has demonstrated that the spheroid model camith the diffusive limit of the cuboid using Eq1), where a blend-
be used with 5-10 percent confidence when compared withirg parameter oh=1.3 provides the best agreement for the full
variety of published spheroid correlation models over a full rangange of Reynolds number examined. While the blending param-
of Reynolds number and aspect ratios. Using the spheroid modgtkr,n and the boundary layer paramet€rs 2.5 have been opti-
given in Eq.(6), a cuboid of any aspect ratio can be approximateaiized for this particular study based on comparison of model
as a spheroid by superimposing the diffusive limit of the cuboicsults with numerical data, it should be noted that varying these
along with a convective model, based on the ratio of the maxiarameters over practical ranges i.esri<1.5 and 2.18C
mum perimeter of the body perpendicular to the flow directios=2.77 can result in changes of Nusselt numbers-@D percent
and the square root of the total surface area. In the case of thest notably at intermediate values of Reynolds number midway
cuboid this ratio is given as between the two defining asymptotic limits.

(25)

Table 4 Comparison of Nusselt number for the cuboid and numerical models

Re 0 (S’\f;) 10 100 1000 5000

R

H/L Num. Cuboid Num. Cuboid Num. Cuboid Num. Cuboid Num. Cuboid
1.0 3.41 3.44 4.94 4.86 9.66 9.10 22.75 23.78 52.50 51.00
0.46 3.42 3.41 4.96 491 9.63 9.38 23.12 24.78 51.94 53.31
0.167 3.41 3.37 4.97 4.92 9.74 9.50 24.21 25.25 52.51 54.39
0.0 3.23 3.20 4.85 4.78 9.47 9.41 25.37 25.28 54.10 54.59
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Table 5 Comparison of Nusselt number for the equivalent flat plate and numerical models

Re 10 100 1000 5000

VA

H/L Num. LB UB Num. LB UB Num. LB UB Num. LB UB

1.0 4.94 4.86 5.14 9.66 9.10 10.12 22.75 23.79 27.18 52.50 51.03 58.69
0.46 4.96 4.92 5.02 9.63 9.38 9.75 23.12 24.80 26.03 51.94 53.33 56.12
0.167 4.97 4.92 4.94 9.74 9.50 9.57 24.21 25.26 25.50 52.51 54.42 54.96
0.0 4.85 4.78 4.78 9.47 9.41 9.41 25.37 25.29 25.29 54.10 54.62 54.62

Table 4 presents a comparison of cuboid model results versared the Nusselt number for boundary layer forced convection
numerical data for a range of Reynolds number between 0 afgpheroid model, Eq6), equivalent flat plate model, E¢R4) and
5000. The model results at 3e=0 are the diffusive limit for the the cuboid model, Eq19)). A blending parameter ai=1.3 was
cuboid as calculated using Eq2)—(5). The diffusive limit model found to provide the best agreement between the models and nu-
shows agreement to withirt1 percent of numerical validation merical validation results over the full range of flow conditions
data obtained using FLOTHERM over the full range of aspeend geometric constraints.
ratios examined. Each of the other entries of total Nusselt numberThe spheroid model exhibits limitations as the aspect ratio ap-
include the diffusive limit combined with the convective Nusselproaches zero and should be used with caution for aspect ratios
number using a blending parameterrof 1.3. less than 0.33. Both the cuboid model and the equivalent flat plate

The cuboid model shows excellent agreement with the validexodel show excellent agreement with validation data, with a
tion data over the full range of Reynolds number and aspect ratimeximum difference of 6 percent over the full range of Reynolds
with a maximum discrepancy of 6 percent. The agreement haamber and aspect ratios examined.
tween the model and the numerical validation data is less than 1.5
percent for the plateAR=0). The improved agreement at |0WAcknowledgments

aspect ratio cuboids can primarily be attributed to the added con- . . .
fidence in the numerical data for low profile bodies. The authors would like to acknowledge the financial support of

The equivalent flat plate model provides a convenient methdfgterials and Manufacturing OntariMMO) and Nortel Net-
for approximating laminar, flow over a cuboid. The solution folorks Ltd., Kanata.
Nusselt number given in Eq24) is dependent on fluid properties,
the approach velocity and a geometric parameter that is a ratiol\é)@mendature

the flow length of the plate and the square root of the total surface A = surface area of the body,’m

area. In equating the cuboid to an equivalent flat plate, two sce- AR = aspect ratio=H/L

narios are available for establishing the dimensions of the plate C = boundary layer parametesU.. /u,

that provide an upper and lower bound on Nusselt number. The D, = mean diameter of inscribed and circumscribed
two bounding solutions are identical at an aspect ratio of zero as circles, m

H—0 and the flow path length,,, is equivalent to the side F(Pr) = Prandtl number function

length of the cuboidl., for both the upper and lower bound solu- H = cuboid height, m

tions. However, as the cuboid dimensions approach the cube k = thermal conductivity, Win-K)

(AR=1) a minimum flow length ol ,=2L is obtained for the L = cuboid length(flow direction), m

upper bound on the Nusselt number while a maximum flow length L, = flow path length, m

of Lp=(1+v2)L is obtained for the lower bound on Nusselt_, L, L,

number. Given the dependence of the Nusselt numbelk ¢ q
the 25 percent difference in the flow length results in a difference n
between the upper and lower bounds on the Nusselt of approxi- Nu
mately 15 percent for the cube. P

Table 5 presents a comparison of the Nusselt number calculated  Pr
using the equivalent flat plate model versus numerical data overa  Re
range of Reynolds number and aspect ratio. The equivalent flat  s*
plate model is used to calculate a lower bouh&) and upper te
bound(UB) on Nusselt using the plate dimensions given in Table T
2. It is interesting to note, that although the cuboid model and the T,
equivalent flat plate model are very different in their development Ue
a near identical result is obtained with the two models when the U,
minimum path length oL+H is used as the flow length. The wW
leading constant in both Eq§19) and (24) differs by less than X

0.05 percent over the full range of aspect ratios examined in this x, y, z
study.

XY, Z =

Subscripts

Conclusions

A cuboid model is presented that provides a simple, accurate p|
method for calculating the average Nusselt number for laminar, ¢
forced convection heat transfer from isothermal cuboids of vari- max
ous aspect ratios. In addition, two limiting case models are pre- min
sented for high and low aspect ratio bodies, i.e., the equivalengjate
spheroid model foAR— 1 and the equivalent flat plate model for s
AR—0. All three models are based on a blending of tw
asymptotic solutions, as shown in Ed), namely the diffusive
limit or the conduction shape factor of the cuboid given in &j.

Journal of Electronic Packaging

general cube dimensions, m

heat flux, W/nf

blending parameter

Nusselt number

perimeter perpendicular to bulk flow, m
Prandtl number

Reynolds number

dimensionless shape factor

effective residence time, s
temperature, °C

free stream temperature, °C

effective velocity, m/s

free stream velocity, m/s

cuboid width, m

distance in flow direction, m

Cartesian coordinates

domain dimensions in numerical model, m

characteristic length based on square root of area
boundary layer

effective

maximum

minimum

flat plate solution

surface

%reek Symbols
a = thermal diffusivity, nf/s
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