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Resistance Approach for Annular Fins

with Contact Conductance and End Cooling

Sushanta K. Mitra
�
and M. Michael Yovanovich

y

Department of Mechanical Engineering, University of Waterloo, Waterloo, Canada, N2L 3G1

A simpli�ed method, based on control volume, is developed to obtain the resistance

of annular �ns of constant thickness with base contact and end cooling. This approach

is further extended to annular �ns with variable thickness for which analytical solution

is not possible. Such novel method is able to match the analytical solution for constant

thickness �ns with minimum number of control volumes and shows excellent agreement

for various limiting cases of Biot numbers.

Nomenclature

a tip thickness

A cross-sectional area

b base thickness

C1 constant with modi�ed Bessel functions

Bi Biot number

h heat transfer coeÆcient

I1 modi�ed Bessel function of �rst kind

k thermal conductivity

K1 modi�ed Bessel function of second kind

L �n length

m non-dimensional �n parameter

n number of control volume

Q heat 
ow

r radius

R �n resistance

t half-�n thickness

T �n temperature

� non-dimensional inner radius

� non-dimensional outer radius

� semi-tapered angle

� �n temperature excess of ambient

 non-dimensional temperature


 constant with modi�ed Bessel functions

� non-dimensional radial position

Subscripts

c base contact

e end cooling

f convective surface

i inner

j index for control volume

o outer

1 ambient
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Superscript

e end conduction

Introduction

A
NNULAR �ns are frequently used as extended

surfaces to enhance the heat transfer rate in

various applications such as air conditioning, heat ex-

changers and micro-electronic packages. When such

�ns are added to a surface in contact with the sur-

rounding 
uid, the following resistances play a key

role in the entire heat transfer process: (a) the con-

tact resistance due to the mechanical contact between

the �n base and the previously exposed surface, (b)

the conductive resistance to heat 
ow within the �n

itself, and (c) the resistance to heat 
ow through the

convective �lm of the surrounding 
uid. Several ana-

lytical solutions for the steady-state heat conduction

within an annular �n of constant thickness, perfect

contact at the base, and insulated end (or some ap-

proximation for end cooling) already exist.1,7 On the

other hand, the one-dimensional steady-state analyt-

ical solution for annular �n with constant thickness

along with base contact resistance and end cooling3

involves modi�ed Bessel functions that are diÆcult to

compute and also computationally intensive, the de-

tails of which will be discussed later. However, in

the case of a variable thickness annular �n, analyti-

cal solutions do not exist. Such problems are solved

numerically, either through �nite di�erence4 or �nite

element5 method, or by means of integral control vol-

ume approach.6

The main objective of the present work is to develop

a simpli�ed, yet accurate technique, by means of re-

sistance method, for determining the �n resistance of

constant thickness annular �n with base contact re-

sistance and end cooling. It is also shown that such

technique can be readily extended for an annular �n

with variable thickness.
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Fig. 1 Schematic diagram of a constant thickness

annular �n.

Constant Thickness Fin

Analytical Method

Figure 1 shows a schematic diagram for an annular

�n of constant thickness 2t, thermal conductivity k,

and inner and outer radii of ri and ro, respectively.

The �n is cooled along the sides through a uniform

�lm coeÆcient h and at the end through a uniform

�lm coeÆcient he. The contact conductance, hc, at

the base is assumed to be uniform. The steady state

one-dimensional governing heat transfer equation for

the �n can be written as:7

1

�

d

d�

�
�
d 

d�

�
�m

2
 = 0 (1)

where  = �=�b, with � de�ned as � = T (r) � T1

and �b = T (ri) � T1; � = r=t, and m
2 is the non-

dimensional �n parameter. By introducing the follow-

ing non-dimensional Biot numbers:

Bi = ht=k (= m
2) (2)

Bic = hct=k (3)

Bie = het=k (4)

the base and end boundary conditions can be written

as:

� = �;
d 

d�
= �Bic[1�  ] (5)

� = �;
d 

d�
= �Bie (6)

where � = ri=t and � = ro=t. The solution of the gov-

erning equation subjected to the boundary conditions

gives the �n resistance, Rfin, in the following form:

Rfin = [4�ktm�C1f
K1(m�) � I1(m�)g]
�1 (7)

where I1 and K1 are the modi�ed Bessel functions of

the �rst and the second kind of order unity, respec-

tively; C1 and 
 are constants which involve modi�ed

Bessel functions, the details of which are provided by

Yovanovich et al.3 Therefore, it becomes obvious that

the analytical solution for constant thickness annular

�n requires evaluation of the Bessel functions, which

at times may be diÆcult to obtain.

L L/n L/n L/n L/n L/n
2n

L
2n

L

CV CVCV1 nj (2 < j < n-1)

Nodal
Point

Fig. 2 Subdivision into n control volumes.

RR

R
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e
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Fig. 3 Di�erent resistances associated with each

control volume.

Resistance Method

As an alternative approach to the exact closed form

solution, the resistance method is used to obtain the �n

resistance accurately and easily with minimum com-

putation e�ort. The entire �n length L(= ro � ri) is

divided into n control volumes, as shown in Fig. 2.

The nodal points are located at the center of each con-

trol volume. Figure 3 shows the thermal resistances

pertinent to each control volume due to the conduc-

tion within the �n material (Rs), the convective side

(Rf ) and end (Re) coolings and the base contact (Rc).

The conduction resistances, (Re
s), for the two end con-

trol volumes (CV1 & CVn) are separately evaluated

in order to simplify the thermal circuit. The general

expressions for each resistance can be written as:

Rc =
1

hc(4�rit)
(8)

Re =
1

he(4�rot)
(9)

Rf(j) =
1

h�

(�
ro �

(j � 1)
n L

�2
�

h
ro �

j

nL

i2)(10)

(for j = 1; : : :(n� 1))

=
1

h�

(�
ro �

(n � 1)
n

L

�2
� r

2
i

) (11)

(for j = n)
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Table 1 Geometrical and physical parameters for

the �n.

Parameters Values

ri 5 mm

ro 10 mm

t 1 mm

k 20 W=mK

h 50 W=m2
K

he 20 W=m2
K

hc 500 W=m2
K

Rs(j) = ln

�
2nro � f1 + 2(i � 1)gL

2nro � f3 + 2(i � 1)gL

�
1

4�kt
(12)

(for j = 1; : : :(n� 1))

R
e
s1 = ln

2
4 ro

ro �
L

2n

3
5 1

4�kt
(13)

R
e
s2 = ln

2
4ri + L

2n
ri

3
5 1

4�kt
(14)

In order to obtain the total resistance, the resistances

for each control volume are summed, starting from the

tip and moving towards the base. Therefore, the equiv-

alent resistance for each control volume can be written

as:

1

R1

=
2

Rf1

+
1

(Re
s1 + Re)

(15)

1

R2

=
2

Rf2

+
1

(R1 +Rs1)
(16)

1

R3

=
2

Rf3

+
1

(R2 +Rs2)
(17)

...
...

1

Rn

=
2

Rfn

+
1

(Rn�1 + Rs(n�1))
(18)

where Rj (j = 1; : : :n) is the equivalent resistance for

the jth control volume. Hence, the overall �n resis-

tance is expressed as

R = Rn + Rc +R
e
s2 (19)

Results and Discussions

The geometrical and the physical parameters used

to calculate the �n resistance are provided in Table 1.

With these typical values, the analytical solution for

the �n resistance, given by Eq. (7), is 71:52K=W .

By using the resistance method, it is found that the

analytical solution can be obtained with a minimum

number of control volume, as shown in Fig. 4. It is ob-

served that even with three control volumes (n = 3),

the di�erence in the solution between the analytical

and the resistance methods is only 0:04%. It is to

be pointed out that previous attempts using a resis-

tance approach4 required a large number of iterations

−   

−.−   

Resistance Method

Exact Solution
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Fig. 4 Comparison of the result obtained by re-

sistance method with exact solution.
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Fig. 5 Comparison of the solution obtained by

resistance method with approximate method.2

(approximately 50 iterations) to obtain the analytical

solution for the constant thickness �n. Therefore, it

shows that the present approach is very eÆcient, yet

accurate, in determining the �n resistance with mini-

mum computational e�ort.

The present resistance method can be applied to

obtain various approximate solutions which involve

correction factor for tip convection and zero base re-

sistance.2 For such cases, a good agreement can be

obtained with the approximate solution by treating the

end and the side convection coeÆcients to be equal, as

shown in Fig. 5 with he = h = 50 W=m
2
K. The

�n resistances are also calculated for di�erent limiting

cases of Biot numbers and they are compared with the

analytical expressions given below:

R =
ln(ro=ri)

4�kt

�
Bic !1

Bie !1 Bi! 0
(20)

R =
ln(ro=ri)

4�kt
+

1

he4�rot
(21)�

Bic !1

0 < Bie <1 Bi ! 0
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Table 2 Comparison of �n resistance at di�erent

limiting cases. (n = 3)

Biot Number Exact Resistance

Solution Method

(K/W) (K/W)

Bi! 0

Bie !1 2.7579 2.7579

Bic !1

Bi! 0

0 < Bie <1 400.645 400.638

Bic !1

Bi! 0

0 < Bie <1 432.476 432.469

0 < Bic <1

h

r

c

i

o

k

r

h

h

r

a b

he

θ

Fig. 6 Schematic diagram of a variable thickness

annular �n.

R =
ln(ro=ri)

4�kt
+

1

he4�rot
+

1

hc4�rot
(22)�

0 < Bic <1

0 < Bie <1 Bi ! 0

Table 2 summarizes the results and it is found that

by using only three control volumes, the resistance

method yields solutions same as those obtained an-

alytically.

Variable Thickness Fin

Resistance Method

So far, it is observed that the present resistance

method evaluates the �n resistance accurately for a

constant thickness annular �n. As a next step, this

approach is extended to estimate the resistance of a

variable thickness �n for which analytical solutions are

not available in literature. Figure 6 shows a schematic

diagram for a variable thickness annular �n whose tip

and base thicknesses are a and b respectively and � is

semi-tapered angle of the �n. By applying the resis-

tance method to this geometry, the placement of the

control volumes and the associated thermal resistances

remain the same as before.

The main diÆculty with a variable thickness �n is

to obtain expressions for resistances due to conduction

within the �n, which are di�erent from those stated in

Eqs. (12)-(14). To overcome this diÆculty, Fourier's

Law of heat conduction is used, which is as follows:

�Q = kA
�T

�r

where �Q is the heat 
ow through a cross-section area

A and over a thickness of �r with a temperature dif-

ference of �T . By using the de�nition of resistance, it

can be shown that

�R =
�T

�Q
=

�r

kA
(23)

where �R is the conduction resistance for the thick-

ness �r. This is a good approximation, as with the

increase in the number of control volumes, �r becomes

smaller and therefore in the limiting case, the conduc-

tion resistance approaches the exact value. Hence, ex-

pressions for the resistances due to conduction within

the �n, base conductance and tip convection take the

following form:

Rs(j) =
L=n

4�k
�
ro � j

L
n

� h
a
2
+ j

L
n
tan �

i (24)

(for j = 1; : : : (n� 1))

R
e
s1 =

L=(2n)

4�k
�
ro �

L

4n

�h
a
2
+ L

4n
tan �

i (25)

R
e
s2 =

L=(2n)

4�k
�
ri +

L

4n

� h
a
2
+
�
r �

L

4n

�
tan �

i(26)
Re =

1

2�heroa
(27)

Rc =
1

2�hcrib
(28)

It is to be noted that for resistances due to convection,

the e�ective heat transfer area is taken as the projec-

tion of the corresponding area for a constant thickness

annular �n. Therefore, the convective resistances are

obtained by multiplying the corresponding resistances

of the constant thickness �n, given in Eqs. (10)-(11),

with the cosine of the semi-tapered angle of the �n.

The �nal expression for the �n resistance can be ob-

tained in a similar manner as shown in Eqs. (15)-(19).

Results and Discussions

In case of a variable thickness �n, two additional ge-

ometrical parameters, a and b, are required along with

those listed in Table 1. The typical values used for a

and b are 2mm and 4mm, respectively. Figure 7 shows

the variation of the �n resistance with the number of

control volumes, starting with n = 3. It is observed

that the �n resistance asymptotically approaches to

a constant value within 20 control volumes. It is also

found that the di�erence between the asymptotic value

and that obtained with three control volumes is only
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Fig. 7 Fin resistance for a variable thickness an-

nular �n.

Table 3 Comparison of the �n resistance for a =
2mm; b = 2mm; 2t = 2mm and � = 0 (n = 30).

L Constant Variable

Thickness Thickness

(mm) (K=W ) (K=W )

5 71:5208 71:5207

50 38:4551 38:4437

0:02%. Since, no closed form analytical solution is

possible for this case, therefore the accuracy of the

solution could not be claimed with certainty. How-

ever, the solution for the variable thickness �n can

be checked with the limiting case, when the tapered

�n approaches a constant thickness �n. Therefore,

the variable thickness �n solution should approach the

constant thickness result by setting � = 0 in Eqs. (24)

- (26). Table 2 shows excellent agreement between the

constant thickness �n and the variable thickness �n for

� = 0. Hence, this approach presents a simple way of

�nding �n resistances for di�erent complex geometries,

for which only numerical solutions are possible.

Conclusion

A resistance approach, involving control volumes, is

developed for calculating the �n resistances of annular

�ns with contact conductance and end cooling. The

method is �rst applied to a constant thickness �n and

it is found that an accurate and a quick solution can

be obtained with only a few number of control vol-

umes. Various limiting cases of Biot numbers are also

calculated and excellent agreements are obtained with

analytical results. This approach is further extended

to variable thickness �ns for which no closed form so-

lution is available. It is observed that the resistance

method can also be applied successfully for such vari-

able thickness annular �ns.
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