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ABSTRACT

An approximate thermo-mechanical model is developed
to predict thermal contact resistance of a hemisphere in
elastic contact with a layered substrate. Numerical data
are obtained for several combinations of layer material. It
is shown that with the proper selection of dimensionless
parameters the numerical results fall on a single curve that
is easily correlated. The complex solution is reduced to a
simple closed form solution for the unknown contact ra-
dius. The proposed thermo-mechanical model is applicable
for any layer-substrate material combination over the full
range of the layer thicknesses. The agreement between the
theoretical predictions and experimental data is good at
the light loads. A method for correcting the contact ra-
dius for elastic-plastic behavior at higher loads is presented.

KEY WORDS: Contact radius, elastic deformation,
thermal constriction resistance

NOMENCLATURE

a contact radius, m
aL contact radius corresponding

to layer bound, m
aS contact radius corresponding

to substrate bound, m
a∗ dimensionless contact radius
ā average contact radius, m
E elastic modulus, Pa
F normal load, N
Fc critical load, N
H hardness, Pa
n blending parameter
k thermal conductivity, W/mK
Q heat transfer rate, W
Rexp experimental resistance, K/W

Rj joint resistance, K/W
R∗

j dimensionless contact
resistance

r, z local polar coordinates
T temperature, oC
t layer thickness, m
Greek Symbols

α ratio of bounding radii, ≡ aL/aS
κ conductivity ratio, ≡ k1/k2
ν Poisson’s ratio
ρ radius of hemisphere
τ relative layer thickness, ≡ t/a
φ stress function
ψ constriction parameter
∆ difference
∇2 Laplacian operator
Superscripts

j joint
∗ dimensionless or reduced
Subscripts

c critical
e, p, ep elastic, plastic, elastic-plastic
e1,e2 extrapolated
L, S layer, substrate
1, 2, 3 layer, substrate, hemisphere

INTRODUCTION

The resistance to heat flow due to thermal spreading or con-
striction at a joint formed between contacts is an important
consideration in the development of high speed electronic
equipment. Critical interfaces formed between electronic
packages or silicon flip chips and heat sinks necessitate the
use of soft, compliant interface materials to fill air gaps as-
sociated with nonconforming wavy surfaces. Without the
use of an interface material, the overall thermal resistance



between the heat source and the surrounding air will rise
significantly, resulting in an increase in the operating tem-
perature of the integrated circuits and a subsequent de-
crease in component reliability.

An example of this problem is the Thermal Conduction
Module (TCM) used as an integral component of the
IBM 3081 computer. Each module has an array of chips
mounted on the surface. Heat generated within a single
chip is removed through a spring-loaded piston, which is in
contact with the chip surface as is shown in Fig. 1. The
thermal resistance of the chip-piston contact controls the
heat transfer rate through each cell. Using an interface ma-
terial, the overall thermal resistance between the chip and
piston will decrease resulting in a decrease in the operat-
ing temperature of the integrated circuits and a subsequent
increase in component reliability. Sometimes the joint can-
not be made permanent. Also because of the geometry of
the contact, thermal greases or thin metallic foils cannot be
used. In that case it is recommended to use a soft metallic
or non-metallic layer as an interface material.

Fig.1 Basic Cell of TCM

THERMAL PROBLEM AND MODEL

The contact between a single chip, interface material and
the piston is modeled as a contact between a deformable
hemispherical body and a thin elastic layer, assumed to be
in perfect contact with an elastic substrate of large extent.

There are three pathways for the heat transfer across the
contact bodies: conduction through the contact area, con-
vection and conduction through the gap and radiation
through the gap. In order to reduce the heat transfer at-
tributed to gap conduction and convection all experiments
within this study were performed in a vacuum environment.
It is assumed that heat flow between contacting bodies is
by conduction only through the contact area.

The temperature drop across the contact is related to the
heat transfer rate and the constriction/spreading resis-
tance, which depends on the thermal conductivities of the
three components, their elastic properties (Young’s mod-
ulus of elasticity and Poisson’s ratio), the radius of cur-
vature of the hemispherical body, the layer thickness and
the applied mechanical load. The constriction/spreading
resistance can be reduced significantly through the proper
selection of the layer which has a high conductivity, low
rigidity and a thickness which is sufficiently large to cause
the constriction in the layer-substrate side of the joint to
occur primarily within the layer.

Fig.2 Model Chip - Heat Sink Contact

The layer, the substrate and the hemisphere thermal con-
ductivities are k1, k2 and k3, respectively. Since the radius
of the contact area is much smaller than the radius of the
hemisphere and the layered-substrate dimensions, the con-
tact is modeled both thermally and mechanically as a cir-
cular contact connecting two half-spaces: the hemisphere
on one side and the layered-substrate on the other.
The total joint resistance is defined as [1]:

Rj =
1

4 ak3
+
ψ(τ, κ)

4 ak2
(1)

The thermal constriction parameter ψ(τ, κ) is obtained
from the solution of the Laplace equation within the layer
and substrate together [2]. The dimensionless constriction
resistance is defined with respect to the contact radius and
the substrate thermal conductivity k2:

R∗

j = Rj a k2 =
1

4

[
k2
k3

+ ψ(τ, κ)

]
(2)

The thermal conductivity ratio is constant for a given layer-
substrate combination. The relative layer thickness varies
with the mechanical load, geometry and physical proper-
ties. The evaluation of ψ(τ, κ) is not possible without first
solving the mechanical portion of the contact resistance
problem for the contact radius. The constriction/spreading
resistance model will be divided into two parts: a mechani-
cal model for solving for the unknown contact radius and a
thermal model for solving the thermal portion of problem.
A similar problem was investigated by Fisher [1] where
he developed an approximate thermal constriction resis-
tance model. The model requires the “transition” points



where the approximate resistance approaches the substrate
and layer bounds. Fisher [1] assumed that between the
two “transition” points, in the intermediate region, dimen-
sionless resistance varies logarithmically with dimension-
less layer thickness. For each material layer-substrate ma-
terial combination transition points will change but the cri-
terion for determining the values for the “transition” points
was not established. Proposed mechanical model does not
require any “transition” point and it is applicable for any
metallic layer-substrate material combination (α < 2.5).
The mechanical model is able to predict the contact radius
for any layer thickness (0 ≤ t <∞).
The following assumptions further simplify the analysis:
contacting surfaces are clean, free of oxides, the geome-
try of the contact area is circular, the layer is always less
rigid than the indenter and the substrate, the contacting
surfaces are assumed to be frictionless, the substrate is as-
sumed to be a half-space, the contact radius must be small
compared with the radius of curvature of the indenter, the
contacting bodies are assumed to deform elastically, the
layer, substrate and indenter materials are assumed to be
isotropic.

MECHANICAL PROBLEM AND MODEL

The mechanical problem is a complex elasticity problem in
an axisymmetric domain governed by the following differ-
ential equation [3]:

∇2∇2φ = 0 (3)

where φ is the stress function and ∇2 is the Laplacian oper-
ator in circular coordinates. The boundary conditions are
of the mixed type, with the surface deflection prescribed
within the contact area and the normal stress prescribed
outside. For layered bodies it is not possible to obtain a
closed form solution of Eq. (3). Instead, an iterative pro-
cedure must be used based on an initial estimate of the
contact radius that is then updated until the calculated
normal load equals the given load within some relative er-
ror criterion.
Since there is no analytical solution to this problem, the de-
veloped model is an approximate mechanical model based
on the numerical results of the model of Chen and En-
gel [4]. The reason for using the numerical results of the
model of [4] is, that this model is the most complete model
found in the open literature, which allows the contacting
bodies to have elastic properties. Using the mechanical
model of [4] it is possible to compute the radius of con-
tact for any layer/substrate material combination numer-
ically. The model assumes each body in the contact to
deform elastically but computation of the contact radius re-
quires an iterative procedure that involves the evaluation
of many double integrals, consisting of special functions,
using Gaussian quadrature.
The objectives of the work are: to develop a mechanical
model to predict accurately the radius of contact between
the hemisphere and the layered substrate for any layer ma-
terial, to present a mechanical model in simple analytical

form and to verify the analytical predictions by experiment
and existing data.

CONTACT RADIUS BOUNDS

A computer program based on the model of [4], following
[1], is written in MATLAB 5 [5] to solve for the radius
of contact. Several material combinations will be inves-
tigated. These material combinations are: lead/stainless
steel, silver/nickel, lead/molybdenum, gold/copper and sil-
icone rubber/stainless steel. For all cases the indenter is
selected to be stainless steel. The other contact parameters
such as: the layer thickness, the radius of curvature of the
indenter and applied load will vary as well. The selected
material mechanical and thermal properties are listed in
Table 1:

Table 1. Physical Properties of Materials

Material E ν k
GPa W/mK

Ni 200 204 0.33 79.3
Silver 75 0.33 427
Lead 37 0.33 35.3
SS 304 207 0.33 18.4
Molybdenum 325 0.33 138
Copper 140 0.33 400
Gold 78.5 0.33 317

Once the numerical values have been computed they have
to be presented in graphical form, which will allow further
investigation. To simplify further analysis the bounds of
the contact radius will be defined first. Also, the impor-
tance of the ratio of bounding radii will be investigated and
discussed.
Figure 3a and Fig. 3c show the contact between the hemi-
spherical indenter and a bare flat. For this type of contact,
the general contact elastic solution of Hertz [3] can be used
to obtain the contact radius. Because the contact occurs
between the two contacting bodies, according to the Hertz
theory the contact radius is a function of the applied load
F , the radius of curvature ρ of the indenter and the flat
and the reduced elastic modulus E∗.
If the half-space is composed of an elastic layer bonded to
an elastic substrate, as shown in Fig. 3b, the Hertz the-
ory cannot predict the actual radius of contact because the
contact radius in that case is also a function of the layer
thickness and the layer material properties. However, the
Hertz theory will be used to calculate the minimum and
maximum bounds of the contact radius.
From Fig. 3a or Fig. 3c, it can be seen that as the layer
thickness t approaches zero or infinity, the layered half-
space problem reduces to the Hertzian contact of an elastic
half-space composed entirely of substrate material (sub-
strate bound), or an elastic half-space composed entirely
of the layer material (layer bound). The contact radii aS
and aL for those limits are:

aS =

(
3Fρ

4E∗

S

) 1

3

and aL =

(
3Fρ

4E∗

L

) 1

3

(4)



where the reduced elastic modulus for the substrate and
layer is defined as:

Fig.3 Contact Between Hemisphere
and Layered Substrate
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(5)

For all other values of the layer thickness the radius of con-
tact will lie between the two bounding radii, Fig. 3b:

aS ≤ a ≤ aL (6)

MECHANICAL MODEL DEVELOPMENT

The unknown contact radius for the layered flats indented
by the hemisphere is a function of nine independent vari-
ables:

a = f (t, F, ρ, Ei, νi) i = 1, 2, 3 (7)

To analyze this contact it is necessary to reduce the num-
ber of independent variables by defining new variables as
function of two or more independent variables. The first
step is to define the dimensionless layer thickness τ and the
ratio of bounding radii α as follows:

τ =
t

a
and α =

aL
aS

(8)

Then, it is necessary to define the dimensionless contact
radius. A similar problem was investigated by McCormick
[6], Matthewson [7] and Jaffar [8]. They introduced the
dimensionless contact radius as the ratio of the contact
radius a and bounding radius corresponding to the layer
bound aL.
The dimensionless contact radius a∗L defined as a/aL was
their only choice because they assumed that the substrate
and the indenter were rigid compared to the layer, which
means that the bounding radius corresponding to the sub-
strate bound is always equal to zero (aS = 0). While this
approach is appropriate in the case where E2 and E3 are
much larger than E1, it would be just a special case of the
general case. By defining the α, τ and a∗L the number of
independent variables is reduced to three.
In this work it is assumed that the layer, substrate and in-
denter are elastic. Following the approach of the previous
researchers the dimensionless contact radius can be defined

either as a/aL or a/aS, but in both cases the dimension-
less radius will be a function of just one bounding radius
instead of two. In order to develop the general mechanical
model for any material combination, dimensionless contact
radius has to be a function of aS as well as aL. Also the
authors would like to define a∗ such the radius bounds are
fixed for any material combination. This is possible simply
by defining a∗ as:

a∗ =
a− aS
aL − aS

(9)

From Eq. (9) it can be seen that for the thick layers the
unknown contact radius is equal to aL and a∗ is equal to
one. When the layer thickness is equal to zero the contact
radius is equal to aS and a∗ is equal to zero. For all other
values of the layer thickness the dimensionless radius of
contact a∗ will lie between the two dimensionless bounding
radii:

0 ≤ a∗ ≤ 1 (10)

By substituting Eq. (4) into Eq. (8) the ratio of bounding
radii α becomes:

α =
aL
aS

=

(
E∗

S

E∗

L

) 1

3

(11)

For any material combination α is only a function of the
cube root of the reduced elastic moduli ratio. Obviously α
is not a function of applied load and the radius of curvature
of the indenter. The value of α can vary from unity, for
the combination where the layer and the substrate are com-
posed of the same material, to the some very large value,
for the combination where the Young’s modulus of elastic-
ity of the substrate and the indenter is much larger than
that of the layer.
Table 2 gives values of α, E∗

S/E
∗

L and EL/ES for material
combinations considered in this work.

Table 2. Values of α for Different Material Combinations

Material Combination α E∗

S/E
∗

L EL/ES

Lead/Molybdenum 2.04 8.45 20.30
Lead/ SS 304 1.45 3.07 5.59
Silver/Nickel 1.23 1.86 2.72
Gold/Copper 1.14 1.47 1.78

It was found that for any metal to metal combination the
value of α lies in the range:

1 ≤ α ≤ 2.5 (12)

The value of α can be less than unity, but because of the
basic assumption that the layer is always less rigid than
the substrate this case will not be considered. As the value
of α increases the difference between EL and ES becomes
larger. For example for α = 2.5, the difference between EL

and ES is: EL/ES ≈ 40. In that case it can be assumed
that the indenter and the substrate are rigid compared to
the layer. Stevanović and Yovanovich [9] developed a pro-
cedure for computing the unknown radius of contact for
the case where α > 2.5.



Solutions were obtained for four material combinations.
These material combinations are lead/stainless steel, sil-
ver/nickel, lead/molybdenum and gold/copper. As can be
seen, these combinations are sufficient to describe a prac-
tical range of material combinations spanning the range of
the ratio of bounding radii given by 0 < α < 2.5.

By plotting the dimensionless contact radius a∗ versus di-
mensionless layer thickness τ a family of curves, each cor-
responding to a different value of α would be obtained.
Examination of those curves does not allow immediate in-
terpolation to material combinations that have not been
considered in this work. This is due to the normalization
of the nondimensional thickness with respect to the con-
tact radius. To collapse all curves into a single curve it is
necessary to introduce a new dimensionless thickness as a
function of τ as well as α.

The layer thickness was nondimensionalized as:

τ∗ =

(
t

a

√
α

) 1

3

(13)

Through the use of τ ∗ all of the solutions collapse to essen-
tially a single curve. The numerical results of a∗ plotted as
a function of τ∗ are presented in Fig. 4.

The exponential function was chosen as a result of the close
similarity of the numerical results to this function. It was
found that the correlation equation:

a∗ = 1− exp
(
−π1/4 (τ √α)π/4) (14)

suitably describes the numerical data through all ranges of
layer thickness.

Since the unknown contact radius a appears on both sides,
equation requires an iterative method to find its root. The
Newton-Raphson method can be used to obtain the root.
The first guess for the interative procedure is based on the
average

ā =
aS + aL

2

After one iteration the radius converges to five digit accu-
racy. The solution is presented in the following form:

a = aS+(aL − aS)
(
1− exp

(
−π1/4

(
t
√
α

a0

)π/4
))

(15)

where a0 is defined as:

a0 = aS + (aL − aS)
(
1− exp

(
−π1/4

(
t
√
α

ā

)π/4
))

(16)
Equation (15) is the first existing closed form solution for
the unknown contact radius. The maximum difference be-
tween the correlation and the model of [4] is always less
than 1% for any value of τ .
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Fig. 4 a∗ vs. τ∗

EXPERIMENT

To verify the model analytical predictions the thermal con-
tact resistance measurements were performed for the bare
flat. Also, the model is compared with the experimental
data of [1] for the silver-nickel combination. The main
reason for performing the thermal contact resistance mea-
surements on a bare flat is to verify the zero layer thickness
case, which is the upper bound on the contact resistance
for the layered flat. Detailed descriptions of the test col-
umn and experimental procedure are given by Stevanović
[10].
The value of the experimental contact resistance (Rexp) is
calculated as the temperature drop at the contact (∆Tj)
divided by the heat flow rate at the contact:

Rexp =
∆Tj

(Qupper +Qlower) /2
(17)

The temperature drop at the contact (∆Tj) was computed
as the difference in the extrapolated surface temperatures
of the hemispherical indenter (Te2) and test specimen (Te1):

∆Tj = Te2 − Te1 (18)

and Qupper and Qlower are heat flow rates through the
upper and lower heat flux meters.

Bare Flats

For this series of tests a 38.1mm carbon steel hemispher-
ical indenter and an Armco iron substrate were used as
the specimens. Thermo-mechanical properties for the sub-
strate and indenter are: E2 = 204GPa, k2 = 72.4W/mK,
ν2 = 0.3, E3 = 207GPa, k3 = 43.3W/mK, ν3 = 0.292.
The thermal contact resistance measurements are summa-
rized in Table 3 and plotted versus applied load in Fig. 5.
Table 3 also summarizes the thermal contact resistance the-
oretical values assuming pure elastic contact, elastic-plastic
and pure plastic contact.
The percentage difference is defined as the relative differ-
ence between the experimental and theoretical resistance



Table 3. Comparison of Experimental Results and Theory for Bare Flat

Load Rexp Rep Relastic Rplastic % diff. % diff. % diff.
(N) (K/W ) (K/W ) (K/W ) (K/W ) exp− ep exp− elastic exp− plastic
25.0 44.3 49.1 49.4 104.2 -9.8 -10.3 -57.5
62.4 33.9 35.7 36.0 65.4 -4.9 -5.9 -48.2
145.7 26.1 26.1 26.7 42.1 0.0 -2.2 -38.0
157.8 24.2 25.3 25.9 40.3 -4.3 -6.6 -40.0
263.0 20.4 20.8 21.6 30.8 -2.0 -5.4 -33.8
301.0 19.7 19.8 20.6 28.8 -0.5 -4.2 -31.5
344.9 19.1 18.8 19.6 26.8 1.7 -2.6 -28.7
396.8 18.1 17.8 18.7 24.9 1.7 -3.0 -27.3

computed as follows:

% diff. =
Rexp −Rtheory

Rtheory
× 100% (19)

At the start of the experimental measurements it was ini-
tially assumed that the contact between contacting bodies
is pure elastic, so the contact radius used to calculate the
theoretical resistance was found using the Hertzian theory.
The theoretical curve for pure elastic contact is shown as
a dashed line in Fig. 5.

Agreement between the experimental resistance and theo-
retical resistance, based on the Hertzian theory, is relatively
good with a maximum difference of 10.3%, but as can be
seen the Hertzian theory always over predicts the measured
resistance. This is because the contact is not pure elastic
but rather elastic-plastic.
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Fig. 5 Thermal Resistance vs. Applied Load

To verify this assumption the range of elastic and plastic
behavior as a function of critical load Fc needs to be ex-
amined. The critical load is the load for which the elastic
and the plastic theories predict the same value for the con-
tact radius. The critical load Fc is a function of material
properties and the contact geometry.

Archard [11] developed a simple technique for predicting
the load range for elastic, elastic-plastic and plastic con-

tact as a function of the critical load defined as:

Fc =
9π3

16
H3

( ρ

E∗

)2
(20)

Three load ranges are:

Pure elastic: F ≤ 1

15
Fc

Elastic-plastic:
1

15
Fc < F < 15Fc

Pure plastic: F ≥ 15Fc

For the performed tests the value of hardness is H =
103 kg/mm2. The calculated critical load is Fc = 2030N ;
the elastic-plastic transition load range begins at F =
1/15Fc = 135N and ends at F = 15Fc = 30.4kN . The
load range used in this experiment is from 25N to 400N .
Obviously for loads greater than 135N the effect of plastic
deformation cannot be neglected and must be included in
the theoretical contact resistance predictions.
The radius of contact within the elastic-plastic load range
can be calculated using the Churchill and Usagi [12] sug-
gestion to blend asymptotic solution for pure elastic (using
Hertzian theory) and pure plastic behavior:

aep =
[
ane + anp

]1/n
(21)

where n = 5 is a blending parameter. This value of n is
chosen because for n = 5 the transition begins at approx-
imately F = 1/15Fc = 135N and ends at approximately
F = 15Fc = 30.4 kN as is shown in Fig. 6.
Contact radius for pure plastic contact is calculated as fol-
lows [1]:

ap =

[
F

πH

]1/2
(22)

Agreement between the experimental resistance and the-
oretical resistance based on the elastic-plastic correction,
shown as a thick continuous line in Fig. 6, is much better
than for the case when we assume the pure elastic con-
tact. Except for the first data point (-9.8%) the difference
is always less than 5%. Obviously the correction for the
elastic-plastic behavior gives much better results.



Layered Flats

Fisher [1] performed thermal contact resistance measure-
ments for a silver layer on a nickel substrate for different
layer thicknesses. A series of three tests were performed for
the layer thicknesses of 60, 110 and 900 µm, and an applied
load range from 23.9N to 688N .

For each test two curves representing theoretical predic-
tions of [1] and proposed model predictions are plotted
along with the experimental thermal resistance data.

Experimental Results for t = 60µm. For this test se-
ries the results are plotted versus applied load in Fig. 7;
the agreement with the experimental data is good. For
this test series the proposed model shows better agreement
with experimental data than the model of [1]. Except for
the first experimental point the experimental resistance is
always lower than the theoretical values. For the next six
experimental points the difference is less than 10%.
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At higher loads the difference increases to the maximum of
20.7%. The reasons for this behavior are the same as for
the bare flat. The critical load for nickel is 2050N and the
elastic-plastic transition load range begins at 135N .

From Fig. 7 it can be seen that for loads lower than 135N
the experimental data are in good agreement with the the-
oretical predictions, accept for the first data.

As the load increases the slope of the experimental data is
becoming steeper because the contact behavior is elastic-
plastic due to the plastic yielding of the nickel substrate.

Experimental Results for t = 110µm. Test results are
plotted versus applied load in Fig. 8. For light loads the
theoretical resistance is 20% lower then the experimental
resistance. This difference is consistent indicating a bias
error rather then random error. Similarly in the previous
section it can be see from Fig. 8, that for loads greater
than 135N elastic-plastic behavior occurs and the experi-
mental data are changing slope.

Experimental Results for t = 900µm. Results are plot-
ted versus applied load in Fig. 9. In this test series the
experimental data are in excellent agreement with the pro-
posed model predictions as well as with the model predic-
tions of [1] over the full range of applied load. The proposed
model shows slightly better agreement than model predic-
tions of [1]. The measured resistance is always greater then
the model predictions. The maximum difference is 10.5%
at 120N . The data do not show the elastic-plastic be-
havior observed in the other tests because the silver layer
is relatively thick proving that the elastic-plastic behavior
observed in previous sections is related to the nickel sub-
strate.
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Fig. 7 Experimental Results for t = 60µm
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Fig. 8 Experimental Results for t = 110µm

Good agreement is observed between the experimental re-
sults and theoretical predictions for light loads. Compar-
isons with the approximate model of [1] shows that the
proposed model has slightly better agreement with the ex-
perimental values, for a given material combination. For
higher loads the proposed model always overpredicts the
measured resistance due to plastic deformation in the nickel
substrate.



Archard’s elastic-plastic correction can not be applied di-
rectly, for the layered flats, because the layer and substrate
have different hardness. Because the contact radius is a
function of layer thickness and the ratio of the bounding
radii, α, it would be necessary to make Archard’s correc-
tions for the bounding radii (aS and aL) first and then
using the “corrected” aS and aL simply applying the pro-
posed mechanical model to find the corresponding contact
radius.
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Fig. 9 Experimental Results for t = 900µm

There is another possible way to make necessary correc-
tions for the elastic-plastic behavior. To apply Archard’s
technique the effective hardness of the layer/substrate com-
bination can be used to predict the contact radius for pure
plastic contact, ap. Antonetti and Yovanovich [13] demon-
strated the method for computing the effective hardness for
layered substrates. By substituting the “corrected” value
for ap in Eq. (21) the radius of contact corrected for elastic-
plastic behavior can be found.

SUMMARY AND CONCLUSIONS

An approximate model for finding the contact radius of
an elastic hemispherical indenter in contact with an elastic
layer on an elastic substrate is presented in the form of a
close-form equation for the unknown radius of contact.
The proposed mechanical model does not require any
“transition” point and it is applicable for any metallic
layer-substrate material combination (α < 2.5). The me-
chanical model can be used to predict the contact radius
for any layer thickness (0 ≤ t ≤ ∞).
The agreement between the experimental data and theo-
retical predictions is very good for light loads within the
elastic load range. At the higher loads the theory over-
predicts the measured thermal resistance due to plastic
deformation of the substrate. With the theoretical predic-
tions corrected for elastic-plastic contact behavior excellent
agreement between theoretical predictions and experimen-
tal measurements is obtained for the full load range. Future

work is recommended to verify experimentally the model
predictions for other layer-substrate combinations.
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