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Natural Convection Inside Vertical Isothermal
Ducts of Constant Arbitrary Cross Section
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A model for steady laminar natural convection inside vertical, arbitrarily shaped isothermal ducts of constant
cross section is presented. The model is based on a combination of asymptotic solutions for fully developed and
developing, boundary-layer � ow. The fully developed asymptote model utilizes forced convection, internal � ow
modeling techniques, and an approximate model is presented, which is valid for a wide range of duct shapes and
aspect ratios. The model is validated using experimental data and numerical results from the literature for a variety
of duct shapes, including the triangle, square, circle, rectangle and the special case of parallel plates. The model is
in good agreement with all of the data, with an rms percent difference of 10% or less in most cases.

Nomenclature
A = cross-sectionalarea, m2

a = major axis of ellipse, rectangle,m
b = minor axis of ellipse, rectangle,m
C1¡3 = correlation coef� cients, Eq. (11)
c; NClam = correlation coef� cients, Eq. (14)
cp = speci� c heat, J/kg K
D = diameter of circular duct, m
Dh = hydraulic diameter,´4A=P , m
E.¢/ = complete elliptic integral second kind
fReL = friction factor—Reynolds number, Eq. (18)
GrL = Grashof number,´ [g¯.Tw ¡ T0/L3]=º2

g = gravitationalconstant, m/s2

h = average heat transfer coef� cient, W/m2 K
k = thermal conductivity,W/m K
L = duct length, m
L ? = dimensionless duct length,´ L=.LRaL/
L = general characteristic length, m
NuL = Nusselt number,´ .QL/=[k A.Tw ¡ T0/]
n = combination parameter, Eq. (28)
P = duct perimeter, m
Pr = Prandtl number, º=®
p = pressure, Pa
R = radius of circular duct, m
RaL = Rayleigh number,´ GrL ¢ Pr
ReL = Reynolds number,´ . NwL/=º
r; z = radial coordinates
rh = hydraulic radius,´ 2A=P , m
Tw = uniform wall temperature, K
T0 = inlet temperature, K
V = velocity (vector), m/s
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Nw = mean velocity, m/s
® = thermal diffusivity,k=½cp , m2/s
¯ = thermal expansion coef� cient, K¡1

² = aspect ratio,´ b=a
» = characteristic length, Eq. (12), ´ rh=. fRerh /1=3, m
· = elliptic integral modulus
¹ = dynamic viscosity, Ns/m2

º = kinematic viscosity, ¹=½, m2/s
µ = temperature difference,´ T .r/ ¡ T0

½ = density, kg/m3

Ã = shape parameter, Eq. (13), ´ fRerh

Subscripts
p

A = based on characteristic length
p

A
bl = boundary layer
Dh = based on characteristic length Dh

fd = fully developed
rh = based on characteristic length rh

w = wall
0 = inlet

Superscripts

C = circular
P = polygonal

Introduction

S TEADY natural convection inside isothermal vertical ducts of
constant cross section of arbitrary shape is a fundamental prob-

lem that occurs in a variety of applications.The problemof interest,
as shown in Fig. 1, consists of a vertical duct of length L , constant
perimeter P, and uniform cross-sectionalarea A. The inner wall of
the duct is maintained at a uniform temperature Tw , and the � uid
temperature at the duct inlet located at z D 0 is T0 . Assuming that
Tw > T0 , there will be a buoyancy-driven � ow through the duct in
the positive z direction,and convectionheat transferwill occur from
the duct wall into the � uid.

A number of researchers have published experimental and nu-
merical data in the literature for various cross-sectional shapes.
Elenbaas1 presented experimental measurements for a wide vari-
ety of cross sections, including the triangular, circular, and square
ducts, as well as the 2:1 and 5:1 rectangular ducts. For the circular
duct Davis and Perona2 report the results of numerical simulations,
whereas Dyer3 presents experimentaldata. In the case of the square
duct, Ramakrishna et al.4 present data obtained from a numerical
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Fig. 1 Schematic of physical problem.

Fig. 2 Duct cross sections.

study. The remaining studies are limited to the vertical parallel
plates, such as the experimentalmeasurementsof Elenbaas5 and the
numerical resultsof Miyatake and Fujii6 and O� and Hetherington.7

There are three models currently available in the literature for
natural convection in vertical isothermal ducts: Elenbaas,1 Aihara,8

and Raithby and Hollands.9 Each of these models is applicable for
noncircular ducts through the use of the hydraulic radius as the
characteristic length:

rh D 2A=P (1)

However, these models are applicable only for ducts with cross-
sectional aspect ratio approximately equal to one; for the small as-
pect ratio rectangular or elliptical ducts the predictions of these
models can vary signi� cantly from the available empirical results.
There are currently no models available for arbitrarily shaped ducts
for the full range of aspect ratio from unity, that is, circular duct to
zero or parallel plates.

The objective of the current study is to develop a natural convec-
tion model for the full range of the Rayleigh number for arbitrarily
shaped, singly connected constant cross-sectionducts over the full
range of aspect ratio, 0 < ² · 1, as shown in Fig. 2. The model will
be validatedusing the availableexperimentaland numericaldata for
a variety of duct shapes, including the limiting case of the vertical
parallel plates.

Problem Description
The governingequationsfor the problemof interest—naturalcon-

vection in a vertical, isothermal duct with uniform cross section—
can be expressed in vector notation as follows:

Continuity:

r ¢ V D 0

Momentum:

½V ¢ rV D ¡g¯µ C ¹r2V

Energy:

V ¢ rµ D ®r2µ

with temperature difference µ D T .r/ ¡ T0 . The boundary condi-
tions at the inlet are

V D 0; µ D 0

and at the duct walls

Vw D 0; µ D µw D Tw ¡ T0

The total heat-transfer rate from the duct walls to the � uid is

Q D
Z Z

A

¡ k
@µ

@n


w

dA (2)

where the heat-transfer area is A D PL. The dimensionless heat-
transfer rate is characterizedby the Nusselt number:

NuL D
QL

k A.Tw ¡ T0/
(3)

The independent variables are nondimensionalized using the
Rayleigh number, de� ned using the general scale length:

RaL D
g¯.Tw ¡ T0/L3

®º
(4)

For the natural convection duct problem it is convenient to modify
the Rayleigh number by the aspect ratio, expressed as a function of
the general scale length parameter L. The resulting dimensionless
parameter, sometimes called the channel Rayleigh number, is

RaL
L
L

D
g¯.Tw ¡ T0/L3

®º

L
L

(5)

The dimensionlessduct length is de� ned as the inverse of this mod-
i� ed Rayleigh number:

L ? D L=LRaL (6)

Review of Previous Models
Elenbaas1 is widely regarded as the � rst to study natural convec-

tion in ducts. He developeda model, validatedby experimentaldata
for a wide range of duct cross sections, based on the asymptotic so-
lutions of fully developed and developing � ow. Assuming that, for
fully developed � ow µ.r/ ! µw as L ? ! 1, the following relation
for the area average heat-transfer coef� cient for the circular duct
was obtained:

hR

k
D ½cp Nw

k

AR

PL
; Nw D

g¯µw R2

8º
(7)

For fully developed � ow in the circular duct of radius R, Elenbaas1

reported the following Nusselt–Rayleigh number relation:

NuR D hR=k D 1
16 .R=L/RaR (8)

For noncircularducts the hydraulic radius was recommended as the
scale lengthL D rh D 2A=P , and the relationrecommendedfor fully
developed � ow for ducts of noncircularcross section was

Nurh D
¡
1
¯

fRerh

¢
.rh=L/Rarh (9)

where the friction factor Reynolds number product fRerh can be
obtained from forced laminar � ow studies.

The solution for natural convection from an isothermal vertical
� at was used for the developing � ow asymptote L? ! 0:

NuL D 0:60Ra
1
4
L (10)

where the scale length for this asymptote is the plate height
L D L. For intermediate values of the � ow parameter 0 < L ? < 1,
Elenbaas1 developed the following combined relationship for arbi-
trarily shaped ducts:

Nurh D
Grrh Pr

fRerh

rh

L

"

1 ¡ exp

(
¡

³
C1

Grrh Pr

L

rh

´C2
)#C3

(11)
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Because Elenbaas used two different scale lengths, it was neces-
sary for him to � nd a means of combining the asymptotic results
into a comprehensivemodel. This was accomplishedby a judicious
choice of the coef� cients C2 and C3, which must satisfy the condi-
tion C2C3 D 3

4
.

Elenbaas obtained experimental air data for ducts with a variety
of cross sections, including triangular, circular, square, rectangular
with aspect ratios2:1 and 5:1, and parallelplates.Elenbaasobserved
that the use of the hydraulic radius as the scale length produced a
family of parallel curves for the different cross sections for small
values of the independent parameter .rh=L/Rarh < 10 and that all
curves converged for large values .rh=L/Rarh > 500.

Aihara8 reviewed the work of Elenbaas1 and developed a model
in which both the Nusselt and Rayleigh numbers are based on a new
scale length:

» D rh

¯¡
fRerh

¢ 1
3 (12)

Using this scale length, Aihara8 modi� ed the correlation equation
of Elenbaas1 as follows:

Nurh D
Grrh Pr

Ã

rh

L

"
1 ¡ exp

(
¡Ã

³
0:5

Grrh Pr

L

rh

´ 3
4

)#
(13)

where the shape parameter was de� ned as the friction factor—
Reynolds number product, Ã D fRerh . By recasting the experimen-
tal dataofElenbaas1 in termsof Nu» and .»=L/Ra» , Aihara8 demon-
strated that thedata for very small and very largevaluesof .»=L/Ra»

approached a single curve for all duct cross sections including the
parallel plates data.

Raithby and Hollands9 proposed the following comprehensive
model for arbitrary cross sections based on the Churchill and Usagi
method10 of combining asymptotic solutions:

Nurh D

8
<

:

³
Rarh

fRerh

´¡1:5

C

"
c NClam

³
rh

L
Rarh

´ 1
4

#¡1:5
9
=

;

¡ 1
1:5

(14)

valid over the range .rh=L/Rarh · 104, where NClam D 0:62 for air
(Pr D 0:71). Through a � t of the available empirical data, the value
for the correlation coef� cient c was determined: c D 1:17.

The correlation equations of Raithby–Hollands9 and Elenbaas1

for the circular duct with air cooling are in relatively close agree-
ment, with differences in the range of 2–9%, for small and large
values of the duct Rayleigh number, while a relatively large differ-
ence of up to 25% appears in the transition region.

Model Development
Asymptotic Limits

This problem of fully developed � ow in constant cross sections
has been analyzed in the forced convection literature quite exten-
sively, such as Shah and London.11 Assuming negligible inertial
forces, the momentum equation for an arbitrarily shaped cross sec-
tion reduces to

r2w D ¡g¯µw=º (15)

Thus, the mean natural convectionvelocity can be obtainedby solv-
ing the momentum equation (15) only. Equating Eq. (15) with the
classical momentum equation for fully developed forced duct � ow

r2w D 1

¹

dp

dz
(16)

gives the following relationship for the axial pressure gradient:

dp

dz
D ¡½g¯µw (17)

Combining the friction factor—Reynolds number product fRe,
de� ned as

fReL D 2
.A=P/.¡dp=dz/L

¹ Nw
(18)

with Eq. (17) results in the followingexpressionfor the mean natural
convection velocity for fully developed � ow Nw:

Nw D 2
.A=P/½g¯µwL

¹ fReL
(19)

Assuming that, for fully developed � ow µ.r/ ! µw as L ? ! 1, an
energy balance over the full length L of the duct gives

h.P L/µw D ½ NwAcpµw (20)

NondimensionalizingusingtheNusseltnumberbasedon thegeneral
scale lengthL and combiningwith the mean velocity,Eq. (19), gives
the following expression for the fully developed � ow asymptote:

NuL D
hL
k

D 2
RaL.L=L/

fReL

³
A

PL

´2

(21)

Using the hydraulic diameter Dh D 4A=P as the scale length,
Eq. (21) reduces to

Nu f d D
RaDh .Dh=L/

8 fReDh

(22)

When the square root of the cross-sectionalarea is used as the scale
length L D

p
A, Eq. (21) becomes

Nu f d D 2
Rap

A

¡p
A

¯
L

¢

fRep
A

³p
A

P

´2

(23)

Muzychka12 demonstrated that the use of
p

A as the scale length
is preferable because the group fRep

A is a very weak function of
shape and only depends upon the aspect ratio of the duct. Table 1
showsvaluesof theparameter fRe for both Dh and

p
A lengthscales

for the polygonal duct shapes. The variation between the triangular
duct and the circular duct has been reduced to approximately 7%
from 17% when

p
A is chosen as the characteristic length. This

behavior is also evident for elongatedducts, such as the rectangular
and elliptic cross sections. Table 2 shows the results for both length
scales for the rectangular and elliptic ducts. Again, the variation is
reduced to approximately 7% from 31%.

Muzychka12 also showed that many other complex duct shapes
are easily predictedwithin §10% using Eq. (24), as shown in Fig. 3
for a variety of noncircular ducts. Also included in Fig. 3 is the
exact closed-form solution for the elliptic cross section, which can
be used as an approximation for other duct shapes. The fRep

A for
the elliptic duct is given by12

fRep
A D 8

p
¼

"
¼

4

.1 C ²2/
p

²E
¡p

1 ¡ ²2
¢
#

(24)

Table 1 f Re results for polygonal geometries

N fRe11
Dh

³
fReP

fReC

´

Dh
fRe12p

A

³
fReP

fReC

´

p
A

3 13.33 0.833 15.19 1.071
4 14.23 0.889 14.23 1.004
5 14.73 0.921 14.04 0.990
6 15.05 0.941 14.01 0.988
7 15.31 0.957 14.05 0.991
8 15.41 0.963 14.03 0.989
9 15.52 0.970 14.04 0.990
10 15.60 0.975 14.06 0.992
20 15.88 0.993 14.13 0.996
1 16 1.000 14.18 1.000
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Table 2 fRe results for elliptical and rectangular ducts

fRe11
Dh

fRe12p
A

b=a Rectangular Elliptical

³
fReR

fReE

´

Dh
Rectangular Elliptical

³
fReR

fReE

´

p
A

0.01 23.67 19.73 1.200 119.56 111.35 1.074
0.05 22.48 19.60 1.147 52.77 49.69 1.062
0.10 21.17 19.31 1.096 36.82 35.01 1.052
0.20 19.07 18.60 1.025 25.59 24.65 1.038
0.30 17.51 17.90 0.978 20.78 20.21 1.028
0.40 16.37 17.29 0.947 18.12 17.75 1.021
0.50 15.55 16.82 0.924 16.49 16.26 1.014
0.60 14.98 16.48 0.909 15.47 15.32 1.010
0.70 14.61 16.24 0.900 14.84 14.74 1.007
0.80 14.38 16.10 0.893 14.47 14.40 1.005
0.90 14.26 16.02 0.890 14.28 14.23 1.004
1.00 14.23 16.00 0.889 14.23 14.18 1.004

Fig. 3 f Re p
A for various duct cross sections.

where E.¢/ is the complete elliptic integral of the second kind and
0:01 < ² D b=a · 1 is the aspectratioof the duct.Although E .·/ can
be computed by polynomial approximationsand series expansions
for small and large arguments,13 the following expression provides
accurate approximations to within 0:2% for all ² > 0:001:

E
¡p

1 ¡ ²2
¢

D ¼

4
.1 C ²/

f64 ¡ 3[.1 ¡ ²/4=.1 C ²/4]g
f64 ¡ 16[.1 ¡ ²/2=.1 C ²/2]g

(25)

As shown in Tables 1 and 2, the maximum difference between the
exact valuesof fRep

A presented in Shah and London11 for common
duct shapes and the model is reduced from approximately17 to 7%.

The boundary-layerlimit based on the duct length as scale length
given by Elenbaas1 is

N uL D 0:6Ra
1
4
L (26)

Substituting
p

A as the scale length gives

Nubl D 0:6
£
Rap

A

¡p
A

¯
L

¢¤ 1
4 (27)

Composite Model

A composite model using the method of Churchill and Usagi10

is developedby combining the asymptotic solutions for fully devel-
oped and boundary-layer� ow in the following manner:

Nup
A D

£
.Nu fd/¡n C .Nubl/

¡n
¤¡1=n

(28)

Substituting the relationships from Eqs. (23) and (27) into the gen-
eral expression yields

Fig. 4 Model for polygonalducts.

Nup
A D

("

2
Rap

A

¡p
A

¯
L

¢

fRep
A

³p
A

P

´2
#¡n

C

"

0:6

³
Rap

A

p
A

L

´ 1
4

#¡n)¡1=n

(29)

where n ¼ 1:25 was found to minimize the rms difference of the
available data when compared with the proposed model. A combi-
nation parameter, which is a function of aspect ratio, can be used
to obtain greater accuracy for a wide range of duct shapes and as-
pect ratio. Raithby and Hollands9 recommend values of n D 1:03
for the circular duct, n D 1:9 for the parallel plates, and n D 1:5 for
noncircular shapes.

The model predictionsare shown in Fig. 4 for the full range of the
independent parameter Rap

A.
p

A=L/ for the following polygonal
shaped ducts: triangle, square, and circular. The model is clearly
independentof geometry at the boundary-layerlimit, and the varia-
tion between the model curves for fully developed � ow for the full
range of polygonal duct shapes, 3 · N < 1, has been minimized
by the use of

p
A as the scale length.

Figure 5 shows the model predictions for the rectangular ducts
having aspect ratios in the range 1 ¸ ² ¸ 0:01, correspondingto the
square duct and parallel plate channel, respectively.Once again, the
model is geometricallyindependentat the boundary-layerlimit, but
the changes in aspect ratio result in large variations between the
model curves at the fully developed � ow limit.

Model Validation
The model for the area-average Nusselt number for arbitrarily

shaped, constant cross-section isothermal ducts is validated using
experimental and numerical data from the literature for a range of
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Table 3 Validation data for ducts

Shape
p

A=rh fRep
A 4

p
A=P

Triangle1 2.280 15.19 0.877
Square1;4 2 14.23 1
Circle1;2;3 1.772 14.18 1.128
2:1 Rectangle1 2.121 15.55 0.943
5:1 Rectangle1 2.683 19.05 0.745

Fig. 5 Model for rectangular ducts.

Fig. 6 Model validation for triangular ducts.

different duct shapes, as shown in Table 3 and in the following: the
numbers forparallelplates5¡7 are10.

p
A=W /, 119.56 . fRep

A/, and
0.198 .4

p
A=P/. To facilitate this comparison, the data are recast

in terms of the scale length
p

A using the following conversions:

Nup
A D N uL

¡p
A

¯
L

¢
(30)

Rap
A

¡p
A

¯
L

¢
D RaL.L=L/

¡p
A

¯
L

¢4
(31)

In all cases the data presented in the literature were non-
dimensionalizedbased on the hydraulic radius L D rh , and the con-
versionfactor

p
A=rh is shown in Table 3. The parallelplate channel

is treated as a 100:1 aspect ratio rectangularduct. In the fully devel-
oped limit of forced convection, this is a very good approximation,
as demonstratedby Muzychka.12 The data presented in the literature
use the channel width W as the scale length and are recast in terms
of

p
A using Eqs. (30) and (31) using the conversions factors given

previously.
The model, Eq. (29) with n D 1:25, is compared to the available

data for the polygonal ducts—the triangle, square, and circle—in
Figs. 6–8. In Fig. 6 the model is shown to be in good agreement
with the experimental data of Elenbaas1 with an rms difference of
9%. Figure 7 compares the numerical data of Ramakrishna et al.4

Fig. 7 Model validation for square ducts.

Fig. 8 Model validation for circular ducts.

Fig. 9 Model validation for 2:1 rectangular ducts.

and the measurements of Elenbaas1 with the model, where the rms
percent difference between these two data sets and the model are
10 and 13%, respectively. For the circular duct, as shown in Fig. 8,
validation with the numerical data of Davis and Perona2 and the
experimental data of Dyer3 and Elenbaas1 shows an average rms
difference between the available data and the model of 10%.

For the rectangular ducts a combination coef� cient is recom-
mended, which is a function of the aspect ratio of the duct. Based
on the combinationparametervaluen D 2 commonly used in the lit-
eraturefor the isothermalparallelplatechannel14 and valuesofn that
minimize the rms percentdifferencebetween the model and the data
for the square and the 2:1 and 5:1 rectangular ducts, the following
correlation is recommended for the combination parameter as a
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Fig. 10 Model validation for 5:1 rectangular ducts.

Fig. 11 Model validation for parallel plate channels.

function of the aspect ratio:

n D 1:2
¯

²
1
9 (32)

The model is validated with the experimental data of Elenbaas1 for
rectangular ducts of aspect ratio 2:1 and 5:1, as shown in Figs. 9
and 10, where the rms difference between the data and the model
is 9 and 8%, respectively. For the limiting case of the parallel plate
channel, the rectangular channel model with ² D 0:01 is compared
with the experimentaldata of Elenbaas5 and the numerical resultsof
Miyatake and Fujii6 and O� and Hetherington,7 as shown in Fig. 11.
The rms differencebetween the measured data of Elenbaas5 and the
model is 6%, whereas the average rms difference for the numerical
results is 9%.

Conclusions
A model is developedfor steady natural convection in isothermal

verticalducts of constantcross sectionof arbitraryshape.The model

combinesasymptoticsolutionsof fully developed� ow and develop-
ing,boundary-layer� ow intoa singleexpression[Eq. (29)], valid for
the full rangeof the modi� ed Rayleigh number.The fully developed
� ow asymptote is basedon forcedconvectioninternal � ow analyses.
An approximate model for the friction factor—Reynolds number
product for polygonal and rectangularducts is presented [Eq. (24)],
where the elliptic integral can be approximated by Eq. (25). For
rectangularor elliptic ducts with aspect ratios less than unity, a cor-
relation of the combination parameter is provided [Eq. (32)]. The
model has been validated using the available experimental and nu-
merical data from the literature, with a typical rms difference of
10% or less.
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