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Introduction
Thermal spreading resistance results from discrete heat sou

in many engineering systems. Typical applications include coo
of electronic devices both at the package and system level,
cooling of power semi-conductors using heat sinks. In these
plications, heat dissipated by electronic devices is conduc
through electronic packages into printed circuit boards or h
sink baseplates which are convectively cooled. In heat sink ap
cations the convective film resistance is replaced by an effec
extended surface film coefficient.

Analytical results for an eccentric heat source on a finite re
angular flux channel are obtained for isotropic and compound
tems. These solutions may be used to model single or multi-so
systems by means of superposition. The present approach d
from other methods@1–3#, in that the heat source specification
incorporated in the definition of the thermal boundary conditio
rather than in the governing partial differential equation. This
sults in analytical expressions which can be easily manipulate
most advanced mathematical software packages@4–7#.

The general solution for the spreading resistance of a sin
constant flux eccentric heat source with convective or conduc
cooling at one boundary will be presented, see Fig. 1. A review
the literature reveals that this particular configuration has not
been analyzed@8#. The two-dimensional eccentric strip he
source for a semi-infinite flux channel was obtained by Veziro
and Chandra@9#. While the solution for a centrally located he
source on an isotropic rectangular plate was obtained by Kr
@10#. Recently, Yovanovich et al.@11# obtained a solution for a
centrally located heat source on a compound rectangular
channel.

The general solution will depend on several dimensionless g
metric and thermal parameters. In general, the total resistan
given by

RT5R1D1Rs (1)

whereRs is the spreading resistance andR1D is the one dimen-
sional resistance of the system given by

R1D5
t1

k1Ab
1

1

hAb
(2)
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whereAb5ab, andh is a heat transfer coefficient which may b
a contact conductance or effective fin conductance.

The total thermal resistance is defined as

RT5
T̄s2Tf

Q
(3)

whereT̄s is the average source temperature given by

T̄s5
1

As
E E

As

T~x,y,0!dAs (4)

The thermal resistance for the configuration shown in Fig. 1
a function of

R5 f ~a,b,c,d,Xc ,Yc ,t1 ,h,k1! (5)

Problem Statement
The governing equation for the system shown in Fig. 1

Laplace’s equation

¹2T5
]2T

]x2 1
]2T

]y2 1
]2T

]z2 50 (6)

which is subjected to a uniform flux distribution

]T

]zU
z50

52
~Q/As!

k1
(7)

within the heat source area,As5cd, and

]T

]zU
z50

50 (8)

outside the heat source area, and a convective or mixed boun
condition on the bottom surface

]T

]zU
z5t1

52
h

k1
@T~x,y,t1!2Tf # (9)

In extended surface applications such as heat sinks, the valu
h is replaced by an effective value which accounts for both
heat transfer coefficient on the fin surface and the increased
face area

heff5
1

AbRfins
(10)
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Along the edges of the plate, the following conditions are a
required:

]T

]xU
x50,a

50 (11)

and

]T

]yU
y50,b

50 (12)

The general solution for the total thermal resistance and t
perature distribution will be obtained for the system shown in F
1. In a later section, the solution will be extended to compou
systems as shown in Fig. 2.

In a compound system Laplace’s equation must be solve
each layer. In addition to the boundary conditions specified for
isotropic system, the following conditions with perfect contact
the interface are required:

Fig. 1 Isotropic plate with eccentric heat source

Fig. 2 Compound plate with eccentric heat source
Journal of Electronic Packaging
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T1~x,y,t1!5T2~x,y,t1! (13)

and

k1

]T1

]z U
z5t1

5k2

]T2

]z U
z5t1

(14)

while along the bottom surfacez5t11t2 , the boundary condition
to be satisfied becomes

]T2

]z U
z5t11t2

52
h

k2
@T2~x,y,t11t2!2Tf # (15)

The full solution is obtained for the isotropic case, however
may easily be applied to the compound system with only sli
modification, using the results of Yovanovich et al.@11#.

General Solution
The solution for the isotropic plate may be obtained by me

of separation of variables@12–15#. The solution is assumed to
have the form u(x,y,z)5X(x)* Y(y)* Z(z), where u(x,y,z)
5T(x,y,z)2Tf . Applying the method of separation of variable
yields the following general solution for the temperature exces
the plate which satisfy the thermal boundary conditions alongx
50, x5a) and (y50, y5b)

u~x,y,z!5A01B0z1 (
m51

`

cos~lx!@A1 cosh~lz!1B1 sinh~lz!#

1(
n51

`

cos~dy!@A2 cosh~dz!1B2 sinh~dz!#

1 (
m51

`

(
n51

`

cos~lx!cos~dy!@A3 cosh~bz!

1B3 sinh~bz!# (16)

wherel5mp/a, d5np/b, andb5Al21d2.
The solution contains four components, a uniform flow soluti

and three spreading~or constriction! solutions which vanish when
the heat flux is distributed uniformily over the entire surfacez
50. Since the solution is a linear superposition of each com
nent, they may be dealt with separately. Application of the bou
ary conditions in thez direction will yield solutions for the un-
known constants.

Application of the thermal boundary condition atz5t1 for an
isotropic rectangular plate yields the following result for the Fo
rier coefficients:

Bi52f~z!Ai i 51,2,3 (17)

where

f~z!5
z sinh~zt1!1h/k1 cosh~zt1!

z cosh~zt1!1h/k1 sinh~zt1!
(18)

andz is replaced byl, d, or b, accordingly.
The final Fourier coefficientsAm , An , andAmn are obtained by

taking Fourier series expansions of the boundary condition at
surfacez50. This results in

A15
Q

bck1lmf~lm!

*Xc2c/2
Xc1c/2 cos~lmx!dx

*0
a cos2~lmx!dx

(19)

or

Am5

2QFsinS ~2Xc1c!

2
lmD2sinS ~2Xc2c!

2
lmD G

abck1lm
2 f~lm!

(20)

and
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A25
Q

adk1dnf~dn!

*Yc2d/2
Yc1d/2 cos~dny!dy

*0
b cos2~dny!dy

(21)

or

An5

2QFsinS ~2Yc1d!

2
dnD2sinS ~2Yc2d!

2
dnD G

abdk1dn
2f~dn!

(22)

and

A35
Q

cdk1bm,nf~bm,n!
•

*Yc2d/2
Yc1d/2

*Xc2c/2
Xc1c/2 cos~lmx!cos~dny!dxdy

*0
b*0

a cos2~lmx!cos2~dny!dxdy
(23)

or

Amn5

16Q cos~lmXc!sinS 1

2
lmcD cos~dnYc!sinS 1

2
dndD

abcdk1bm,nlmdnf~bm,n!
(24)

Finally, values for the coefficients in the uniform flow solutio
are given by

A05
Q

ab S t1

k1
1

1

hD (25)

and

B052
Q

k1ab
(26)

Mean Temperature Excess. The general solution for the
mean temperature excess of a single heat source may be obt
by integrating Eq.~16! over the heat source area. Carrying out t
necessary integrations leads to the following expression for
mean source temperature:

ū5 ū1D12(
m51

`

Am

cos~lmXc!sinS 1

2
lmcD

lmc

12(
n51

`

An

cos~dnYc!sinS 1

2
dndD

dnd

14(
m51

`

(
n51

`

Amn

cos~dnYc!sinS 1

2
dndD cos~lmXc!sinS 1

2
lmcD

lmcdnd

(27)

where

ū1D5
Q

ab S t1

k1
1

1

hD (28)

for an isotropic system.

Thermal Spreading Resistance. The thermal spreading re
sistance may now be computed using the mean temperature
cess. In general, the total resistance as defined by Eq.~3!, results
in

RT5
ū

Q
5R1D1Rs (29)

where R1D is the one-dimensional thermal resistance andRs is
the thermal spreading resistance. The thermal spreading r
tance component is defined by the three series solution term
Eq. ~27!.
180 Õ Vol. 125, JUNE 2003
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Compound Systems. In many applications an interface ma
terial may be added to reduce thermal contact conductance an
promote thermal spreading. The solution obtained for the isotro
rectangular flux channel may be used for a compound flux cha
with only minor modifications. In Yovanovich et al.@11# the au-
thors obtained a solution for a compound rectangular flux chan
It is not difficult to show thatf in Eqs. ~20!, ~22!, ~24! can be
replaced by

f~z!5
~ae4zt12e2zt1!1%~e2z~2t11t2!2ae2z~ t11t2!!

~ae4zt11e2zt1!1%~e2z~2t11t2!1ae2z~ t11t2!!
(30)

where

%5
z1h/k2

z2h/k2
and a5

12k

11k

with k5k2 /k1 , andz is replaced byl, d, or b, accordingly. This
simple extension is possible, since the effect of the additio
layer results from solving for the unknown coefficients by app
cation of the boundary conditions in thez direction. The general
solution for all but one of the Fourier coefficients is identical
the case for a central source. Since the spreading resistan
based upon the mean source temperature at thesurfaceof the flux
channel, it is not necessary to resolve the complete system
equations. However, complete solution for all coefficients is
quired for calculating the temperature within the solid.

Additionally,

ū1D5
Q

ab S t1

k1
1

t2

k2
1

1

hD (31)

for a compound system. Application of the above results is o
valid for computing the temperature distribution at thesurfaceof
the baseplate and to compute the spreading resistance. Equ
~30! is merely the reciprocal of a similar expression reported
Yovanovich et al.@11#.

Special Cases
Several special cases of an eccentric heat source may be

tained from the general solution. These are shown in Fig. 3.
lution for a central heat source on an isotropic plate was obtai
by Krane @10#. However, the results are only presented for t
thermal resistance based upon the maximum or centroidal t
perature difference. Recently, Yovanovich et al.@11# obtained the
solution for the spreading resistance of a centrally located h
source on a compound plate. A special case of the solution
Yovanovich et al.@11# is that for an isotropic plate; see Fig. 4

Fig. 3 Special cases of a plate with eccentric heat source
Transactions of the ASME
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Additionally, the remaining cases in Fig. 3 may also be obtain
from the solution for a central heat source using the method
images.

Central Heat Source. The spreading resistance of Yovano
ich et al. @11# is obtained from the following general expressio
which shows the explicit relationships with the geometric a
thermal parameters of the system according to the notation
Figs. 4 and 5:

Rs5
1

2a2cdk1
(
m51

`
sin2~adm!

dm
3 •w~dm!1

1

2b2cdk1
(
n51

`
sin2~bln!

ln
3

•w~ln!1
1

a2b2cdk1
(
m51

`

(
n51

`
sin2~adm!sin2~bln!

dm
2 ln

2bm,n
•w~bm,n!

(32)

where

w~z!5
~e2zt11!z2~12e2zt!h/k1

~e2zt21!z1~11e2zt!h/k1
(33)

If the system is composed of two layers, then

w~z!5
~ae4zt11e2zt1!1%~e2z~2t11t2!1ae2z~ t11t2!!

~ae4zt12e2zt1!1%~e2z~2t11t2!2ae2z~ t11t2!!
(34)

where

%5
z1h/k2

z2h/k2
and a5

12k

11k

Fig. 4 Isotropic plate with central heat source
Journal of Electronic Packaging
ed
of

-
n
nd

in

with k5k2 /k1 . The eigenvalues for these solutions are:dm

5mp/c, ln5np/d andbm,n5Adm
2 1ln

2.

Edge and Corner Heat Sources. The solution obtained by
Yovanovich et al.@11# may also be used to model the three add
tional special cases shown in Fig. 3. By means of symmetry,
solution for the spreading resistance may be obtained by con
ering that each of the special cases represents an element o
system with a centrally located heat source. For an edge sou
the resistance is given byRs52R, and for a corner heat sourc
the total resistance is given byRs54R, whereR is the resistance
of the system composed by mirroring the image~s! of the edge or
corner heat sources to obtain a system with a central heat sou

Semi-Infinite Isotropic Flux Channel. Additional results
may be obtained for semi-infinite flux channels for the case wh
t1→` and the effect of the conductanceh is no longer a factor.
The solution for a semi-infinite flux channel is obtained when t
parameter

f~z!51 (35)

Semi-Infinite Compound Flux Channel. The general ex-
pression forf~z! reduces to a simpler expression whent2→`,
~see Fig. 2!. The solution for this particular case arises from E
~30! with

f~z!5
~e2zt111!k1~e2zt121!

~e2zt121!k1~e2zt111!
(36)

where the influence of the convective conductance has vanis
but the influence of the substrate remains.

Eccentric Strip Solutions. Finally, solutions for both isotro-
pic and compound eccentric strips may be obtained from the g
eral solution. If the dimensions of the heat source extend to two
the boundaries to form a continuous strip, the general solut
simplifies considerably. In Eq.~27!, the general solution consist
of four terms, a uniform flow component, two strip solution
~single summations! and a rectangular source solution~double
summation!. For the case of an eccentric strip, one need o

Fig. 5 Compound plate with central heat source
JUNE 2003, Vol. 125 Õ 181
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consider the appropriate strip solution and the uniform flow so
tion. The remaining summations fall out of the solution whenb
5d or c5a. In the case of semi-infinite eccentric strip solution
Eqs.~35! and ~36! also hold.

Multiple Heat Sources
If more than one heat source is present~see Fig. 6!, the solution

for the temperature distribution on thesurfaceof the circuit board
or heat sink may be obtained using superposition. ForN discrete
heat sources, thesurfacetemperature distribution is given by

T~x,y,0!2Tf5(
i 51

N

u i~x,y,0! (37)

whereu i is the temperature excess for each heat source by it
The temperature excess of each heat source may be com
using Eq.~16! evaluated at the surface

u i~x,y,0!5A0
i 1 (

m51

`

Am
i cos~lx!1(

n51

`

An
i cos~dy!

1 (
m51

`

(
n51

`

Amn
i cos~lx!cos~dy! (38)

with f defined by Eq.~18! or ~30! andA05 ū1D given by Eq.~28!
or ~31!.

The mean temperature of an arbitrary rectangular patch of
mensionscj anddj , located atXc, j andYc, j may be computed by
integrating Eq.~37! over the regionAj5cjdj

ū j5
1

Aj
E E

Aj

udAj5
1

Aj
E E

Aj

(
i 51

N

u i~x,y,0!dAj (39)

Fig. 6 Plate with multiple heat sources
182 Õ Vol. 125, JUNE 2003
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which may be written

ū j5(
i 51

N
1

Aj
E E

Aj

u i~x,y,0!dAj5(
i 51

N

ū i (40)

Using Eqs.~27! and~40! results in the following expression fo
the mean temperature of thejth heat source:

T̄j2Tf5(
i 51

N

ū i (41)

where

ū i5Ao
i 12(

m51

`

Am
i

cos~lmXc, j !sinS 1

2
lmcj D

lmcj

12(
n51

`

An
i

cos~dnYc, j !sinS 1

2
dndj D

dndj
14(

m51

`

(
n51

`

Amn
i

3

cos~dnYc, j !sinS 1

2
dndj D cos~lmXc, j !sinS 1

2
lmcj D

lmcjdndj

Equation~41! represents the sum of the effects of all sourc
over an arbitrary location. Equation~41! is evaluated over the
region of interestcj , dj located atXc, j , Yc, j , with the coefficients
A0

i , Am
i , An

i andAmn
i evaluated at each of theith source param-

eters.
The coordinate system is based on the origin placed at

lower left corner of the plate, and each source is located using
coordinates of the centroid.

Application of Results
To demonstrate the usefulness of the present approach, se

examples of systems containing multiple sources are presen
First, an example is given which shows the effect of a h
spreader on a low conductivity substrate. Next, the method
applied to model a heat sink containing a number of discrete h
sources uniformly located on the baseplate. Finally, a uniform fl
heat source of complex shape is analyzed.

Case 1. In the first case, the dimensions of a plate or circ
board are:a5300 mm, b5300 mm, t1510 mm, h510 W/m2K
and k510 W/mK, with Tf525°C. Two heat sources having d
mensionsc525 mm andd525 mm each. The first source with
power ofQ510 W is located atXc5Yc590 mm and the second
having a power ofQ515 W atXc5Yc5210 mm. The basic equa
tions may be programmed into any symbolic or numerical ma
ematics software package. For the present calculations, the
bolic mathematics program Maple V@4# was employed. A total of
50 terms were used in each of the single and double summat

The results for the meanT̄ and centroidalT̂ temperatures of the
first case are presented in Table 1. In this example the centro
temperatures of each heat source were found to be 84.97°C
108.43°C. A three-dimensional plot of the surface temperat
profile is given in Fig. 7. Comparisons with a generalized Four
series approach of Culham and Yovanovich@16# yields 85.95°C
and 109.92°C. The primary difference between the present

Table 1 Results for case 1 „a…

T̂1 T̄1 T̂2 T̄2 T̄b

Present 84.97 80.56 108.43 101.81 53.
Culham@16# 85.95 80.20 109.92 101.26 53.0
Transactions of the ASME
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proach and that of Culham and Yovanovich@16# is that the presen
work yields simplified expressions which may be easily p
grammed in any Mathematics or Spreadsheet software, whe
the latter uses a numerical least squares approximation to solv
a mixed boundary value problem.

For the same configuration, a thin,t52 mm, highly conductive
layer k5350 W/mK, is added to the original substrate and t
problem reanalyzed. The results are summarized in Table 2. In
example the centroidal temperatures of each heat source
found to be 56.55 and 59.94°C. Comparisons with a general
Fourier series approach of Culham and Yovanovich@16# yields
56.63 and 60.08°C. A three-dimensional plot of the surface te
perature profile is given in Fig. 8. It is clearly seen that addin

Table 2 Results for case 1 „b…

T̂1 T̄1 T̂2 T̄2 T̄b

Present 56.55 56.05 59.94 59.19 53.
Culham@16# 56.63 56.03 60.08 59.16 53.0
Journal of Electronic Packaging
o-
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for

he
this
ere

zed
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a

spreader has reduced the maximum source temperatures con
ably and equalized the temperature.

Case 2. In this example, the baseplate of a heat sink is to
analyzed. The dimensions of the baseplate area550 mm, b
550 mm, k5150 W/mK, t510 mm, and an effective extende
surface heat transfer coefficienth5400 W/m2K. Four sources
having the characteristics summarized in Table 3, are attache
the baseplate assuming negligible contact or interface resista
The temperature results are summarized in Table 4 and in Fig

Case 3. In the final example, a heat source with a compl
shape is analyzed by the present approach. The source is
posed of five square heat sources each having dimensionc
520 mm byd520 mm and dissipating 5 W. The heat sources
arranged in the form of a cross in the center of a plate hav
dimensionsa5100 mm byb5100 mm, thickness oft510 mm.
This results in an irregular shaped isoflux heat source which c
not be solved using conventional approaches. The thermal
ductivity of the plate isk550 W/mK, while h550 W/m2K, and
Tf525°C. The value of the maximum temperature at the cente

6

Fig. 7 Surface temperature for an isotropic plate with two heat sources

Fig. 8 Surface temperature for a compound plate with two heat sources
JUNE 2003, Vol. 125 Õ 183
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the plate is found to be 80.61°C. The area weighted mean so
temperature is found to be 78.87°C. The thermal contour plo
given in Fig. 10.

Discussion
The general solution obtained may easily be coded in a num

of ways. The simplest approach is through the use of mathem
cal programs@4–7#. These packages allow for symbolic and n
merical computation of mathematical expressions. They also
vide graphical functions for generating three-dimensional p
such as those presented earlier. One advantage of these pac
is the minimal effort required to enter the basic equations. Co
putation time varies among packages and is also dependent
the number of sources specified. The present results were obta
using Maple V6@4# with 50 terms in each of the summations.
single source calculation typically required a few seconds. R
sonable convergence with 50 terms is obtained for most proble

Another method of computation which was assessed is the
of computer languages such as C or Basic. Computation tim
much faster with a compiled code, however, a considera
amount of code is required to achieve the same results as t
produced using mathematical software. The method is also a
nable to spreadsheet calculations with or without the use of m
ros. However, the use of macros allows for easier developme

In addition to providing details of the surface temperature d
tribution and centroidal and mean source temperatures, the e
tive thermal resistance may also be computed for each sou
This approach was not taken in the present work, since no un
value of thermal resistance is definable when more than

Table 3 Source characteristics for case 2

Q
W

c
mm

d
mm

Xc
mm

Yc
mm

Source 1 10 10 10 12.5 12.5
Source 2 25 10 10 37.5 12.5
Source 3 20 10 10 12.5 37.5
Source 4 15 10 10 37.5 37.5
184 Õ Vol. 125, JUNE 2003
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source is present. The location and strength of each additional
source will affect the value of thermal resistance for a particu
source of interest.

Finally, if the ambient temperature increases as a result of h
transfer due to the film coefficienth, a wake effect may be ap
proximated in the final solution by defining an ambient tempe
ture which is a function of flow position

Tf5Ti1
Q

ṁCp

x

L
(42)

whereTi is the inlet temperature,ṁ is the mass flow through the
system,Q is the sum of all heat sources, andx/L the local position
in the flow direction.

Summary and Conclusions
General expressions for determining the spreading resistanc

an eccentric isoflux rectangular source on the surface of fi
isotropic and compound rectangular flux channels were presen
The solution for the temperature at the surface of a rectang
flux channel was also presented. It was shown that this solu
may be used to predict the centroidal temperatures for any num
of heat sources using superposition. Additional special case
spreading resistance from single eccentric heat sources on is
pic, compound, finite, and semi-infinite flux channels were a
presented. Finally, it was shown that the solution for a central h
source may be used to compute the spreading resistance for c
and edge heat sources using the method of images. Several a
cations of the general solution to systems with multiple h
sources were also given.

Table 4 Source temperatures for case 2

T̂ T̄

Source 1 97.40 96.85
Source 2 103.82 102.33
Source 3 101.28 100.10
Source 4 99.94 99.07
Fig. 9 Surface temperature for a heat sink with four heat sources
Transactions of the ASME



Fig. 10 Surface temperature for a complex heat source
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Nomenclature

a, b, c, d 5 linear dimensions, m
Ab 5 baseplate area, m2

As 5 heat source area, m2

A0 , Am , An , Amn5 Fourier coefficients
Bi 5 Biot no., hL/k
Cp 5 heat capacity, J/Kg•K

h 5 contact conductance or film coefficient,
W/m2

•K
i 5 index denoting layers 1 and 2

k, k1 , k2 5 thermal conductivities, W/m•K
L 5 arbitrary length scale, m
ṁ 5 mass flow rate, kg/s

m, n 5 indices for summations
N 5 no. of heat sources
Q 5 heat flow rate, W
q 5 heat flux, W/m2

R 5 thermal resistance, K/W
R* 5 dimensionless thermal resistance,[kRL

R1D 5 one-dimensional resistance, K/W
Rs 5 spreading resistance, K/W
RT 5 total resistance, K/W

t, t1 , t2 5 total and layer thicknesses, m
T1 , T2 5 layer temperatures, K

T̄s 5 mean source temperature, K
Tf 5 sink temperature, K
Ti 5 inlet or initial temperature, K

Xc, Yc 5 heat source centroid, m
bm,n 5 eigenvalues,[Alm

2 1dn
2

dn 5 eigenvalues, (np/b)
e 5 relative contact size,[b/a
Journal of Electronic Packaging
ral
au-

lo-
be

ac-

u 5 temperature excess,[T2Tf , K
ū 5 mean temperature excess,[T̄2Tf , K
û 5 centroidal temperature excess,[T̂2Tf , K

ūb 5 mean base temperature excess,[T̄b2Tf ,
K

k 5 relative conductivity,k2 /k1
lm 5 eigenvalues, (mp/a)
f 5 spreading function
t 5 relative thickness,[t/L
z 5 dummy variable, m21
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