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Introduction whereA,=ab, andh is a heat transfer coefficient which may be

Thermal spreading resistance results from discrete heat sour%é:?%r:a:giéotﬂgtﬁt;nféics){aif{:?it'svzg'f?nggn::aance'

in many engineering systems. Typical applications include cooling
of electronic devices both at the package and system level, and i—Tf
cooling of power semi-conductors using heat sinks. In these ap- R;=
plications, heat dissipated by electronic devices is conducted Q
through electronic packages into printed circuit boards or he\%ere? is the average source temperature given by
sink baseplates which are convectively cooled. In heat sink appli- s
cations the convective film resistance is replaced by an effective — 1
extended surface film coefficient. TS:A_f f T(x,y,00dAg (4)
Analytical results for an eccentric heat source on a finite rect- s As
angular flux channel are obtained for isotropic and compound sys-The thermal resistance for the configuration shown in Fig. 1 is
tems. These solutions may be used to model single or multi-sougceunction of
systems by means of superposition. The present approach differs
from other method$1—3), in that the heat source specification is R=f(a,b,c,d,Xc,Y¢,t1,h,ky) (%)
incorporated in the definition of the thermal boundary conditions
rather than in the governing partial differential equation. This ré2roblem Statement
sults in analytical expressions which can be easily manipulated inthe governing equation for the system shown in Fig. 1 is
most advanced mathematical software packages]. Laplace’s equation
The general solution for the spreading resistance of a single
constant flux eccentric heat source with convective or conductive

©)

T T &*T

cooling at one boundary will be presented, see Fig. 1. A review of VAT= IX2 + ﬂ_yz + 972 (6)
the literature reveals that this particular configuration has not yet
been analyzed8]. The two-dimensional eccentric strip heatvhich is subjected to a uniform flux distribution
source for a semi-infinite flux channel was obtained by Veziroglu JT (QIA)
and Chandrd9]. While the solution for a centrally located heat — =— S 7
source on an isotropic rectangular plate was obtained by Krane Jz|,_, ky
[10]. Recently, Yovanovich et a[.11] obtained a solution for a . .
centrally located heat source on a compound rectangular fIW)'(th'n the heat source areAs=cd, and
channel. aT
The general solution will depend on several dimensionless geo- —| =0 (8)
metric and thermal parameters. In general, the total resistance is 9Z|,_o
given by outside the heat source area, and a convective or mixed boundary
condition on the bottom surface
Rr=Rip+Rs
aT h
whereR; is the spreading resistance aRgl, is the one dimen- 9z - - k_l[T(X’y’tl)_Tf] ©)
-

sional resistance of the system given by
In extended surface applications such as heat sinks, the value of
ty 1 h is replaced by an effective value which accounts for both the
RlDZ@Jr h_Ab (2)  heat transfer coefficient on the fin surface and the increased sur-
face area
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Fig. 1 Isotropic plate with eccentric heat source

Along the edges of the plate, the following conditions are also

required:
JT 0
& X:O,a: (11)
and
al =0 12
W, op 12)

The general solution for the total thermal resistance and te

T1(X,y,t) =Ta(X,y,1y) (13)
and
klE ko (14)
z=t, z=t;

while along the bottom surface=t, +t,, the boundary condition
to be satisfied becomes

aT,

r (15)

h
== k_z[Tz(X:yntl"‘tz)_Tf]

z=t,+1,

The full solution is obtained for the isotropic case, however, it
may easily be applied to the compound system with only slight
modification, using the results of Yovanovich et [dl1].

General Solution

The solution for the isotropic plate may be obtained by means
of separation of variablegl2—15. The solution is assumed to
have the form 6(x,y,z)=X(x)*Y(y)*Z(z), where 6(x,y,z)
=T(x,y,z)—T;. Applying the method of separation of variables
yields the following general solution for the temperature excess in
the plate which satisfy the thermal boundary conditions along (
=0,x=a) and (y=0,y=b)

©

e(x,y,z):A0+Boz+E COgAX)[A; cosiiNz)+B; sinh(Az)]
m=1
+ E cog dy)[ A, cosh( 6z) + B, sinh(6z) ]|
n=1

+2 2 cogAx)coq dy)[ Az cosh{ Bz)

m=1 n=1

+ B3 sinh(Bz)]

wherex=mm/a, =nw/b, and 8= \?+ &%

The solution contains four components, a uniform flow solution
and three spreadin@r constriction solutions which vanish when
the heat flux is distributed uniformily over the entire surface
=0. Since the solution is a linear superposition of each compo-
nent, they may be dealt with separately. Application of the bound-
ary conditions in thez direction will yield solutions for the un-
known constants.

Application of the thermal boundary condition ztt, for an
isotropic rectangular plate yields the following result for the Fou-

ier coefficients:

(16)

perature distribution will be obtained for the system shown in Fig.

1. In a later section, the solution will be extended to compound Bi=—¢(HA, i=123 a7
systems as shown in Fig. 2. ere
In a compound system Laplace’s equation must be solved 1
each layer. In addition to the boundary conditions specified for the £ sinh({ty)+h/k, cosh{{ty)
isotropic system, the following conditions with perfect contact at d(0)= Z cosiZty) + hik, sinh(Zt;) (18)

the interface are required:
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Fig. 2 Compound plate with eccentric heat source
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and{ is replaced by, &, or B, accordingly.

The final Fourier coefficientd,,, A, , andA,, are obtained by
taking Fourier series expansions of the boundary condition at the
surfacez=0. This results in

) 0 f;zfﬁg cog A X)dx
A bk md(hm) T2 02N dX (19)
or
2Q sin( —(ZXC; N —sin( —(2X°2_ ©) xm) }
A abekM i d () 20
and
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o Ivliscossy)dy a) b)
A,= 21
*"adkond(6) [5c03(6,y)dy .
or .
. (2Yc+d) . (ZYc_d) LJ
2Q| sin Tén —sin Tén
A= 22
" abdk 53¢(5,) (22)
and
0 Y gal X o cos A ) cos 5,y)dxdy
An= .
* cdkiBmnd(Bmn) oS5 COS(Npx)cOS(S,y)dxdy
(23)
or
(1 (1 d
16Q O\ pXc)SiN = A€ | COL 3,Yc)sin 5 8yd C) )
A =
mn abcdk B nAmSnd(Bmn) Fig. 3 Special cases of a plate with eccentric heat source
(24)
Finally, values for the coefficients in the uniform flow solution
are given by Compound Systems. In many applications an interface ma-
1 terial may be added to reduce thermal contact conductance and/or
A :8 t_1+ - (25) promote thermal spreading. The solution obtained for the isotropic
" ablk, h rectangular flux channel may be used for a compound flux channel
and with only minor modifications. In Yovanovich et dl11] the au-
thors obtained a solution for a compound rectangular flux channel.
Q It is not difficult to show thate in Egs. (20), (22), (24) can be
Bo=— kab (26)  replaced by

Mean Temperature Excess. The general solution for the
mean temperature excess of a single heat source may be obtained
by integrating Eq(16) over the heat source area. Carrying out th

(aetti— g2l 1 o(e2(2i+t) _ oe2lli+t)
(a,e4§t1+ ezﬁ1) + Q(e2§(2t1+t2)+ aezi(tlﬂz))

()= (30)

here

necessary integrations leads to the following expression for the

mean source temperature:

1
£ cos()\mxc)sin<—)\mc)
— — 2
0=0,+2>, Ay
m=1

AmC

1
ES cog 5nYC)sin(— b‘nd)
2
+22 A,
n=1

5,

1 1
o cog 5nYc)sin(§ 5nd>cos()\mxc)sin(§7\mc)
AmCd,d

(27)
where

— Q
91D:£

R (28)

for an isotropic system.

Thermal Spreading Resistance. The thermal spreading re-

1-«

_fthlk, _
C1+«k

~ I—nhlk,

with k=K, /k;, and{ is replaced by, &, or B, accordingly. This
simple extension is possible, since the effect of the additional
layer results from solving for the unknown coefficients by appli-
cation of the boundary conditions in tlzedirection. The general
solution for all but one of the Fourier coefficients is identical to
the case for a central source. Since the spreading resistance is
based upon the mean source temperature autfaceof the flux
channel, it is not necessary to resolve the complete system of
equations. However, complete solution for all coefficients is re-
quired for calculating the temperature within the solid.
Additionally,

% and «

- Q

9102%

t, t, 1
ki ko h)
for a compound system. Application of the above results is only
valid for computing the temperature distribution at thefaceof

the baseplate and to compute the spreading resistance. Equation
(30) is merely the reciprocal of a similar expression reported in
Yovanovich et al[11].

(1)

sistance may now be computed using the mean temperature 8yecial Cases

cess. In general, the total resistance as defined by3tgresults

in
0
Q

where R, is the one-dimensional thermal resistance &yds

RT: = R1D+ RS (29)

Several special cases of an eccentric heat source may be ob-
tained from the general solution. These are shown in Fig. 3. So-
lution for a central heat source on an isotropic plate was obtained
by Krane[10]. However, the results are only presented for the
thermal resistance based upon the maximum or centroidal tem-
perature difference. Recently, Yovanovich et[all] obtained the

the thermal spreading resistance. The thermal spreading resistution for the spreading resistance of a centrally located heat
tance component is defined by the three series solution termssource on a compound plate. A special case of the solution of

Eq. (27).
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N\< h
v with «=Kk,/k;. The eigenvalues for these solutions a#;
Z =mm/c, \p=n=/d and B, = \/§m+)\n2.

Edge and Corner Heat Sources. The solution obtained by
Yovanovich et al[11] may also be used to model the three addi-
tional special cases shown in Fig. 3. By means of symmetry, the
solution for the spreading resistance may be obtained by consid-
ering that each of the special cases represents an element of the
Additionally, the remaining cases in Fig. 3 may also be obtaineg/stem with a centrally located heat source. For an edge source,
from the solution for a central heat source using the method gfe resistance is given Bg,=2R, and for a corner heat source
images. the total resistance is given ,=4R, whereR is the resistance
of the system composed by mirroring the imeyef the edge or

Central Heat Source. The spreading resistance of Yovanov, orner heat sources to obtain a system with a central heat source
ich et al.[11] is obtained from the following general expressior%: Y ’

which shows the explicit relationships with the geometric and Semi-Infinite Isotropic Flux Channel. Additional results
thermal parameters of the system according to the notation rifay be obtained for semi-infinite flux channels for the case where

Fig. 4 Isotropic plate with central heat source

Figs. 4 and 5: t;—o and the effect of the conductanbes no longer a factor.
= ir? i (bn The solution for a semi-infinite flux channel is obtained when the
R— 21 S sin“(adm) o(8)+ 21 S Si (3 n)  parameter
2a Cdkl m=1 (??n 2b Cdkl n=1 )\n ¢(§):1 (35)
” sirt(ady,)sirt(bn,,) Semi-Infinite Compound Flux Channel. The general ex-
“e(Ap)+ mmzzl nzl SN Bmn “®(Bmn) pression forg({) reduces to a simpler expression whigh-o,

(see Fig. 2 The solution for this particular case arises from Eq.
(32) (30) with

where - (€24 1)+ (82— 1)
(*'+ 1)~ (1-e*)h/k, = (@Dt (07 1)
" (1) +(1+ ik, (33)

(36)

@ where the influence of the convective conductance has vanished,

) but the influence of the substrate remains.
If the system is composed of two layers, then

Eccentric Strip Solutions. Finally, solutions for both isotro-
(et @?il) + o262t ) o e2ititla)y pic and compound eccentric strips may be obtained from the gen-
e(5)= (ae®l— g2l 1 p(e2l(2itly) _ g2l 1)) (34)  eral solution. If the dimensions of the heat source extend to two of
the boundaries to form a continuous strip, the general solution
where simplifies considerably. In Eq27), the general solution consists
of four terms, a uniform flow component, two strip solutions
_ {+hik, and a= 1-« (single summationsand a rectangular source solutiédouble
@ {—hlk, 1+« summation. For the case of an eccentric strip, one need only
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Fig. 6 Plate with multiple heat sources

Table 1 Results for case 1 (a)

T, T T, T, To
Present 84.97 80.56 108.43 101.81 53.06
Culham([16] 85.95 80.20 109.92 101.26 53.06
which may be written
N 1 N
0,=>, KJ f 6,(x,y,0dA =, 6, (40)
i=1 "7 A i=1

Using Eqs.(27) and(40) results in the following expression for
the mean temperature of tljih heat source:

N
T,-fo=21 0, (41)
=

where

1
- % CO N X¢ ) SIN 5 AmCj
g=A+2> Al 2
I 0 m
m=1

)\ij

2 5nd]) © ©

42 2 A,
m=1n=1

B3 cog énYc,j)sin(
+2>) Al
n=1

5.0,

(1 (1
cog 5nchj)5|n(§ ond; ) cos()\mxcyj)sm(z )\mcj)
AmC;jd,d;

Equation(41) represents the sum of the effects of all sources
over an arbitrary location. Equatiof#l) is evaluated over the
region of interest; , d; located aiX;, Y. ;, with the coefficients

X

consider the appropriate strip solution and the uniform flow soli},, Al , Al andAl_  evaluated at each of théh source param-

tion. The remaining summations fall out of the solution when

eters.

=d or c=a. In the case of semi-infinite eccentric strip solutions, The coordinate system is based on the origin placed at the

Egs. (35 and(36) also hold.

Multiple Heat Sources

If more than one heat source is pres@ge Fig. §, the solution
for the temperature distribution on tsarfaceof the circuit board
or heat sink may be obtained using superposition. ¥aliscrete
heat sources, theurfacetemperature distribution is given by

N

T(x,y,0>—Tf:§l 6,(x,y,0) 37)

lower left corner of the plate, and each source is located using the
coordinates of the centroid.

Application of Results

To demonstrate the usefulness of the present approach, several
examples of systems containing multiple sources are presented.
First, an example is given which shows the effect of a heat
spreader on a low conductivity substrate. Next, the method is
applied to model a heat sink containing a number of discrete heat
sources uniformly located on the baseplate. Finally, a uniform flux

where 6; is the temperature excess for each heat source by itséléat source of complex shape is analyzed.
The temperature excess of each heat source may be compute

using Eq.(16) evaluated at the surface

6i(x,y,0)=Ab+ mZ:l Al cos(xx)+n21 Al cog dy)

+ 2 > AnnCosAX)cog dy)
m=1n=1
with ¢ defined by Eq(18) or (30) andAO:E1D given by Eq.(28)
or (31).

The mean temperature of an arbitrary rectangular patch of
mensiong; andd; , located alX; ; andY.; may be computed by
integrating Eq.(37) over the regiom; =c;d;

N

1 1
9 =— gdA =— > 6i(x,y,0/dA,
ITA A ITA N j
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(38)

(39)

ase 1. In the first case, the dimensions of a plate or circuit
board are:a=300 mm, b=300 mm, t;=10 mm, h=10 W/nm’K
and k=10 W/mK, with T{=25°C. Two heat sources having di-
mensionsc=25 mm andd=25 mm each. The first source with a
power ofQ=10W is located aX.=Y.=90 mm and the second
having a power oQ=15W atX.=Y.=210 mm. The basic equa-
tions may be programmed into any symbolic or numerical math-
ematics software package. For the present calculations, the sym-
bolic mathematics program Maple[¥] was employed. A total of
50 terms were used in each of the single and double summations.

i The results for the meah and centroidall temperatures of the
irst case are presented in Table 1. In this example the centroidal
temperatures of each heat source were found to be 84.97°C and
108.43°C. A three-dimensional plot of the surface temperature
profile is given in Fig. 7. Comparisons with a generalized Fourier
series approach of Culham and Yovanovjdl6| yields 85.95°C

and 109.92°C. The primary difference between the present ap-

Transactions of the ASME



Table 2 Results for case 1 (b) spreader has reduced the maximum source temperatures consider-

= — = = = ably and equalized the temperature.

Ty T Tz Tz b . o
Prosont 655 56,05 5992 5919 530 Case 2. In thls_ example, the baseplate of a heat sink is to be
Culham[16] 56.63 56.03 60.08 59.16 53'(')66analyzed. The dimensions of the baseplate are50 mm, b
=50 mm, k=150 W/mK, t=10mm, and an effective extended
surface heat transfer coefficieht=400 W/nfK. Four sources
having the characteristics summarized in Table 3, are attached to
proach and that of Culham and Yovanov[di§] is that the present the baseplate assuming negligible contact or interface resistance.
work yields simplified expressions which may be easily proFhe temperature results are summarized in Table 4 and in Fig. 9.

grammed in any Mathematics or Spreadsheet software, whereag'::ase 3. In the final example, a heat source with a complex

the latter uses a numerical least squares approximation to solve fﬁ - )
a mixed boundary value problem. shape is arjalyzed by the present approach. The source is com-
For the same configuration, a thin=2 mm, highly conductive posed of five square heat‘so.urcgs each having dimensions

layer k=350 W/mK, is added to the original substrate and the 20 mm byd=20mm and dissipating 5 W. The heat sources are
problem reanalyzed. The results are summarized in Table 2. In tAf§anged in the form of a cross in the center of a plate having
example the centroidal temperatures of each heat source we@ensionsa=100mm byb=100mm, thickness of=10 mm.
found to be 56.55 and 59.94°C. Comparisons with a generaliz&his results in an irregular shaped isoflux heat source which can-
Fourier series approach of Culham and Yovanofitf] yields not be solved using conventional approaches. The thermal con-
56.63 and 60.08°C. A three-dimensional plot of the surface terductivity of the plate isk=50 W/mK, while h=50 W/n?K, and
perature profile is given in Fig. 8. It is clearly seen that adding B =25°C. The value of the maximum temperature at the center of

03 0

Fig. 7 Surface temperature for an isotropic plate with two heat sources

- &
56 -
Tix,y,0)
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Fig. 8 Surface temperature for a compound plate with two heat sources
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Table 3 Source characteristics for case 2 Table 4 Source temperatures for case 2

Q c d Xe Yc T T
\W mm mm mm mm
Source 1 97.40 96.85
Source 1 10 10 10 12,5 12.5 source 2 103.82 102.33
Source 2 25 10 10 37.5 12.5 Source 3 101.28 100.10
Source 3 20 10 10 12.5 37.5 Source 4 99.94 99.07
Source 4 15 10 10 375 375

source is present. The location and strength of each additional heat
Keurce will affect the value of thermal resistance for a particular
Burce of interest.
Finally, if the ambient temperature increases as a result of heat
. . transfer due to the film coefficierit, a wake effect may be ap-
Discussion proximated in the final solution by defining an ambient tempera-
The general solution obtained may easily be coded in a numtere which is a function of flow position
of ways. The simplest approach is through the use of mathemati- 0 x
cal programg4-7|. These packages allow for symbolic and nu- Ti=Ti+ ——— (42)
merical computation of mathematical expressions. They also pro- mCp L

vide graphical functions for generating three-dimensional plofghereT; is the inlet temperaturen is the mass flow through the

such as those presented earlier. One advantage of these packag&em Q is the sum of all heat sources, ax. the local position
is the minimal effort required to enter the basic equations. Com; the flow direction.

putation time varies among packages and is also dependent upon
the number of sources specified. The present results were obtaiged .
using Maple V6[4] with 50 terms in each of the summations. A ummary and Conclusions
single source calculation typically required a few seconds. Rea-General expressions for determining the spreading resistance of
sonable convergence with 50 terms is obtained for most probleras. eccentric isoflux rectangular source on the surface of finite
Another method of computation which was assessed is the usetropic and compound rectangular flux channels were presented.
of computer languages such as C or Basic. Computation timeTike solution for the temperature at the surface of a rectangular
much faster with a compiled code, however, a considerabfleix channel was also presented. It was shown that this solution
amount of code is required to achieve the same results as thosgy be used to predict the centroidal temperatures for any number
produced using mathematical software. The method is also anoé-heat sources using superposition. Additional special cases of
nable to spreadsheet calculations with or without the use of mapreading resistance from single eccentric heat sources on isotro-
ros. However, the use of macros allows for easier developmenpic, compound, finite, and semi-infinite flux channels were also
In addition to providing details of the surface temperature dipresented. Finally, it was shown that the solution for a central heat
tribution and centroidal and mean source temperatures, the effsgurce may be used to compute the spreading resistance for corner
tive thermal resistance may also be computed for each souraad edge heat sources using the method of images. Several appli-
This approach was not taken in the present work, since no uniceegions of the general solution to systems with multiple heat
value of thermal resistance is definable when more than oseurces were also given.

the plate is found to be 80.61°C. The area weighted mean sou
temperature is found to be 78.87°C. The thermal contour plot
given in Fig. 10.

Tx,y,0) 10

95

0 0.05

005 0

Fig. 9 Surface temperature for a heat sink with four heat sources
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Fig. 10 Surface temperature for a complex heat source
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