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Abstract– In the thermal analysis of microelectronic sys-
tems various levels of compact models are required to bridge
the gap between the use of simple correlation equations
which give quick, partial solutions and the use of costly,
time consuming, numerical methods which give complete
solutions with much detail. There are various levels of com-
pact models: some are based on simple combinations of two
or more correlation equations; some are based on resistor
networks; and some are based on various combinations of
asymptotic solutions. This paper shows that many different
complex physical problems, when they are nondimensional-
ized, exhibit similar trends, i.e., that the complex solution
varies smoothly between two asymptotic solutions. Rules
are presented for the method of combining the asymptotes
and how to calculate the “fitting” parameter. One exam-
ple shows how to develop a compact model for steady con-
duction across a gas layer for very small and very large
Knudsen numbers. A compact model for predicting the
complex elastic-plastic contact between a hard sphere and
a softer substrate is presented. This elastic-plastic contact
model is required for development of the thermal spreading-
constriction model. Another example shows how to model
the effect of very small and very large Prandtl numbers for
forced and natural convection from isothermal plates. Ex-
amples are given from forced and natural convection in short
and long ducts and pipes of arbitrary cross section for uni-
form wall temperature and wall heat flux. The simple com-
pact models are found to be accurate when compared with
numerical results and experimental data, and they are easy
to implement.

Keywords– Asymptotes, asymptotic analysis, compact
models, steady and transient conduction, radiation, rar-
efaction, contact mechanics, elastic, plastic, elastic-plastic,
forced and natural convection.

Nomenclature
A = flow area, m2

a = contact radius, m
a, b = semi major and minor axes of ellipse, m
a, b = half dimension of rectangle, m
AR = aspect ratio
ci = constants, i = 1...5
cP = specific heat, J/kgK
D = gap thickness, m
Dh = hydraulic diameter 4A/p, m
E1,E2 = Young’s modulus, Pa
f = friction factor, 2τ/ρv2

F = load, N
F0 = dimensionless time, αt/A2

F (Pr) = Prandtl number function
g = gravitational constant, m/s2

G = body gravity function
G = dimensionless reciprocal flux, 1/q∗

h = heat transfer coefficient, W/m2K
HB = Brinell hardness, N/m2

k = thermal conductivity, W/mK
Kn = Knudsen number, Λ/D
L = length of tube, pipe, duct, m
Lλ = optical path length, m
L = arbitrary length scale, m
m,n = exponents of dimensionless solutions
M = gas parameter, αβΛ
Nu = Nusselt number, hL/k
p = fitting parameter
P = perimeter, m
P = gas pressure, Pa
Pr = Prandtl number, ν/α
Q = heat transfer rate, W
Q∗L = dimensionless heat flow, QL/kAθ0
q = heat flux, W/m2

q∗ = dimensionless heat flux
r = radius, m
Re = Reynolds number, UL/υ
Ra = Rayleigh number, gβ∆TL3/αν
S∗L = dimensionless shape factor, QL/kAθ0
t = time, s
T = temperature,K
U = mean velocity, m/s
w = axial velocity, m/s

Greek
α = thermal diffusivity, m2/s
α = accommodation coefficient
β = gas parameter
γ = ratio of specific heats, cp/cv
γ = symmetry parameters
∆ = thermal boundary layer thickness, m
δ = momentum boundary layer thickness, m
² = aspect ratio, b/a < 1
Λ = gas mean free path, m
µ = dynamic viscosity, Ns/m2



µ∗ = dimensionless gas parameter, M/D
ν = kinematic viscosity, m2/s
ν1, ν2 = Poisson’s ratio
ρ = fluid density, kg/m3

ρ = radius of curvature, m
τ = wall shear stress, Pa
θ = temperature excess, T − Ti, K
φ = dimensionless dependent parameter
ξ = dimensionless independent parameter

σ =
Stephan-Boltzman constant,
5.67E − 8, W/m2K4

Subscripts
0 = reference values
0 = corresponding to very small value
∞ = corresponding to very large value
1, 2 = surfaces 1 and 2√
A = based on square root of area

bl = boundary layer
c = critical
Dh = based on hydraulic diameter
e = entrance
fd = fully developed
L = based on arbitrary length
R = radiation
t = thermal
x = local value
w = wall
λ = optical

I. Introduction

THE present demands on the thermal analysts who
must daily deal with microelectronics cooling issues is

daunting. They are required to provide, in very short time,
reliable estimates of temperatures within devices, packages,
boards and systems which are often cooled by air by either
natural or forced flow. Although experiments and numer-
ical methods can be employed to find the temperatures
and provide much detail about the temperature distribu-
tion throughout the system; these methods are both time
consuming and costly. Certainly in the early stages of de-
sign, experiments are not feasible and numerical methods
may require information that is not readily available. Fig-
ure 1 illustrates that the single correlation equations fall in
the lower left corner, the numerical results lie in the upper
right corner where much detailed information is available
at some high cost, and the compact models form the rel-
ative large “bridge” between the very low cost and high
cost regions. There are many different types of compact
models ranging from relatively simple models to relatively
complex models.
It is apparent that alternative simpler methods are re-

quired in the first stages of device, package and board devel-
opment to give quick and acceptable estimates of temper-
ature levels. One very simple method is based on the use
of correlation equations which have been developed from
experimental or numerical data. Often the correlations
are limited to the particular ranges of the independent pa-

rameters such as Reynolds number or modified Reynolds
for forced convection and Rayleigh and modified Rayleigh
number for pipe and channel flows, and the Prandtl num-
ber if fluids other than air are used.
There is a need for the development simple “compact

models” which incorporate one or more asymptotic solu-
tions and which are not limited to particular ranges of the
independent parameters. These compact models can there-
fore be used over broader ranges of the parameters and are
more useful and valuable than the simple correlation equa-
tions alone.
This paper will be restricted to several relatively simple,

but important, compact models which have been applied
to some microelectronics cooling problems.

II. Asymptotes and Simple Compact Model
development

Many complex physical systems exhibit a smooth transi-
tion between two asymptotic solutions [1,2,3]. The smooth
transition means that there are no discontinuities and no
sudden changes in slope within the transition region.
These asymptotes appear in steady and transient inter-

nal and external conduction, steady conduction across a
gas layer between two large parallel isothermal plates, radi-
ation through a highly porous substance between two large
isothermal walls, contact between a “rigid” sphere and a
softer substrate, natural and forced internal and external
convection. There are many other examples from conduc-
tion, fluid flow, and mass transfer; however, they will not
be considered in this paper.
Since the various problems have different dependent and

independent parameters and different symbols are used, it
is necessary to present the asymptotes and the method of
combining them in a general form based on dimensionless
dependent and independent parameters.
The dimensionless dependent parameter is called φ and

the independent parameter is called ξ. The functional de-
pendence φ(ξ) can be relatively simple or quite complex
depending on the physical problem.
The dimensionless parameter φ has two asymptotes cor-

responding to very small and very large values of the di-
mensionless independent parameter ξ [1,2,3]:

φ→
(

φ0 = C0 ξ
m as ξ → 0

φ∞ = C∞ ξn as ξ →∞ or ξ → 1
(1)

The asymptotes φ0 and φ∞ are based on analytical solu-
tions and they consist of a constant which is a positive, real
number. The two constants are denoted as C0 as ξ → 0
and as C∞ for ξ →∞ or ξ → 1. The exponents m and n
can have the values such as 0, 1, 1/2, 1/4, 1/3 for example
[1,2,3].
It is known from analysis, experiments and numerical

work that φ frequently transitions in a smooth manner be-
tween the two asymptotes.
The plots in Figs. 2 through 5 illustrate four basic, but

different, trends. Figure 2 shows both asymptotes φ0 and
φ∞ increasing with increasing values of ξ, and the solution
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Fig. 1. Overview of Simple, Compact and Detailed Models

 

Fig. 2. Asymptotes and Compact Model 1

φ is concave upwards. For example, external forced and
natural convection from single isothermal convex bodies
exhibit this trend.

Figure 3 shows both asymptotes φ0 and φ∞ decreasing
with increasing values of ξ, and the solution φ is concave
upwards. For example, steady conduction in spherical wall
and external transient conduction from isothermal convex
bodies exhibit this trend.

Figure 4 shows both asymptotes φ0 and φ∞ increasing
with increasing values of ξ, and the solution φ is concave

 

Fig. 3. Asymptotes and Compact Model 2

downwards. For example, internal forced and natural con-
vection within ducts and channels exhibit this trend.

Figure 5 shows the asymptote φ0 to be constant indepen-
dent of ξ and the asymptote φ∞ decreases with increasing
values of ξ, and the solution φ is concave downwards. An
example from tribology is the temperature rise of a heated
contact area which moves with constant velocity in the sur-
face of a semi-infinite body [4].
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Fig. 4. Asymptotes and Compact Model 3

 

Fig. 5. Asymptotes and Compact Model 4

A. Combined or Simple Compact Models

The asymptotes φ0 and φ∞ can be combined in two dif-
ferent ways depending on the trends of φ0 and φ∞ with
respect to ξ [1,2,3].
If φ0 > φ∞ as ξ → 0, the solution φ is concave upwards,

and the asymptotes are combined in the following manner
[1,2,3]:

φ = [φp0 + φp∞]
1/p

(2)

If φ0 < φ∞ as ξ → 0, the solution φ is concave down-
wards, and the asymptotes are combined in the following
manner [1,2,3]:

1

φ
=

·µ
1

φ0

¶p
+

µ
1

φ∞

¶p¸1/p
(3)

The parameter p is a fitting parameter whose value can be
found in a simple manner.
To find a value of p we can select an intermediate value of

ξ = ξi for which φ(ξi) is known through analytical, exper-
imental or numerical methods. For the intermediate value
of ξ we can write

φ(ξi) = [(C0ξ
m
i )

p
+ (C∞ξni )

p
]
1/p

(4)

or
1

φ(ξi)
=

·µ
1

C0ξ
m
i

¶p
+

µ
1

C∞ξni

¶p¸1/p
(5)

In both relationships the “fitting” parameter p is unknown.
It can, however, be calculated by numerical methods or by
means of computer algebra systems such as Maple, Math-
ematica, and Mathcad.

B. Alternative Forms of Simple Compact Models

Often the approximate solution is presented in a form
which is based on one of the two asymptotes. If this is
done, then the two models can expressed as [1,2,3]:

model 1 φ =

 φ0 [1 + (φ∞/φ0)
p]
1/p

φ∞ [1 + (φ0/φ∞)
p]
1/p

(6)

model 2 φ =

 φ0/ [1 + (φ0/φ∞)
p]
1/p

φ∞/ [1 + (φ∞/φ0)
p]
1/p

(7)

Several examples from steady and transient conduction,
contact mechanics, forced and natural convection heat
transfer will be presented in the following sections to illus-
trate several features of the asymptotes, asymptotic anal-
ysis and the development of simple compact models.

III. Steady Conduction Across Stationary Gas
Layer

The first example illustrates the importance of asymp-
totes for steady conduction across a stationary gas layer
placed between two infinitely large parallel isothermal
plates. The absolute temperatures of the bounding sur-
faces are T1 and T2 where T2 < T1. The layer thickness is
D, and the thermal conductivity of the gas is kg. The gas
pressure is P and the gas temperature is T = (T1 + T2)/2.
The steady heat flux q = Q/A at the left or right bound-

aries depends on the thermal conductivity of the gas kg, the
temperature drop across the layer T1−T2 , the layer thick-
ness D, and another thermophysical parameter denoted as
M which accounts for imperfect heat exchange between the
gas molecules and the molecules of the bounding surfaces.
The gas-layer parameter is defined as [5,6]

M = αβΛ (8)

where α, the accommodation parameter, is defined as [7,8]

α =
2− α1
α1

+
2− α2
α2

(9)
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and α1 and α2 are the accommodation coefficients for each
gas-solid interface. These are complex, dimensionless pa-
rameters. The second gas parameter is [5,6]

β =
2γ

(γ + 1)Pr
(10)

where γ = cp/cv, and Pr = ν/α is the Prandtl number of
the gas. The third gas parameter is called the molecular
mean free path and its defined as [5,6]

Λ = Λ0

µ
T

T0

¶µ
P0
P

¶
(11)

The molecular mean free path Λ0 is the value at the ref-
erence temperature T0 and reference gas pressure P0. Its
seen from the relationship that increasing the gas tempera-
ture or decreasing the gas pressure increases the molecular
mean free path.
Some typical values of gas properties are listed in Table 1.

Gas parameter values are for T0 = 288K and P0 = 760 torr

TABLE I

Typical Values of Gas Parameters

α γ Pr kg Λ0
Gas [—] [—] [—] W/(m ·K) nm
Argon 0.90 1.67 0.67 0.0177 66.6
Nitrogen 0.78 1.41 0.69 0.0259 62.8
Helium 0.55 1.67 0.67 0.150 186

(1 atm).
The heat flux is given by the following relationship

[5,6,9,10]

q = kg
T1 − T2
D+M

(12)

This relationship has two asymptotes depending on the rel-
ative magnitude of M/D or M/D. The asymptotes are

q =


q0 = kg

T1 − T2
D

as
M

D
→ 0 continuum

q∞ = kg
T1 − T2
M

as
M

D
→∞ free molecules

(13)
The two heat flux asymptotes q0 and q∞ depend on the
dimensionless parameter M/D which can be expressed as
[5,6]

M? =
M

D
= αβ

Λ

D
= αβKn (14)

whereKn = Λ/D is called the Knudsen number for the gas
layer. The Knudsen number depends on the temperature
and the pressure of the confined gas.
We can nondimensionalized the heat flux such that

q? =
qD

kg (T1 − T2) (15)

The dimensionless heat flux has the following two dimen-
sionless asymptotes:

q? =


q?0 = 1 as Kn→ 0

q?∞ =
D

M
=

1

M?
as Kn→∞

(16)

M*

G

10-3 10-2 10-1 100 101 102
10-1

100

101

102

He (Braun and Frohn, 1976)
Ar (Braun and Frohn, 1976)
Ar (Teagan and Springer, 1967)
N2 (Teagan and Springer, 1967)

interpolated model, G = 1+ M*

Fig. 6. Comparison of Data and Compact Model for Conduction
Across Gas Layer

We now set φ = q?, ξ =M?, φ0 = 1 and φ∞ = 1/ξ. Plots
of the two asymptotes show that φ0 > φ∞ as ξ → 0, and the
solution is cave downwards. This trend corresponds to the
example shown in Fig. 5 and, therefore, the simple compact
model is given by Eq. (3). The dimensionless parameters,
the constants and the exponents for the asymptotes are
listed in Table 2.

TABLE II

Parameters for Conduction Across Stationary Gas Layer

φ ξ C0 m C∞ n p
qD

kg (T1 − T2)
M

D
1 0 1 1 −1

The alternative relationship for the heat flux is

1

q
=

D +M

kg (T1 − T2) =
D

kg (T1 − T2) +
M

kg (T1 − T2) (17)

This relationship clearly shows how the two asymptotes
for the heat flux combine to give the compact model for
conduction across the gas layer. The non-dimensional form
is

1

q?
=
1

q?0
+
1

q?∞
= 1 +

M

D
= 1 +

1

M?
(18)

This form is consistent with that given by the general model
for combining asymptotes. This relationship shows that the
“fitting” parameter must be p = 1 in Eq. (3).
The simple compact model was compared against data

obtained for Argon, Nitrogen and Helium or a wide range of
the parameter M/D. Song [5] and Song et al. [6] defined
G = 1/q? which was called the dimensionless gap resis-
tance and M? = M/D which was called the gas rarefac-
tion parameter, and compared the simple gas-layer model
expressed as

G = 1 +M? (19)

against the experimental data obtained for Argon, Nitrogen
and Helium as shown in Fig. 6 for a wide range of the
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dimensionless gas-layer parameter M?. The Argon and
Nitrogen data [9] and the Argon and Helium data [10] are
seen to lie in the continuum regime for M? < 0.1, the free
molecule regime for M? > 10 and in the transition. The
agreement between the simple gas layer conduction model
and all data is excellent.

IV. Simple Model for Radiation Through Porous
Substance

In this example we examine steady heat transfer by radi-
ation through a porous layer of thickness L. The problem
and its solution is given in Gebhart [11].
The optical path length Lλ may be very small, i.e.,

Lλ/L << 1, or very large, i.e., Lλ/L >> 1 relative to
the layer thickness. If Lλ/L << 1, the material is said to
be opaque, and if Lλ/L >> 1, the material is said to be
nonopaque. If the material is assumed to be gray, Lλ is not
a function of λ and we set Lλ = `. There are two models
corresponding to the magnitude of the parameter `/L. The
layer is assumed to be in contact with two isothermal black
“infinitely” large surfaces whose absolute temperatures are
T1 and T2 with T1 > T2.

A. Thin Layer Asymptote: Nonopaque Material

For very thin layers the net radiation transport across
the layers is given by [11]

q∞ = σ
¡
T 41 − T 42

¢
for

`

L
>> 1 (20)

where σ is the Stefan-Boltzmann constant.

B. Thick Layer Asymptote: Opaque Material

For very thick layers, the radiation transport in the gray
material is by local radiation and absorption. The layer is
locally nearly in radiant equilibrium. The transport pro-
cess is analogous to conduction, and the local net radiation
flux is [11]:

q0 = −kR dT
dx

(21)

where

kR = CT
3 and C =

16

3
`σT 3 (22)

The differential equation and its solution are presented in
[11]. The heat flux for this limit is [11]

q0 =
4

3

`

L
σ
¡
T 41 − T 42

¢
(23)

showing the `/L dependence. To illustrate the transport
rates, we introduce the dimensionless radiation flux

q? =
q

σ (T 41 − T 42 )
(24)

The dimensionless radiation flux asymptotes are

q? =


q?0 =

4

3

`

L
as

`

L
→ 0

q?∞ = 1 as
`

L
→∞

(25)

Comparison of this problem with the general model shows
that φ = q?, φ0 = q?0 , φ∞ = q?∞, and ξ = `/L. These
parameters and the corresponding constants and the expo-
nents are listed in Table 3. Plots of the asymptotes with

TABLE III

Parameters for Radiation Through Porous Layer of

Material

φ ξ C0 m C∞ n p
q

σ (T 41 − T 42 )
`

L
4/3 1 1 0 1

respect to ξ show that φ0 < φ∞ as ξ → 0, and the solu-
tion is concave downwards. The approximate solution is
therefore the second model, Eq. (3).
The approximate model for q? is, therefore,

1

q?
=

·µ
1

q?0

¶p
+

µ
1

q?∞

¶p¸1/p
(26)

A number of analyses have indicated the behavior of q?

in the intermediate range which lies between the asymp-
totes. An approximate result by Probstein [11] which is in
agreement with the exact analysis is

q? =
1

1 +
3

4

`

L

(27)

This indicates that the “fitting” parameter is p = 1.

V. Steady Conduction in a Spherical Enclosure

Steady conduction occurs in a spherical wall having radii
a, b with a < b, and constant thermal conductivity k. The
inner and outer boundaries are maintained at uniform and
constant temperatures T1 and T2, respectively, with T1 >
T2. The temperature in the spherical wall is steady and
radial, T (r).
The governing differential equation in spherical coordi-

nates is
1

r2
d

dr

µ
r2
dT

dr

¶
= 0 a < r < b (28)

The boundary conditions are

r = a, T = T1 and r = b, T = T2 (29)

The solution, in a convenient nondimensional form, is

T − T2
T1 − T2 =

1/r − 1/b
1/a− 1/b a ≤ r ≤ b (30)

Alternative forms of the solution are given in texts on con-
duction [12] and heat transfer [13,14].
The heat transfer rate into the spherical wall at the inner

boundary is found from

Q = 4πa2
·
−kdT

dr

¸
r=a

(31)
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The conduction [12] and heat transfer texts [13,14] present
the result in the following forms:

Q =
4πk (T1 − T2)ab

b− a or Q =
4πk (T1 − T2)
1/a− 1/b (32)

which do not show the very thin and very thick wall asymp-
totes explicitly.
If the spherical wall is infinitely thick, i.e., b/a → ∞,

then the relationship for the spherical wall goes to the re-
lationship for the isolated sphere:

Q = 4πak (T1 − T2) (33)

The traditional relationships for Q do not reveal other
very important features of the solution that can be used
to model other systems such as steady conduction in an
enclosure formed by two concentric isothermal cubes, for
example.
If we introduce the wall thickness L = b − a into the

relationship for Q, and after some algebraic manipulations
we obtain the new, more interesting, relationship:

Q = 4πa2k

µ
T1 − T2
L

¶
+ 4πa2k

µ
T1 − T2
a

¶
(34)

The new relationship shows that the heat transfer rate into
the spherical wall consists of two terms which become very
important depending on the relative magnitude of the wall
thickness L to the inner radius a. The new relationship
clearly shows that the heat transfer rate into the spherical
wall has two asymptotes which are:

Q =


Q0 = 4πa

2k

µ
T1 − T2
L

¶
as

L

a
→ 0

Q∞ = 4πa2k
µ
T1 − T2
a

¶
as

L

a
→∞

(35)
The relationship for Q can be made nondimensional with
respect to some system length scale denoted as L to give:

Q? =
QL

Aik (T1 − T2) (36)

where Ai = 4πa2 is the surface area of the inner sphere.
The nondimensional form of the relationship is, therefore,

Q? =
L
L
+
L
a

(37)

There are three system length scales; the two radii and the
wall thickness. We cannot select b or L because they both
become infinitely large in one limit. Therefore, we must
select a length scale associated with the inner sphere. We
can select its radius or the square root of the inner surface
area which is more convenient for subsequent modeling. If
we select

√
Ai = 2

√
πa set to L [15,16], then we get the

analytical relationship:

Q? =

√
Ai
L

+ 2
√
π for 0 <

L√
Ai
<∞ (38)

A plot of Q? versus L/
√
Ai shows that this relationship

has two asymptotes corresponding to the very thin and the
very thick walls; they are

Q? =


Q?0 =

√
Ai
L

as
L√
Ai
→ 0

Q?∞ = 2
√
π as

L√
Ai
→∞

(39)

For this example the two asymptotes are linearly combined
to give the complete model for the spherical wall.
Comparison with the general model shows that φ =

Q?, φ0 = Q
?
0, φ∞ = Q?∞ and ξ =

√
Ai/L. Plots of the two

asymptotes with respect to ξ show that φo > φ∞ as ξ → 0.
Since the solution is concave upwards, the first model, Eq.
(2), must be use with p = 1, which is in agreement with
the analytical relationship.
The dimensionless parameters and the corresponding

constants and exponents are listed in Table 4.

TABLE IV

Parameters for Steady Conduction in Spherical Wall

φ ξ C0 m C∞ n p
Q?

√
Ai/L 1 1 2

√
π 0 1

VI. Model for Enclosures Formed by Two
Isothermal Concentric Boundaries

The analytical result found for the enclosure formed
by two concentric isothermal spheres can be used to de-
velop approximate models for other enclosures such as one
formed by concentric cubes for which there is no analyt-
ical solution. The three-dimensional temperature field in
the enclosure formed by two concentric cubes is complex,
and the heat flux distribution over all surfaces of the inner
isothermal cube is also highly nonuniform. The maximum
heat flux values occur along the edges and the corners of
the cube.
The simple compact model for the cube-in-cube enclo-

sure can be expressed as

Q? =

"µ√
Ai
L

¶p
+ (Q?∞)

p

#1/p
(40)

The nondimensional heat transfer rate from an isolated
cube was found by numerical methods to be Q?∞ = 3.391
which is close to the analytical value for the isothermal
sphere which is Q?∞ = 2

√
π = 3.545 [15,16] which is ap-

proximately 4.5% larger. If the inner cube has side dimen-
sions Li and the outer cube has side dimensions Lo, then
the geometric parameters for the approximate model are

p
Ai =

√
6Li L =

Lo − Li
2

√
Ai
L

=
2
√
6

Lo/Li − 1
(41)
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The simple compact model for the cube-in-cube enclosure
can be expressed in terms of the side dimension ratio as

Q? =

"Ã
2
√
6

Lo/Li − 1

!p
+ (3.391)p

#1/p
(42)

By trial and error the fitting parameter value was found
to be p = 1.070. The comparisons between the numerical
values and those obtained from the approximate models
with p = 1 and p = 1.070 are listed in Table 5.

TABLE V

Comparisons of Numerical Values and Values from Two

Approximate Models

Lo/Li numerical model 1 model 2
1.2 27.52 27.89 27.24
1.5 12.77 13.19 12.71
2.0 7.87 8.29 7.93
5.0 4.45 4.62 4.45
10 3.89 3.94 3.84
50 3.52 3.49 3.46

All values from the first compact model, with the ex-
ception of the last point, lie above the numerical values.
The maximum and average differences between the numer-
ical values and the first approximate model with p = 1 are
5.4% and 2.3%, respectively. The maximum and average
differences between the numerical values and the second
compact model with p = 1.070 are reduced to about 1.7%
and 0.03%, respectively.
The simple compact model developed for the cube-in-

cube enclosure can be used for any enclosure in which
the gap thickness is uniform. For example, it has been
used for enclosures formed by two concentric finite circular
cylinders, and other geometries. The asymptote for very
thin gaps is unchanged; however, the value for the very
thick asymptote must be modified slightly to account for
the shape and aspect ratio of the inner body. The agree-
ment between the numerical values and the simple compact
model values where found to be close.
If the gap thickness varies with position, a more complex

model is required to account for the regions of the enclosure
where the gap thickness is very small.

VII. Transient Conduction External to
Isothermal Spheres

A sphere of radius a is placed in a large stationary
medium whose thermophysical properties, k, the thermal
conductivity, and α, the thermal diffusivity are constant.
Initially, the temperature of the sphere and the surround-

ings is Ti everywhere. Suddenly the surface temperature of
the sphere is raised to uniform and constant temperature
T0 such that T0 > Ti for all t > 0.
The temperature field external to the sphere r > a is

transient and radial, T (r, t). The temperature excess θ =
T (r, t)− Ti is the solution of the one-dimensional diffusion

equation which, in spherical coordinates, is [12]

1

r2
∂θ

∂r

µ
r2
∂θ

∂r

¶
=
1

α

∂θ

∂t
, r > a, t > 0 (43)

The initial condition is

t = 0, r ≥ a, θ(r, 0) = 0 (44)

The boundary conditions are

for t > 0, θ(r, t) = θ0 at r = a (45)

for t > 0, θ(r, t)→ 0 as r→∞ (46)

The solution is given in [12]:

θ =
θ0a

r
erfc

µ
r − a
2
√
αt

¶
t > 0, r ≥ a (47)

where erfc(·) is the complementary error function. The
temperature gradient on the surface of the sphere is [12]·

−∂θ
∂r

¸
r=a

=
θ0
a
+

θ0√
π
√
αt
, t > 0 (48)

The temperature gradient consists of two terms: a term
which is constant with respect to time and its related to
the sphere radius a, and a second term which is related to
the thermal penetration thickness

√
αt. The temperature

gradient, therefore, consists of two asymptotes: the small
penetration depth asymptote where

√
αt/a << 1 and the

thick penetration depth asymptote where
√
αt/a >> 1.

The instantaneous heat transfer rate from the sphere sur-
face into the surroundings is obtained from Fourier’s Law
of Conduction:

Q = k4πa2
µ
−∂θ
∂r

¶
r=a

= 4πa2k
θ0
a
+4πa2k

θ0√
π
√
αt
, t > 0

(49)
The above expression can be written in terms of two asymp-
totic heat transfer rates:

Q = Q∞ +Q0 (50)

Q =


Q0 = 4πa

2k

µ
θ0√
π
√
αt

¶
as

√
αt

a
→ 0

Q∞ = 4πa2k
µ
θ0
a

¶
as

√
αt

a
→∞

(51)

The solution for the external transient conduction from
the surface of an isothermal sphere into a medium of large
extent shows a striking resemblance to steady conduction
through a spherical wall of thickness L on a sphere of radius
a. The infinitely thick layer asymptote where L/a → ∞
is identical to the steady-state solution asymptote where√
αt/a→∞.
The layer thickness in the steady conduction problem

and the thermal penetration depth in the transient con-
duction problem play similar roles.
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The dimensionless heat transfer rate at the sphere sur-
face is defined as

Q?L =
QL
Akθ0

(52)

where L represents some arbitrary length scale which is
related to the dimensions of the sphere gives

Q?L =
L
a
+

L√
π
√
αt

(53)

If we choose the recommended length scale [12], i.e. L =√
A, we obtain the relationship:

Q?√
A
= 2
√
π +

1√
π
p
αt/A

(54)

The dimensionless time αt/A is often denoted as Fo. Com-
parison with the general model leads to the following re-
lationships: φ = Q?√

A
, φ0 = 1/

√
π
√
Fo, φ∞ = 2

√
π and

ξ = Fo. The dimensionless parameters and the correspond-
ing constants and exponents are listed in Table 6. Plots of

TABLE VI

Parameters for Transient Conduction External Isothermal

Sphere

φ ξ C0 m C∞ n p
Q?√

A
Fo 1/

√
π −1/2 2

√
π 0 1

the asymptotes show that φ0 > φ∞ as ξ → 0 and the so-
lution is concave upwards. The model must be as shown
in Fig. 2 and Eq. (2) must be used. This is in agreement
with the analytical solution.
The first term on the right hand side of the relation-

ship is the dimensionless shape factor S?√
A
valid for steady

conduction from an isolated isothermal convex body in a
medium of large extent. The following general simple com-
pact model with “fitting” parameter p can be used for ex-
ternal transient conduction from arbitrary isothermal con-
vex bodies into a medium of large extent:

Q?√
A
=

"³
S?√

A

´p
+

Ã
1√

π
p
αt/A

!p#1/p
(55)

The “fitting” parameter will depend on the body shape and
its aspect ratio. This more general simple compact model
was used to model transient conduction from the isother-
mal convex bodies shown in Fig. 7. The figure shows oblate
and prolate spheroids, cuboids, the circular and square
disks, the rectangular strip, the sphere and the cube. The
aspect ratio of the bodies lies in the range: 0 ≤ AR ≤ 10.
The numerical values[17] of Q?√

A
for the various bodies are

shown in Fig. 8 for the wide range: 10−6 ≤ αt/A < 103.
All numerical values approach and lie on the asymptote
corresponding to very short times and follow the trend
of the sphere for Fo > 10−4. The values of the dimen-
sionless shape factor lie in the relatively narrow range[17]:

3.19 ≤ S?√
A
≤ 4.20. The “fitting” parameter depends on

the aspect ratio, and its values are in the narrow range[17]:
0.87 ≤ p ≤ 1.10. The smaller values of p correspond to
bodies with high aspect ratios and the larger values of p
correspond to bodies with small aspect ratios.

VIII. Elastic-Plastic Model for Contact
Between Hemisphere and Flat

The mechanical contact between a rigid hemisphere hav-
ing radius of curvature ρ and a flat substrate with radius of
curvature ρ→∞ is a circular area whose radius is a. The
elastic properties of the hemisphere and the substrate are
Young’s modulus: E1 and E2, and Poisson’s ratio: ν1 and
ν2. The subscripts 1 and 2 denote the hemisphere and sub-
strate respectively. The Brinell hardness of the substrate is
much smaller than the Brinell hardness of the hemisphere.
If the contact strain defined as ²c = a/ρ << 1, the defor-

mation of the hemisphere and the substrate is elastic, and
the classical elasticity theory of Hertz can be used to calcu-
late the magnitude of the contact radius. The Hertz elastic
contact model in [18,19] shows that the contact radius is
given by the relationship:

ae =

µ
3

4

Fρ

E0

¶1/3
(56)

where F is the steady axial mechanical load supported by
the contact area, and E0 is the effective modulus of the
contact [18,19]:

1

E0
=
1− ν21
E1

+
1− ν22
E2

(57)

For a particular contact, the geometry and elastic prop-
erties are fixed and the mechanical load is the variable.
Therefore, the elastic contact radius relationship can be
expressed as

ae = ceF
1/3 where ce =

µ
3

4

ρ

E0

¶1/3
(58)

This relationship shows how the contact radius increases
with the load.
As the load increases, the contact strain increases, and

the maximum shear zone which lies on the axis of the con-
tact at points some distance below the contact area, grows
in some complex manner [19,20,21]. For very large contact
strains, ²c < 1, the deformation of the substrate becomes
fully plastic.
The contact radius under these conditions no longer de-

pends on the elastic properties, but does depend on the
plastic property of the substrate. The plastic yield is re-
lated to the Brinell hardness HB of the substrate, and its
assumed to be a fully work-hardened solid.
From a force balance applied to the contact area we find

the relationship for the plastic contact radius [19,21]:

ap =

µ
F

πHB

¶1/2
(59)
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Fig. 7. Ellipsoids and Cuboids for External Transient Conduction
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Fig. 8. Comparison of Numerical Values and Compact Model for Transient Conduction from Ellipsoids and Cuboids
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This relation can be written as

ap = cpF
1/2 where cp =

µ
1

πHB

¶1/2
(60)

which clearly shows how the plastic contact radius grows
with the mechanical load. From pure elastic deformation
to pure plastic deformation, there is a smooth transition
from the elastic contact asymptote to the plastic contact
asymptote which are defined as [20]:

a =

(
ae for ² << ²c

ap for ² >> ²c
(61)

A model for the elastic-plastic contact can be developed in
the following manner. The elastic and plastic contact radii
are equal when the mechanical load is Fc [20]

ae = ap gives ceF
1/3
c = cpF

1/2
c (62)

Solving for Fc gives the relationship:

Fc =

µ
ce
cp

¶6
(63)

which can be expressed as [20]

Fc =

µ
9π3

16

¶
ρ2HB

µ
HB
E0

¶2
(64)

This equation shows the important relationship between
the critical mechanical load Fc and the radius of curvature
ρ, the elastic properties E0 and the Brinell hardness HB.
The critical contact radius ac can be found from substitu-

tion of F = Fc in the relationship for ae or the relationship
for ap. In both cases, the critical contact radius is [20]

ac =
3π

4

ρHB
E0

(65)

The two asymptotes for the contact radius can now be es-
tablished by defining the relative load on the contact area:

ξ =
F

Fc
(66)

The asymptotes for the contact radius are [20]

a =

(
ae as ξ → 0

ap as ξ →∞ (67)

For practical applications we can say that the contact is
elastic provided ξ < 0.05, and the contact is plastic pro-
vided ξ > 20. The elastic-plastic transition lies in the prac-
tical interval: 0.05 ≤ ξ ≤ 20. The plots of the elastic and
plastic asymptotes show that ae > ap as ξ → 0 and the
solution is concave upwards in the transition from elastic
to plastic deformation. The first model, Eq. (2), must be
used for this problem.

ξ = F / Fc

a
/a

c

10-2 10-1 100 101 102100

101

102

mild-steel Tabor (1951)
elastic-plastic model, p = 5

Fig. 9. Comparison of Elastic-Plastic Compact Model and Data for
Contact Between Hard Sphere and Mild Steel Substrate

The elastic-plastic transition can be modeled accurately
by means of the following simple compact model based on
the contact radius [20]:

a =
¡
ape + a

p
p

¢1/p
with p = 5 (68)

with the “fitting” parameter value p = 5 obtained by
comparison of the simple compact model predictions and
some accurate experimental data [21] for a particular
hemisphere-substrate contact.
The above relationship for contact radius leads to the

following relationship in terms of the applied load and the
elastic and plastic coefficients ce and cp:

a =
³
c5eF

5/3 + c5pF
5/2
´1/5

(69)

The plot in Fig. 9 shows the very good agreement between
the simple compact model and the experimental data of
[21] for a mild steel substrate. The experimental points
are seen to fall in the elastic and plastic regions, as well as
in the complex elastic-plastic region for which there is no
analytical solution. The model and experimental data are
plotted as dimensionless contact radius versus the dimen-
sionless contact load.

IX. Prandtl Number Functions: Forced and
Natural Convection from Isothermal Plates

We next consider the local Prandtl number functions for
both laminar boundary layer forced and natural convec-
tion from isothermal flat plates. In both examples the lo-
cal Prandtl number function is developed from analytical
asymptotes obtained for very small and very large values
of the Prandtl number.

A. Prandtl Number Function for Forced Convection

The boundary layer continuity, momentum and energy
equations for the forced laminar flow past an isothermal
flat plate have been solved for very small and very large
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values of the Prandtl number, i.e., Pr → 0 and Pr → ∞.
The analytical solutions have the following asymptotes and
the value corresponding to Pr = 1 [22,23]:

Nux√
Rex

=


1√
π
Pr1/2 as Pr→ 0

0.3321 at Pr = 1

0.3387Pr1/3 as Pr→∞

(70)

From these asymptotes we have the following relationships
for the dependent and independent dimensionless parame-
ters:

φ =
Nux√
Rex

and ξ = Pr (71)

where the local Nusselt and Reynolds numbers are defined
as

Nux =
hx

k
and Rex =

Ux

ν
(72)

The constants and the corresponding exponents for forced
convection are [22,23]

C0 = 0.5642 and m =
1

2

C∞ = 0.3387 and n =
1

3

(73)

Plots of the two asymptotes with respect to the Prandtl
number show that φ0 < φ∞ as ξ → 0, and the solution is
concave downwards. Therefore, the second model, Eq. (3),
must be used. The equation for the “fitting” parameter is

1

0.3321
=

·µ
1

0.3387

¶p
+

µ
1

0.5642

¶p¸1/p
(74)

By means of computer algebra systems we obtain the value
p = 4.612607 rounded to 6 decimals. If one uses the ap-
proximate value p0 = 9/2 = 4.5, the model for the local
Prandtl number function can be expressed as:

Nux√
Rex

= F (Pr) =
0.3387Pr1/3£

1 + (0.0468/Pr)3/4
¤2/9 (75)

which is applicable in the range: 0 < Pr <∞. This simple
relationship gives values of F (Pr) which are in very good
agreement with numerical values. The maximum difference
is about 1%.
Churchill and Ozoe [24] recommended the following,

slightly less accurate, relationship:

Nux√
Rex

= F (Pr) =
0.3387Pr1/3£

1 + (0.0468/Pr)2/3
¤1/4 (76)

valid for 0 < Pr <∞, and the restrictions: Rex < 5× 105
and Pex = RexPr > 100. The maximum difference be-
tween the values obtained by means of this relationship
and the numerical values is about 3%. This form of the lo-
cal Prandtl number function appears in most heat transfer

texts [13,14]. The average value of the Nusselt number is
given by the relationship:

NuL√
ReL

= 2F (Pr) =
0.6674Pr1/3£

1 + (0.0468/Pr)2/3
¤1/4 (77)

where

NuL =
hL

k
and ReL =

UL

ν
(78)

The summary of the dimensionless parameters, the con-
stants and the exponents for the local Prandtl number func-
tion for forced convection from an isothermal flat plate are
listed in Table 6.

TABLE VII

Parameters for Forced Convection Past Isothermal Flat

Plate

φ ξ C0 m C∞ n p p0

Nux√
Rex

Pr 0.564 0.5 0.338 1/3 4.613 4.5

B. Prandtl Number Function for Natural Convection

The laminar boundary layer continuity, momentum and
energy equations for the buoyancy-induced laminar flow
past a vertical isothermal flat plate have been solved for
very small and very large values of the Prandtl number,
i.e., Pr → 0 and Pr → ∞. The analytical solutions have
the following asymptotes and the value corresponding to
Pr = 1 [22,23]:

Nux

Ra
1/4
x

=


0.6004Pr1/4 for Pr→ 0

0.401 at Pr = 1

0.5027 for Pr→∞
(79)

where Nux is the local Nusselt number and Rax is the local
Rayleigh number which are defined as

Nux =
h(x)x

k
and Rax =

gβθwx
3

αν
(80)

where θw = Tw−T∞ is the constant temperature difference
at the wall.
From these asymptotes we have the following relation-

ships for the dependent and independent dimensionless pa-
rameters:

φ =
Nux

Ra
1/4
x

and ξ = Pr (81)

The constants and the corresponding exponents for natural
convection are

C0 = 0.6004 and m =
1

4

C∞ = 0.5027 and n = 0

(82)

Plots of the two asymptotes with respect to the Prandtl
number show that φ0 < φ∞ as ξ → 0; therefore, the model
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given by Eq. (3) must be used. Using the value φ = 0.401
at ξi = 1, gives the following relationship for the “fitting”
parameter p:

1

0.401
=

·µ
1

0.6004

¶p
+

µ
1

0.5027

¶p¸1/p
(83)

Solving for p we obtain the value p = 2.265478 rounded to
6 decimals. Churchill and Chu [25] chose the approximate
value p0 = 9/4 = 2.50 and recommended the following
relationship for the local Prandtl number function:

Nux

Ra
1/4
x

= F (Pr) =
0.503£

1 + (0.492/Pr)9/16
¤4/9 (84)

which is valid for 0 < Pr < ∞. This is the function that
now appears in most heat transfer texts [13,14].
The Prandtl number function for the mean Nusselt num-

ber is defined as

NuL

Ra
1/4
L

=
4

3
F (Pr) =

0.6703£
1 + (0.492/Pr)9/16

¤4/9 (85)

with

NuL =
hL

k
and RaL =

gβθwL
3

αν
(86)

whereNuL is the mean Nusselt number for the plate length
L.
The summary of the dimensionless parameters, the con-

stants and the exponents for the local Prandtl number func-
tion for laminar natural convection from an isothermal flat
plate are listed in Table 7.

TABLE VIII

Parameters for Natural Convection Past Vertical

Isothermal Flat Plate

φ ξ C0 m C∞ n p p0

Nux

Ra
1/4
x

Pr 0.6004 1/4 0.5027 0 2.265478 2.5

The simple compact models for the Prandtl number func-
tion for both laminar forced and natural convection from
isothermal flat plates can be used to develop other simple
compact models such as laminar natural convection heat
transfer from isothermal convex bodies of arbitrary shape
and aspect ratio. This will be done in the following section.

X. Laminar Natural Convection from
Isothermal Convex Bodies

Laminar natural convection heat transfer from single
isothermal convex bodies into a stationary fluid of large
extent has been investigated by [26]. A general compact
model will be presented next. The simple compact model
will be based on two asymptotes corresponding to very
small and very large values of the Rayleigh number and

the compact model for the Prandtl number function de-
veloped above. We seek a general relationship between the
dimensionless heat transfer rate Q?L and the Rayleigh num-
ber RaL:

Q?L =
QL

Ak (Tw − T∞) RaL =
gβ (Tw − T∞)

αν
L3 (87)

where L denotes the arbitrary length scale of the convex
body.
The dimensionless heat transfer rate from the surface of

the convex body into its surroundings has the following
asymptotes [15,16,27]:

Q?L =

(
S?L as RaL → 0

NuL for 104 < RaL < 1010
(88)

where S?L is the dimensionless shape factor for isothermal
convex bodies loosing heat by conduction to a station-
ary medium of large extent, and NuL is the laminar thin
layer Nusselt number. The Nusselt number is defined as
[16,27,28]:

NuL = F (Pr)GLRa
1/4
L (89)

It consists of three dimensionless parameters: the area av-
erage Prandtl number function F (Pr), the body-gravity
function GL [27,28], and the Rayleigh number RaL. The
Prandtl number function and the body-gravity function are
defined and discussed next.

A. Prandtl Number Function

The Nusselt number depends on the area average Prandtl
number function which is defined as [25,27,28]:

F (Pr) =
0.670h

1 + (0.5/Pr)9/16
i4/9 0 < Pr <∞ (90)

The value of the average Prandtl number function for air is
F (0.71) = 0.515. Its asymptotic values are F (Pr → 0) =
0.800Pr1/4 and F (Pr → ∞) = 0.670. The Prandtl num-
ber function is a simple compact model that accounts for
the interplay of the thermal and hydrodynamic boundary
layers as the hot fluid flows upwards over the convex body.

B. Body-Gravity Function for Horizontal Cuboids

The body-gravity function is a complex fluid flow param-
eter that characterizes the manner in which the hot fluid
flows over the isothermal convex body under the influence
of buoyancy-induced forces. The development of this im-
portant dimensionless parameter is given in [27,28]. Al-
though the body-gravity function relationships are known
for many body shapes, this presentation will be restricted
to the horizontal cuboids shown in Fig. 10. The general
cuboid is defined by three lengths: H,W and L as shown
in the figure. The lengthH is parallel to the gravity vector,
and the other two lengths define surfaces that are perpen-
dicular to the gravity vector. The four vertical surfaces of
the cuboid are defined by the lengths H,L and H,W . The
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body-gravity function based on L = √A where the total
wetted cuboid surface area is

A = 2 (HL+HW + LW) (91)

is [27]

G√A = 2
1/8

"
0.625L4/3W +H (L+W )

4/3

(HW +HL+ LW )7/6

#3/4
(92)

The numerator consists of two terms. The first term is
the contribution of the top and bottom horizontal surfaces,
and the second term corresponds to the contribution of
the vertical side and end surfaces. The denominator is
associated with the total surface area of the cuboid.
The calculated values for several cuboids show that they

are in the range [27]:

0.776 ≤ G√A ≤ 1.525 (93)

The smallest value corresponds to a horizontal very thin
square disk with relative dimensions of H = 0.01,W =
1, L = 1. The largest value corresponds to a horizontal very
long square bar relative dimensions of H = 1,W = 1, L =
100. The value for a horizontal cube is Gcube = 0.985.

C. Dimensionless Shape Factor

There is no analytical solution for the dimensionless
shape factor for an isothermal cuboid. Some numerical val-
ues are available that show that S?√

A
changes slowly with

its shape and the aspect ratios of the sides. For the cube, a
numerical value is reported to be S√A = 3.373 which com-
pares with the analytical value for the isothermal sphere
having the same surface area which is S?√

A
= 2
√
π = 3.545.

The difference is approximately 5%. The numerical values
for square cuboids with relative dimensions: H = 1,W =
1, L = 2, 3, 4, 5 are S?√

A
= 3.406, 3.465, 3.532, 3.598,

which show the slow change with the aspect ratio. The di-
mensionless shape factors for isothermal ellipsoids, prolate
and oblate spheroids, right circular cylinders and rectan-
gular plates are given in [15].
For this problem we note the dimensionless dependent

and independent parameters are φ = Q?√
A
and ξ = Ra√A,

and the asymptotes are φ0 = S
?√
A
and φ∞ = Nu√A. Since

φ0 > φ∞ as ξ → 0, the model is concave upwards and
the first model given by Eq. (2) must be used. The “fit-
ting” parameter can be found by experimental or numerical
methods for some intermediate values of ξ = Ra√A. From
numerous experiments in air, Pr = 0.71, for many different
body shapes, its found that p = 1 gives acceptable accuracy
for the entire range: 0 < Ra√A < 10

10.

D. Simple Compact Model for Single Convex Bodies

The following simple compact model for natural convec-
tion from isothermal convex bodies based on

√
A is recom-

mended for the horizontal cuboids [27]:

Q?√
A
= S?√

A
+ F (Pr)G√ARa

1/4√
A

(94)

Fig. 11. Compact Model and Air Data for Natural Convection from
Cube

Fig. 12. Compact Model and Air Data for Natural Convection from
Horizontal Long Square Cuboid

The model has been compared with air data with many
different body shapes over broad ranges of the Rayleigh
number and the agreement is very good to excellent. Fig-
ures 11 through 13 show comparisons of the simple com-
pact model for air data for the cube, long square cuboid,
and the vertical thin cuboids. Figure 14 shows the predic-
tions of the compact model for cuboids and the compact
model for natural convection in vertical channels which is
not presented in this paper.

XI. Natural Convection in Vertical Isothermal
Ducts and Channels

Convective heat transfer in vertical ducts of arbitrary
shape and channels is of great interest to thermal analysts
[3, 29]. Although there is interest in models that can han-
dle different wall conditions, this paper will consider the
isothermal wall only. It is beyond the scope of this pa-
per to review all the work done by many researchers over
several decades [3,29]. The model recently developed [29]
will be summarized in this paper. The ducts are charac-
terized by the cross sectional area A, its perimeter P , and
its length L. The cross sections of several regular polygo-
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Fig. 10. Schematics of Various Cuboids

Fig. 13. Compact Model and Air Data for Natural Convection from
Vertical Thin Cuboids

Fig. 14. Compact Models for Cuboids, Parallel Plates, and Heat
Sinks

nal ducts, the elliptical duct and the rectangular duct are
shown in Fig. 15.
The fluid enters the lower end at some temperature T0

and moves up the duct whose temperature is Tw > T0 due
to buoyancy-induced forces. The fluid velocity at the inlet
is assumed to be zero.
Its well known from experimental and numerical work

that heat transfer from the isothermal wall to the fluid is
different when the duct is either very short or when its very
long. One criterion for characterizing short and long ducts
is to consider the dimensionless geometric parameter:

L? =
L

L (95)

where L is some characteristic length associated with the
duct cross section dimensions. In the past, the hydraulic
radius and more frequently the hydraulic diameter Dh =
4A/P have been used to model the convective heat trans-
fer. It can be shown by scaling analysis that there are two
asymptotic solutions for this problem which are [29]:

NuL =

(
Nubl as L? → 0

Nufd as L? →∞ (96)

where Nubl is called the Nusselt number for boundary layer
flow and Nufd is defined as the Nusselt number for fully-
developed flow. The very short duct asymptote is given by
following relationship [29]:

Nubl = 0.60Ra
1/4
L (97)

if the duct length L is introduced into the Nusselt and
Rayleigh numbers. The relationship becomes [29]:

Nubl = 0.6

Ã
Ra√A

√
A

L

!1/4
(98)
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Fig. 15. Cross Sections of Singly Connected Tubes, Pipes and Ducts

when L = √A is introduced into both Nusselt and Rayleigh
numbers. The geometric parameter L/

√
A appears which

can be used as the criterion for very short and very long
ducts. The independent flow parameter [29]:

Ra√A

√
A

L
(99)

is often called the modified Rayleigh number or the channel
Rayleigh number.
The fully-developed flow Nusselt number is given by the

following general relationship [29]:

Nufd =
hL
k
= 2

RaL
L
L

fReL

µ
A

PL
¶2

(100)

when both the Nusselt and Rayleigh numbers are based on
the arbitrary length L. If the hydraulic diameter is used,
i.e., L is Dh, then we have

Nufd =
RaDh

Dh
L

8 fReDh

(101)

The area average heat transfer coefficient in the Nusselt
number is defined as

h =
Q

PL (Tw − T0) (102)

where Q is the total heat transfer rate to the fluid.

If L is √A in the Nusselt and Rayleigh numbers we ob-
tain the relationship [29]:

Nufd = 2
Ra√A

√
A

L
fRe√A

Ã√
A

P

!2
(103)

The dimensionless relative duct length parameter appears
with the Rayleigh number and by itself. Its found to be a
very important geometric parameter.
The fluid flow parameter for full-developed flow is fReL.

This parameter is a constant for a particular duct cross
section, and it depends only on the duct shape and its
aspect ratio. This important parameter is reviewed and
discussed in the next section.
We note that φ = Nu√A and ξ = Ra√A

√
A/L. The

asymptotes for very short and very long ducts are

φ0 = 0.6 ξ
1/4 and φ∞ =

2

fRe√A

Ã√
A

L

!2
ξ (104)

and the corresponding constants are, therefore,

C0 = 0.6 and C∞ =
2

fRe√A

Ã√
A

L

!2
(105)

For convective heat transfer in a particular duct cross sec-
tion and fixed length C∞ = const because the geometric
parameter L/

√
A and fRe√A are constants. Plots of the
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Fig. 16. fRe for Various Duct Cross Sections

two asymptotes show that φ0 < φ∞ as ξ → 0, therefore the
second model given by Eq. (3) must be used. The general
compact model for this system is [29]

Nu√A =


·
0.6
³
Ra√A

√
A
L

´1/4¸−p
+

·
2
³√
A/P

´2
Ra√A

³√
A/L

´
/fRe√A

¸−p

−1/p

(106)
The compact model was compared against experimental
data obtained for air. The polygonal duct shapes such as
the equilateral triangle, the square, and the circular duct
require the “fitting” parameter to have the value p = 1.25
to give small RMS differences.
Comparisons of the compact model predictions against

air data for two rectangular ducts having side dimension
ratios of 2 and 5 showed that the “fitting” parameter de-
pended on the duct aspect, ² = smaller side/larger side ≤
1. The differences between the data and the predicted val-
ues are very small when

p =
1.2

²1/9
(107)

It was further demonstrated in [29] that the compact model
can be used to predict Nusselt number for the parallel plate
channel when the aspect ratio in the model developed for
the rectangular duct is set to ² = 0.01. The “fitting” pa-
rameter for parallel plates channels is p = 2.
The fully-developed flow parameter fRe√A developed for

the rectangular duct [32,33,35] is shown plotted with re-
spect to ² in Fig. 16. The analytical values for the ellipse,
and the numerical values for the rectangular ducts with
segment ends and semi-circular ends are seen to be in very
close agreement with the curve for the rectangle over the
entire range of ².

The compact model and the air data for the equilateral
triangle, circle, the rectangle duct with ² = 0.5 and the
parallel plates channel are shown in Figs. 17 through 20.

Ra√A ⋅ √ A / L

N
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Fig. 17. Compact Model Validation for Triangular Duct
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Fig. 18. Compact Model Validation for Circular Duct

The agreement between the data and the model predictions
is seen to be very good for all duct cross sections.
The recommended compact model can be used to predict

natural convection in arbitrary constant cross section ducts
provided the cross section does not have sharp corners with
small subtended angles.

XII. Models for Friction Factor Reynolds
Number Product

In this example we consider the exact asymptotic
model and the approximate models for the friction fac-
tor Reynolds product for steady developing and fully-
developed laminar flow through constant cross-section
pipes of length L, cross-sectional area A and perimeter P .
The fluid enters the pipe with uniform velocity U . In the
entrance length 0 ≤ z ≤ Le there are two regions, the
core region where the velocity is essentially uniform and
increasing with distance from the entrance z = 0, and the
boundary layer region which lies between the wall and the
core region. This very important fluid flow problem is de-
scribed in [30] and many analytical and numerical results
are tabulated in [31] for many different cross sections. New
approaches and methods giving new models for singly and
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Fig. 19. Compact Model Validation for 2:1 Rectangular Duct
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Fig. 20. Compact Model Validation for Parallel Plates Duct

doubly connected cross section tubes, pipes and ducts are
presented in [32,33,35]. The new relations to be presented
next are capable of predicting pressure drop for fluid flow
in the singly connected cross sections shown in Fig. 21, and
the doubly connected cross sections shown in Fig. 22.

In the general case the axial fluid velocity depends on ax-
ial position z and points in the cross-section, i.e., w(x, y, z).
In the core region there is a balance between the pressure
and inertia forces, and in the boundary layer region there
is a balance between the friction and inertia forces.

In the fully-developed region where Le ≤ z ≤ L, the fluid
velocity no longer depends on distance from the entrance
and the fluid velocity depends on points in the cross-section
only, i.e., w(x, y), and there is a balance between the pres-
sure and friction forces only.

The local wall shear τw(x, y, z) varies with distance from
the pipe entrance and it varies over the perimeter, except
for circular pipes and parallel plate channels. There is no
analytical solution for the local wall shear for the entire
region 0 ≤ z ≤ L, even for the relatively simple fluid flows
such as flow in a circular pipe or flow between two infinitely
large parallel plates, the so-called two-dimensional chan-
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Fig. 22. Doubly Connected Cross Sections

nel flow. In the two special cases, the local wall shear is
constant with respect to the pipe and channel perimeter,
however, it varies with distance from the entrance.
Since, in general τw(x, y, z), the average value over the

perimeter is defined as

τw(z) =
1

P

I P

0

τw(x, y, z)dP (108)

where the integration is with respect to points in the
perimeter of the pipe.
The overall average value of the wall shear from the pipe

entrance to the pipe exit is defined as

τw =
1

L

Z L

0

τw(z)dz (109)

The relationship between the overall pressure drop ∆p and
the average wall shear can be obtained from the force bal-
ance applied to the entire pipe length, therefore,

∆pA = τwPL or ∆p = τw
PL

A
(110)
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The definition of the friction factor-Reynolds number prod-
uct gives:

fReL =
µ
2τw
ρU2

¶µ
ρUL
µ

¶
=
2τwL
µU

= 2τ?w (111)

where L is some length scale associated with the pipe cross-
section. The friction factor and Reynolds number product
is related to the dimensionless average wall shear τ?w with
the factor 2.
The relations above can be used to find relations between

the pressure drop ∆p and the mean fluid velocity U or
the mass flow rate ṁ, the geometry of the pipe, the fluid
properties, and the friction factor and Reynolds number
product. The relations, based on the arbitrary length scale
L, are

∆p = µU

µ
LP

AL
¶µ

fReL
2

¶

∆p = ν ṁ

µ
LP

A2L
¶µ

fReL
2

¶ (112)

The friction factor-Reynolds number product can be ob-
tained by means of scale analyses, asymptotic analyses, and
the method of [1] for combining asymptotes.
The scale analyses will be done for very long pipes, i.e.,

L/Le >> 1 where the fluid flow is fully-developed, and
for very short pipes, i.e., L/Le << 1, where the fluid flow
is developing in the core and the boundary layer regions.
From the scale analyses of [35] the asymptotic relationships
are:

fReL →


C∞ as L/Le →∞
C0√
ξ

as L/Le → 0
(113)

where the dimensionless duct length which is based on the
arbitrary length scale L is defined as

ξ =
L

ReLL (114)

where ξ depends on the chosen length scale L.
If we let φ = fReL, φ0 = C0, and φ∞ = C∞, we see that

φ0 > φ∞ as ξ → 0. Since the trend of φ with respect to
ξ is concave upwards, the asymptotes can be combined in
the following manner to give the approximate relationship
applicable for all pipe lengths:

fReL =
·µ
C0√
ξ

¶p
+ (C∞)

p

¸1/p
(115)

The “fitting” parameter values have been determined for
many different pipe cross-sections [32,33,35].
The constant for very short pipes can be found from

asymptotic analysis to be C0 = 1.72 for the local value and
C0 = 3.44 for the average value of fReL. These two values
are independent of the shape of the pipe cross-section and
its aspect ratio.
The constant C∞ that appears in the very long pipe

asymptote depends on the pipe shape, its aspect ratio and

the pipe length scale L. These characteristics are clearly
seen in the friction factor and Reynolds number product
for the rectangular duct whose side dimensions are 2a× 2b
with a ≥ b.
The dimensionless average wall shear was presented in

[32,33,35]; and taking the first term of the series solution
gives:

fReDh =
24

(1 + ²2)

·
1− 192²

π5
tanh

³ π
2²

´¸ (116)

where the duct aspect ratio is defined as ² = b/a ≤ 1. The
duct length scale is based on the hydraulic diameter Dh
where

Dh =
4A

P
=

4ab

a+ b
=

4b²

1 + ²
(117)

The relationship based on the hydraulic diameter has two
limits which are constants:

fReDh =

(
14.13 as ²→ 1

24 as ²→ 0
(118)

The first limit corresponds to a square duct and the second
one corresponds to the parallel plates channel.
When the duct scale length is chosen as

√
A, the rela-

tionship becomes

fRe√A =
12

√
² (1 + ²)

·
1− 192²

π5
tanh

³ π
2²

´¸ (119)

The limits for this relationship are [35]:

fRe√A =


14.13 as ²→ 1

12√
²

as ²→ 0
(120)

To demonstrate the superiority of L set to√A in place of
L set to Dh in fReL, the analytical values for the equilat-
eral triangle, the square and the circle, and the numerical
results for the other regular polygonal geometries are listed
in Table 9. The aspect ratio for the regular polygonal ge-
ometries is ² ≈ 1. The conversion is

fRe√A =
µ
P

4
√
A

¶
fReDh

(121)

The values for fReDh
fall in the range 13.33 ≤ fReDh

≤
16 for 3 ≤ N ≤ ∞. The relative difference between the tri-
angular and the circular ducts is approximately 16.7 per-
cent. When the characteristic length scale is changed to√
A, the relative difference is reduced to 7.1 percent for

the equilateral triangle, and less than 0.1 percent for the
remaining polygons N ≥ 4. Therefore, the value for the
circular duct can be used for all regular polygonal ducts,
except the equilateral triangular duct, with negligible er-
rors.
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TABLE IX

fRe Results for Regular Polygonal Geometries

N fReDh

fReP

fReC
fRe√A

fReP

fReC

3 13.33 0.833 15.19 1.071
4 14.23 0.889 14.23 1.004
5 14.73 0.921 14.04 0.990
6 15.05 0.941 14.01 0.988
7 15.31 0.957 14.05 0.991
8 15.41 0.963 14.03 0.989
9 15.52 0.970 14.04 0.990
10 15.60 0.975 14.06 0.992
20 15.88 0.993 14.13 0.996
∞ 16 1.000 14.18 1.000

Steady laminar fully developed flow of a Newtonian fluid
occurs in long elliptical ducts whose semi-axes are a, b with
b ≤ a. The flow is due to a constant pressure gradient
∆p/L = −dp/dz. The analytical closed-form solution of
the governing equation has been obtained using elliptic
cylinder coordinates. It is

w(x, y) = C

·
1− x

2

a2
− y

2

b2

¸
(122)

where

C = − 1

2µ

dp

dz

a2b2

a2 + b2
(123)

The maximum velocity which occurs on the axis is

wmax = w(0, 0) = C (124)

The mean velocity is

wm =
wmax
2

=
C

2
(125)

The velocity distribution can be expressed as

w(x, y)

wm
= 2

·
1− x

2

a2
− y

2

b2

¸
(126)

The friction factor can be obtained from the following gen-
eral relationship:

fReL =
2

w?m

µ
AL
b2P

¶
(127)

where A is the cross section area and P is the perimeter.
For the ellipse these geometric parameters are

A = πab P = 4aE(m) Dh =
4A

P
=

πb

E(m)
(128)

where E(m) is the complete elliptic integral of the second
kind of modulus m =

√
1− ²2, and ² = b/a ≤ 1. If we

choose the hydraulic diameter as the characteristic length,
then

fReDh = 2(1 + ²
2)

·
π

E(m)

¸2
(129)

Fig. 23. fRe for Fully Developed Flow in Rectangular and Elliptical
Ducts

Fig. 24. fRe for Fully Developed Flow in Doubly Connected Ducts

If we choose the square root of the cross sectional area,
then

fRe√A =
2π3/2 (1 + ²2)√

²E(m)
(130)

The numerical values calculated by means of the two alter-
native relationships are tabulated in Table 10.
Numerical values for the elliptic and rectangular geome-

tries are presented in Table 10 for both definitions of the
characteristic length L set to Dh and

√
A. Also pre-

sented in Table 10 are the ratios of the fRe results for
the rectangular duct and the fRe results for the elliptic
duct at corresponding aspect ratios. It may be seen from
the last column of Table 10, that

√
A is more appropri-

ate than Dh over the entire range of ² = b/a. It is seen
that the numerical values for the rectangular and elliptic
ducts differ by less than 7% when the characteristic length
is
√
A, whereas, if the characteristic length is the hydraulic

diameter, the results differ by as much as 31%.
The simple relationship for the rectangular duct with the

“fitting” parameter p = 2 can be used to obtain approx-
imate numerical values for rectangular ducts with semi-
circular ends, elliptical ducts ² ≤ 1, and the regular polyg-
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TABLE X

Numerical Values of fRe for Elliptical and Rectangular Ducts

fReDh
fRe√A

² = b/a Rect. Ellip.

µ
fReR

fReE

¶
Dh

Rect. Ellip.

µ
fReR

fReE

¶
√
A

0.01 23.67 19.73 1.200 119.56 111.35 1.074

0.05 22.48 19.60 1.147 52.77 49.69 1.062

0.10 21.17 19.31 1.096 36.82 35.01 1.052

0.20 19.07 18.60 1.025 25.59 24.65 1.038

0.30 17.51 17.90 0.978 20.78 20.21 1.028

0.40 16.37 17.29 0.947 18.12 17.75 1.021

0.50 15.55 16.82 0.924 16.49 16.26 1.014

0.60 14.98 16.48 0.909 15.47 15.32 1.010

0.70 14.61 16.24 0.900 14.84 14.74 1.007

0.80 14.38 16.10 0.893 14.47 14.40 1.005

0.90 14.26 16.02 0.890 14.28 14.23 1.004

1.00 14.23 16.00 0.889 14.23 14.18 1.004

Fig. 25. fRe for Developing Flow in Rectangular and Elliptical Ducts

Fig. 26. fRe for Developing Flow in Polygonal Ducts

Fig. 27. fRe for Developing Flow in Circular Annular Ducts

onal ducts where ² ≈ 1 and N ≥ 4.

A. General Compact Model for Developing Flow

the general compact model for developing flow is given
by

fRe√A =



 12

√
² (1 + ²)

·
1− 192²

π5
tanh

³ π
2²

´¸

2

+

µ
3.44√
ξ

¶2



1/2

(131)
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TABLE XI

Definitions of Aspect Ratio

Geometry Aspect Ratio
Regular Polygons ² = 1

Singly-Connected ² =
b

a

Trapezoid ² =
2b

a+ c

Annular Sector ² =
1− r∗
(1 + r∗)Φ

Circular Annulus ² =
(1− r∗)
π(1 + r∗)

Eccentric Annulus ² =
(1 + e∗)(1− r∗)

π(1 + r∗)

with p = 2. The model predictions are compared against
numerical values in Figs. 25, 26, and 27. The agreement
is seen to be very good for many singly connected ducts
shown in Figs. 25 and 26. The very good agreement for
circular annular ducts is shown in Fig. 27.

The final results to be considered are those of the circular
annulus and other annular ducts which are bounded exter-
nally by a polygon or internally by a polygon. It is clear
from Fig. 27 that excellent agreement is obtained when the
results are re-scaled according to

√
A and a new aspect ra-

tio defined as r∗ =
p
Ai/Ao. This definition was chosen

since it returns the same r∗ ratio for the circular annular
duct. Values for fRe for the circular annulus and other
shapes have been examined by [32,32,35].

It should be noted that as the inner boundary approaches
the outer boundary, there is some departure from the cir-
cular annulus result due to the flow field becoming multiply
connected. These points have not been shown on the plot.
Limiting values of r∗ are provided in [33,33]. It has been
found that Eq. (131) may be used to predict values for the
circular annulus provided the following equivalent singly
connected aspect ratio is defined:

² =
(1− r∗)
π(1 + r∗)

(132)

This result may be obtained from two different physical
arguments. The first is the ratio of the of gap, ro − ri, to
the mean perimeter, while the second is obtained as the
ratio of the gap to the equivalent length if the duct area,
π(r2o−r2i ), is converted to a rectangle. Both points of view
yield the same definition.

It is now clear that Eq. (131) fully characterizes the flow
in the long duct limit. The maximum deviation of exact
values is of the order 7-10 percent. It has now been shown
that the dimensionless average wall shear, fRe, may be
predicted from Eq. (131), provided an appropriate defini-
tion of the aspect ratio is chosen.

XIII. Forced Convection Heat Transfer in
Tubes, Pipes, Ducts and Channels

Convective heat transfer in short and long tubes, pipes,
ducts and parallel plates channels is of great importance
to thermal analysts. These systems can be characterized
by the cross sectional area A, perimeter P , and the length
L. The cross sections can be singly or doubly connected
as shown in Figs. 21 and 22. If the systems are doubly
connected, then there are two perimeters: Pi, Po, the inner
and outer perimeters, and two projected areas: Ai, Ao, the
inner and outer projected areas. The flow area is A =
Ao −Ai.
The walls can be isothermal or have a uniform heat flux

imposed. The fluid is a single phase substance which may
be a gas, generally air, or some fluid such as water, oil,
or a water-glycol mixture, for example. The local or area-
average Nusselt is required for heat transfer calculations.
The fluid is assumed to enter one end of the tube with a
uniform temperature T0 and a uniform velocity U . As the
fluid is transported along the tube, a hydrodynamic and a
thermal boundary layer develops and they both grow until
they occupy the entire cross section. The entrance length
for the hydrodynamic boundary layer is denoted as Lh and
the entry length for the thermal boundary is denoted as
Lt.

The asymptotic solutions for thermally fully developed
flow, L >> Lh, L >> Lt, thermally developing flow,
L >> Lh, L << Lt, and the combined entry problem,
L << Lh, L << Lt, will be used to develop a gen-
eral model for predicting heat transfer coefficients in non-
circular ducts.

The details of the development of the relationships are
given in some books and handbooks. In this section the
results of the analyses done by [32,34,36] will be reported.
The scale analyses results [36] for the Nusselt number NuL
are summarized as

NuL =



B1 L >> Lt, Lh

B2

µ
fReL
L∗

¶1/3
L << Lt, L >> Lh

B3
(L∗)1/2

L << Lt, Lh, ∆ >> δ

B4
Pr1/6(L∗)1/2

L << Lt, Lh, ∆ << δ

(133)
The Reynolds number ReL = UL/ν and the Nusselt num-
ber kNuL = hL are both based on the arbitrary length
scale L which is related to the dimensions of the tube cross
section.

There are four asymptotes corresponding to the very
short tubes L << Lh, L << Lt and very long tubes where
L >> Lh, Lt. The hydrodynamic and thermal boundary
thicknesses are denoted as δ and ∆, respectively. where Pr
L?ReL = L/L is the dimensionless thermal entry length.
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A. Long Tube Asymptote

By means of asymptotic analysis [36], the very long tube
L >> Lh, L >> Lt asymptote can be expressed as

Nu√A = C1

µ
fRe√A
8
√
π²γ

¶
(134)

where C1 is equal to 3.01 for the UWT boundary condition
and 3.66 for the UWF boundary condition. These results
are the average value for fully developed flow in a polygonal
tube when the characteristic length scale is the square root
of cross-sectional area [32,34,36]. The cross section aspect
ratio is defined as ² = short side/longer side ≤ 1.
The parameter γ is chosen based upon the geometry.

Values for γ which define the upper and lower bounds are
fixed at γ = 1/10 and γ = −3/10, respectively. Almost all
of the available data are predicted within ± 10 percent by
Eq. (134), with few exceptions.
By means of another asymptotic analysis [36] for short

tubes where L << Lt and L >> Lh leads to the following
relationship for the Nusselt number:

NuL = C2C3

µ
fReL
L?

¶1/3
(135)

where C2 is 1 for local conditions and 3/2 for average con-
ditions, and C3 takes a value of 0.427 for UWT and 0.517
for UWF conditions respectively. The friction factor and
Reynolds number product was discussed in an earlier sec-
tion. The results from that section can be used here.

B. Short Tube Asymptote

By means of asymptotic analyses [36] for very short tubes
where L << Lt and L << Lh in which both boundary lay-
ers are developing simultaneously, the local Nusselt num-
bers are related to the Reynolds and Prandtl numbers in
the following way:

Nuz√
Rez

=

 0.564Pr1/2 Pr→ 0

0.339Pr1/3 Pr→∞
(136)

for the UWT condition, and

Nuz√
Rez

=

 0.886Pr1/2 Pr→ 0

0.464Pr1/3 Pr→∞
(137)

for the UWF condition. The asymptotic relationships for
the Prandtl number function can be combined into a simple
compact relationship given by the following general form:

Nuz
(RezPr)1/2

=
Co"

1 +

µ
CoPr

1/6

C∞

¶n#1/n = f(Pr) (138)

The average Nusselt number for both cases is now ob-
tained by integrating Eq. (138):

NuL = 2NuL (139)

After introducing L?, the solution for each wall condition
can be compactly written as:

NuL = C4
f(Pr)√
L?

(140)

where the value of C4 = 1 for local conditions and C4 = 2
for average conditions, and f(Pr) is defined as:

f(Pr) =
0.564h

1 +
¡
1.664Pr1/6

¢9/2i2/9 (141)

for the UWT condition, and

f(Pr) =
0.886h

1 +
¡
1.909Pr1/6

¢9/2i2/9 (142)

for the UWF condition. The preceding results are valid
only for small values of L?.

C. First Compact Model for Nusselt Number

The first compact model can be developed for the entire
range of dimensionless tube lengths and for Pr → ∞. Its
general form is [36]:

Nu(z?) =

Ã(
C2C3

µ
fRe

z?

¶ 1
3

)n
+ (Nufd)

n

!1/n
(143)

Now using the result for the fully developed friction fac-
tor and the result for the fully developed flow Nusselt num-
ber with n ≈ 5, a new model [32,34,36] was proposed hav-
ing the form:

Nu√A(L
?) =(C2C3µfRe√A

L?

¶ 1
3

)5
+

½
C1

µ
fRe√A
8
√
π²γ

¶¾5 1
5

(144)
where the constants C1, C2, C3 and γ are given in Table 12.
These constants define the various cases for local or aver-
age Nusselt number and isothermal or isoflux boundary
conditions for the Graetz problem. The constant C2 was
modified from that found by the Leveque approximation to
provide better agreement with the data.

D. Second Compact Model

A model for the combined entrance region is now devel-
oped by combining the solution for a flat plate with the
model for the Graetz flow problem developed earlier. The
proposed model takes the form:

Nu√A(L
?, Pr) =

(C2C3µfRe√A
L?

¶ 1
3

)5
+
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+

½
C4
f(Pr)√
L?

¾m1/m (145)

which is similar to that proposed by Churchill and Ozoe
[3,4] for the circular duct. This model is a composite solu-
tion of the three asymptotic solutions just presented. The
“fitting” parameter was found to depend on the Prandtl
number [25].
The parameter m was determined to lie in the range

2 < m < 7, for all data examined. Values for the blend-
ing parameter were found to be weak functions of the duct
aspect ratio and whether a local or average Nusselt num-
ber was considered. However, the blending parameter was
found to be most dependent upon the fluid Prandtl num-
ber.
A simple linear approximation was determined to pro-

vide better accuracy than choosing a single value for all
duct shapes. Due to the variation in geometries and data,
higher order approximations offered no additional advan-
tage. Therefore, the linear approximation which predicts
the blending parameter within 30 percent was found to be
satisfactory. Variations in the blending parameter of this
order will lead to small errors in the model predictions,
whereas variations on the order of 100 percent or more, i.e.
choosing a fixed value, produce significantly larger errors.
The resulting fit for the correlation parameter m is:

m = 2.27 + 1.65Pr1/3 (146)

The above model is valid for 0.1 < Pr < ∞ which is
typical for most low Reynolds number flow heat exchanger
applications.
The compact model predictions and numerical values

have been compared [32,34,36] for many duct cross sections
(singly and doubly connected), for UWT and Isoflux condi-
tions for area average Nusselt numbers for different fluids
characterized by several values of Pr. The general com-
pact model, Eq. (145), and numerical values are compared
in Figs. 28 through 33 for singly and doubly connected
ducts for uniform wall temperature (UWT) and uniform
wall flux (UWF). The numerical values for parallel plate
channels are compared with the model in Fig. 33. In all
cases the agreement is good. Its beyond the scope of this
paper to show all plots given in [32,34,36]. A few selected
plots are presented to show the good agreement between
the compact model predictions and the numerical data tab-
ulated in [31].

XIV. Summary and Conclusions

Asymptotes appear in many problems in fluid mechanics,
contact mechanics, steady and transient conduction and
convective heat transfer, as well as many other important
thermophysical problems. Often the asymptotes appear
explicitly from asymptotic analysis, and other times one of
the asymptotes does not appear until a change has been
made in the presentation of the analysis.
The method of combining asymptotes is based the work

of Churchill and Usagi [1]. It was shown that there are

Fig. 28. Nusselt Number for Fully Developed Flow in Various UWT
Ducts

Fig. 29. Nusselt Number for Fully Developed Flow in Various UWF
Ducts

Fig. 30. Nusselt Number for Fully Developed Flow in UWF Annular
Ducts
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TABLE XII

Coefficients for General Model

Boundary Condition

UWT (T) C1 = 3.01, C3 = 0.409 f(Pr) =
0.564h

1 +
¡
1.664Pr1/6

¢9/2i2/9
UWF (H) C1 = 3.66, C3 = 0.501 f(Pr) =

0.886h
1 +

¡
1.909Pr1/6

¢9/2i2/9
Nusselt Number Type

Local C2 = 1 C4 = 1

Average C2 = 3/2 C4 = 2

Shape Parameter

Upper Bound γ = 1/10

Lower Bound γ = −3/10

Fig. 31. Nusselt Number for Thermally Developing Flow in Various
UWT Ducts

two basic ways of combining the asymptotes depending on
where the approximate solution is concave upwards or con-
cave downwards. A procedure of calculating the “fitting”
parameter was presented. The approximate solutions for
many different types of problems were shown to be very
accurate over broad ranges of the independent parameters.

The examples presented include conduction through a
stationary gas for all values of the Knudsen number, radia-
tion through a porous layer of material, steady conduction
through a spherical wall and enclosures with constant gap
thickness, transient conduction external to a sphere and
other convex bodies, elastic-plastic contact of a rigid sphere

Fig. 32. Nusselt Number for Thermally Developing Flow in Various
UWF Ducts

and a softer substrate, pressure drop for fluid flow through
short and long tubes of arbitrary cross sectional area, natu-
ral convection in vertical isothermal ducts of arbitrary cross
sectional area, and finally forced convection heat trans-
fer in short and long tubes and pipes with isothermal and
isoflux wall conditions. The last example showed how sev-
eral asymptotes can be combined to develop a compact
model.

Many of the examples have previously been applied to
some interesting microelectronics cooling problems.
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Fig. 33. Nusselt Number for Thermally Developing Flow in Parallel
Plate Channels
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