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1 Introduction of some of the system parameters. The third objective is to report

solytions for some special cases. The numerical values will be

Many r rchers over several hav i iffer ; . . .
any researchers over several decades have studied diffe sented in tables, and whenever possible, correlation equations
aspects of spreading/constriction resistance of a circular area s I be given

jected to different boundary conditions. Spreading/constriction re-
sistance solutions have been reported for steady heat conducﬁgé\/iew of Previous Work
or current flow into the four regions shown in Fig. 1. The four
regions are defined agi) an isotropic half-space(ji) a semi- The studies on the thermal spreading/constriction resistance of
infinite circular flux tube (i) a very thin disk of infinite extent, & circular heat source have a long history. Carslaw and Jgéper
and (iv) a finite length circular cylinder with different film coef- reported the analytical results, obtained by several investigators,
ficients imposed on the side and end surfaces. The mathematf@althe circular source of radiua situated on an isotropic sub-
problems of current flow and heat conduction from astrate of thermal conductivitly whose dimensions are much larger
isopotential/isothermal circular area into a half-space are mathan the source radius as shown in Figa)1Analytical solutions
ematically analogous to the classical capacitance problem for WRre reported for two boundary conditiong:ain isoflux circular
isopotential thin circular disk in free space. source and Ji an isothermal source. The spreading resistances
Mathematicians and physicisté—3] applied different analyti- Were defined for the two boundary conditions. _
cal methods to obtain the capacitance of an isopotential circularR0€ss5] in an extensive unpublished work found the solution
disk in free space. Since the capacitance is based on the ratid@fspreading resistance of an quasi-isothermal circular source of
the total charge to its potential, it was necessary to find the akRdiusa placed on one end of a semi-infinite circular flux tube of
symmetric charge density distribution on the surface of the disi@dius b and isotropic thermal conductivity as shown in Fig.
This is an example of an inverse problem which requires the sB). The mixed boundary condition problem was resolved by the
lution of a complex mixed boundary-value probl§gj. Solutions USe of an equwa_lent isothermal flux distribution. The analysis is
and spreading/constriction results for the analogous conductigjghly mathematical; however, Roess reported the results for the
problem are summarized and discussef4ih dlme_nS|onIess sprgadlng re_&standealil?S as a functlon_ of the
Electrical and mechanical engineers have used different analyglative source radius=a/b in the form of a power-series.
cal and numerical methods to find the spreading/constriction re-Smythe[6] solved the mixed boundary value problem arising
sistances for the other regions shown in Fig. 1. Their results 4f@M the steady flow of a current into a right circular cylinder of
frequently reported in tables and plots, and a few correlation equgdiusb. The current enters the cylinder through a coaxial, per-
tions have been given for spreading/constriction resistance a&glly conducting, circular disk of radiua. The solution was
function of one parameter such as the relative size of the h&@Sed on the superposition of the equivalent isothermal flux dis-
source for different flux distributions. tribution solution and the isoflux solution. This was accomplished
The main objective of this paper is to present a new genel%)_f combining flux distributions to give an approximate flux dis-
analytical solution for the system depicted in Figd)l The gen- (tribution corresponding to an isothermal source. o
eral solution will give the dimensionless system resistance whichKennedy[7] found through analysis the temperature distribu-
depends on four dimensionless system parameters and the H@g¢ for steady conduction within a finite length flux tube of
flux distribution parameter, and when applicable the spreadin@diusb, thickness;, and thermal conductiviti due to an isoflux
constriction resistances. The second objective is to show how #{geular source of radius placed on one end of the flux tube,
general solution goes directly to several special cases, previoudfipwn in Fig. 2. Three cases were examined corresponding to

examined by other researchers, depending on the limiting valUf§ boundary conditions specified along the lateral boundary
r=b and the endz=t. The three cases weré) alongr=»b, 0
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(b) vz

(d) z

Fig. 1 Schematic of solution domains— (&) half-space, (b) flux
tube, (c) infinite plate, (d) finite length cylinder

Fig. 2 Finite length cylinder with side and end cooling

z=t, 0<r<b, T(r,t)=0. Kennedy[4] reported the solutions for againste and compared against several approximate solutions
the temperatur@(r,z) within the flux tube, the centroid tempera-which are valid for small values of only. They did not give a
tureT(0,0), and he presented plots for the normalized temperatwerrelation equation for their numerical values.
T(r,2)/T(0,0). Strong et al[10] used finite difference methods, formulated in
Kennedy{ 7] did not present explicit relations for spreading an@blate spheroidal coordinates, to obtain source temperatures and
system resistances. Since the temperature plots were nondindimensionless spreading resistances for several source heat flux
sional, T(0,0)k/(ga), its easy to find the dimensionless systendistributions for circular sources situated on the surface of isotro-
resistance based on the centroid temperature by dividing by thie half-spaces. The analytical solutions presented4inwere
factor wka. used to validate the numerical scheme which was found to provide
The system resistance is equal to the spreading resistance waeturate values of temperature and dimensionless spreading resis-
T(b,2)=0; otherwise, whemy(b,z)=0, the total resistance is tance. They gave plots of the source temperature distribution and
equal to the spreading resistance plus the one-dimensional ctabulated values of the corresponding spreading resistance for
duction resistance each heat flux distribution.
Gibson[11] reported an exact method of approach to the com-
Q) plex mixed boundary value problefisothermal sourgefor the
semi-infinite flux tube. The problem was reduced to a Fredholm
integral equation. The integral was solved by standard methods to
obtain an expression for the dimensionless spreading resistance. A
plot of 4kaR; versuse for a wide range of values was presented
along with a correlation equation.
govanovieh[lZ] obtained a general analytical relation for the
imensionless spreading resistance for a general, axisymmetric
eat flux distributionq(r) over the circular source on a semi-
Hgﬁpite flux tube. He used the alternative definition of spreading

Rsys: RS+ m
The dimensionless spreading resistanéea R; depends on the
two geometric parameterg=a/b, the relative source size and
7=t/b, the relative thickness of the flux tube.

Mikic and Rohsenow[8] obtained analytical relations for
spreading resistances for a circular heat source on one end g
semi-infinite flux tube and a finite length finite flux tube as shov:ﬁ
in Figs. 1(b) and (d). They gave solutions for the isoflux sourc
and the quasi-isothermal source based on the equivalent isother- i
mal flux distribution for theg(b,z) =0 boundary condition. They resistance re_commended by Mikic and _Rohseﬂis]/v From the
presented plots of the dimensionless spreading resistakaR4 general re'a“g”' another _general relation was founq ger)
as a function ofe for the semi-infinite flux tube. =0o[1—(r/a)"]* whereq, is the flux level at the centroid of the

It was shown through analysis that the spreading resistance S"C€ andu is the heat flux distribution parameter. By setting

be obtained by means of the alternative definition: u=—1/2, the equivalent heat flux distribution, and settjngO0,
the isoflux distribution, he was able to get the spreading resistance

2 (2 2 (P relations reported by others. He also gave the spreading resistance
QRSZQJ T(r,O)rdr—Ff T(r,0)rdr (2)  relation for the heat flux distribution corresponding jie=1/2.

0 Tabulated values of the three dimensionless spreading resistances
whereT(r,0) represents the temperature rise of points in the plaf@ 0<e<0.8 were given. Several simple correlation equations
of the heat sourceg=0. Simple, approximate correlation equawere given for the three flux distributions.
tions were presented for small valueseof Yovanovich[13] developed an integral method for finding the

Hunter and Williams[9] presented an approximate analyticabpreading resistance of single, planar, isoflux sources of arbitrary
solution for the isothermal circular source on a semi-infinite flughape placed on isotropic half-spaces. The integral method was
tube. The dimensionless spreading resistariceR} was plotted used to find the dimensionless spreading resistance of several

0
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shapes such as regular polygdmghich include the square and This relatively brief review of the pertinent literature shows that
circle), rectangles, and triangles, as well as other singly connectedny researchers over six decades have examined many systems
source areas. consisting of a single circular source on substrates which were
Yovanovich and Burdg14] used the integral methgd 3] to modeled as regions shown in Fig. 1. The sources were isoflux,
find the dimensionless spreading resistance of several ndsethermal or had other axisymmetric flux distributions. The nu-
symmetric, isoflux sources based on the centroid and average tenerical results were presented in graphical and tabular form, and
perature basis. accurate or approximate correlation equations were also given.
Yovanovich et al.[15] also used the integral methdd3] to The system shown in Fig. 2 has a circular source of raalios
obtain values of the dimensionless spreading resistances of afle end of a finite length circular cylinder of radinisthickness,
trary, planar, isoflux sources. They used the square root of tAgd thermal conductivitk. The sidesr=b and the enaz=t are
source area for the nondimensionalization, and reported ti@oled through uniform, but different heat transfer coefficidnts
sources that had the same area and aspect(eatjq a circle and andhe, respectively. The spreading and total resistances for this
a squarg had spreading resistances which differed by less th&¥stem are presently not available. The dimensionless spreading
approximately 1—2%. and total resistances of this general problem will depend on sev-
Martin et al.[16] used the method of moments to find spreac®r@l system parameters such &%, t/b, hb/k, heb/k and the
ing resistances for several sources such as circle, square and rce heat flux distributiop. The general relationships devel-
lateral triangle. They obtained numerical results for isotherm@Ped for this system will give the particular cases discussed in the
and isoflux boundary conditions. They also examined the effect f€going review.
the boundary condition of the third kind which can be used to
model the effect of a thin film such as an oxide. They presented
their numgrical results in tabulated form and by several correlgseneral Problem Statement and Mathematical Eormu-
tion equations. lation
Negus and Yovanovichl7] obtained an accurate solution for
the dimensionless spreading resistance for the true isothermal cirConsider a finite length circular cylinder of radibsthickness
cular source on a semi-infinite flux. The solution was obtained tyand thermal conductiviti which is isotropic. There is a circular
the linear superposition of Neumann solutions, and the resuftgat source of radiuslocated in the surface=0 of the cylinder
were presented in graphical form and in the form of an accuradad it is coaxial. The heat flux over the source area is assumed to
correlation equation. be axisymmetric, and the remainder of the surface is adiabatic.
Negus and Yovanovichl8] applied the method of optimized The lateral side =b and the opposite enz=t are cooled by a
images to find the spreading resistance of an isothermal circuflsd at fixed temperaturd; through uniform film coefficient$
source on a semi-infinite flux tube having a square cross secti@idhe, respectively. The system is depicted in Fig. 2. .
The numerical results were presented as an accurate correlatiohhe heat which enters the system through the source area is
equation. conducted through the system and leaves through the side and end
Negus et al.[19] showed that when the square root of theurfaces. The maximum temperature rise occurs at the center _of
source area is used to nondimensionalize the spreading resistdfgesource area. The system thermal resistance is defined with
and the relative size is replaced ly- JA.TA; whereA, is the respect to the average temperature rise of the source area.
source area and, is the flux tube cross-sectional area, then the 1he governing differential equation for the axisymmetric tem-
dimensionless spreading resistance definell @R, for circle/ Perature risef(r,z)=T(r,z) — Ty is

circle, circle/square and square/square source-to-flux tube ratios 19/ 98\ %0
have very close values for<Q:<0.6. T ( r m + 2 =0, 0<r<b, O<z<t 3)
ror r z

For each system tabulated values were presented. Also, a
simple correlation equation was presented for the three systeMgie general boundary conditions are
For the range €e=<0.5, the maximum error is about 2%, and the

maximum error becomes about 4% when the range is extended to a6
0<e<0.7. r=0, —-=0
Song et al.[20] and Lee et al[21] presented analytical and
approximate solutions for the isoflux circular source on a finite a6 h
thickness circular disk with adiabatic sidgéb,z)=0 and with r=b, ok 0
cooling over the entire end=t through a uniform convective (4)
coefficient or contact conductance denotedhgas shown in Fig. a6 he
2. The dimensionless spreading resistance and the relative source z=t, 2z K 0
size were defined as ifl6]. The dimensionless spreading resis-
tance for this system depends on three dimensionless parameters: q(r)
e=alb, 7=t/b, Bi;=hgb/k. They presented geometric relations d - for 0<r<a
for conversion of a rectangular source on a rectangular plate to an z=0, 9z
equivalent circular source on an equivalent thin circular disk. 0 for a<r<b

They presented a relationship for the equivalkgtfor the case
where the entire end surface is cooled by a heat sink. f
! . : ; rm

The final example of an electrical spreading resistance proble%
is due to Foxall and Lewif22] which is discussed if3]. In this Q(1+pu)
case an electrical current enters an infinite thin désle Fig. 1c)) q(r)= v
of thicknesg and electrical resistivity, through a circular contact m
area of radiug, and leaves through the bottom surface of the diskhere Q is the total heat transfer rate from the source into the
which is in perfect contact with an ideal conductor. Experimentalystem, andu is the heat flux distribution parameter. Three inter-
values were reporte@2] for five values of the relative disk thick- esting distributions are obtained wher=—1/2, 0, 1/2. The flux
nesst/a=10, 5, 2, 1, 0.93]. The experimental results were nor-distribution corresponding ta=—1/2 is minimum at the center
malized with respect to the half-space theoretical value and wexed unbounded at the edge of the source area. This flux distribu-
reported as 4R;/p=0.96, 0.90, 0.80, 0.64, 0.43 for the five relation is frequently used to approximate an isothermal source area.
tive thicknesses respectivelg,22). The second flux distribution corresponding&e=0 is clearly an

The axisymmetric heat flux over the source area has the general

r\2e r
1—(—) } for 0<—<1 (5)
a a
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Table 1 Fourier coefficients for three flux distributions This general relation applies to the three heat flux distributions.

1 Q sin(S,e) System Thermal Resistance
w=my En= bk DS I )+ 48] The total resistance of the system is defined with respect to the
Q 23,(8:6) mean temperature rise of the source area
n=0, E,= bR B 2
oK b€l J5(3n)+I1(n)] 2 (a
1 . _Q 3Asina0-cotqed(s,e)] Oave=z | TOr.0dr
o B T N AR AT
and
0

isoflux distribution. The third flux distribution corresponding togince the temperature excess in the surtae® is
u=1/2 is parabolic; its maximum at the center and goes to zero at

the edge of the source area. ”
0(r,0= >, EpJo(Anl) (13)
General Solution n=1
The general axisymmetric solution is one finds for the system resistance the general relationship
” 2« _ Ji(Sne)
0(r,2)= >, [EnCOoSHA2Z) +FnSiniNg2) [Jo(Anl)  (6) Ry 2 B g e (14)
n=1 -

It satisfies the boundedness conditiéf0,z) # on the axisr |he dimensionless system resistafice- 4akR;is given by the

=0, and the eigenvalues, are related to the positive roots of thegeneral relationship

characteristic equation b 163 ( 2 )ﬂnzw)alw(ane)h(ane)
3nd1(8,) =BiJo(5p) ) Snel  pnd 280 +IX5)]

with §,=\,b, Bi=hb/k and Jo(-) and J,(-) are Bessel func-

TE p=1

tions of the first kind of order zero and one, respectiyef]. The n=123... (15)
parameter range iSSEBi_<OC. _ - _ wherel'(2+u) is the Gamma functioh23]. The general relation
Thg .boundary condition &=t is satisfied if the Fourier-Bessel reduces to the following three relations far=—1/2, the equiva-
coefficients are related such that lent isothermal source provideg0.6, and7>1, and u=0, the
isoflux source, angv=1/2, the parabolic flux distribution
Fo=—Encby (®) s P
i i 1 8 w Ji(Spe)sin(sne
with the function for pemz, W= ;)Gl( n )sin( n )@n (16)
_ Big+ 5, tanh(5,7) o 2 me it 8 I5(80) +IL(3n)]
" 5y Bi, @ 5,7) ®) ang
where 0<r=t/b< is the relative cylinder thickness; and with 16 Ji(gne)%
the boundary parametersBi,=h.b/k<o. The functiong, has for u=0, W= —2 T 2501345 a7
two asymptotes corresponding to the limits on the end cooling m€n=1 ;[ Jo( ) +J1(5n)]
parameter Bi. They are and foru=1/2
Bie—>0, ¢n—>tanl( (Sn’T) and Bla—>OO, (ﬁn—>COtr( 5n7') _ 24 i ‘Jl( 5n6)sir( 5n£)‘Pn 1 1
and if 6,7>2.70, then¢,~1 for n=1. The remaining Fourier- T me&, 8 I2(8,) +IX(5,)]1(80€)?  (Spe)tan ne)
Bessel coefficients are found from the boundary conditions in " (18)
=0. These conditions require ) ) ) )
a where for convenience we introduce the end cooling funcgign
_Joa(r)rdo(Apr)dr (10) =1,
n— b, 12
— dnhnfor Jo(Nar)dr _ Syt Bigtanh(5,7)
After substitution forq(r) and evaluation of the integrals, with ‘P”_Bie+ 5, tanh( 8,7) (19)
application of the orthogonality property of Bessel functions, one . .
finds for the Fourier coefficients the general relationship The general solution for the total system resistance depends on
four dimensionless system parameters
2 2 \* T(2+w)d Sn€ I
En:_Q(_) (2 2“) ”"(2 i) , n=123... ¥ =1(e,7,Bi,Bi) (20)
bk She) hndi[Io(0n) +I1(3n)]

(11) with parameter ranges<Ge<1, 0<7<w, 0<Bi<, and 0<Bi,
<o,
wherel'(-) is the Gamma functiof23]. * o )
The Fourier coefficients for the three heat flux distributiondzharacteristics of the General Relations

u=-1/2, 0, 1/2 are given in Table 1. If the lateral sides of the cylinder are adiabatic, i.e=Bj then

. . . S, are the roots 0d,(45,) =0, and the one-dimensional resistance
Maximum (Centroid) Temperature Rise of the system is 1(60)

The maximum temperature rise which occurs at the center of

the source area is given by R :L+ o (21)
. D7 kwb? ' hemb?
Ormax= 6(0,0)= 21 E, (12) ;IS’]e dimensionless one-dimensional resistance fert8s defined
A=
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de 1 Table 2 Coefficients for spreading resistance [5]
ip=4akRp=—|7+ = (22)
™ Bie 1 rs I's rs ry £
. . . . ) . 1.40925 .295910 .0525419 .0210419 .0110752 .00631188
The dimensionless spreading resistance, defingfFaékaRs, is
therefore
Yp=V-R]p. (23)

Spreading Resistance: Isothermal Contact Area. Several
lytical studie$5,6,8,9,11,12,17,1&have considered the prob-
em of spreading resistance of an isothermal circular contact area
located on the end of a very long circular flux tube. The mixed
16 — Ji(5n6)¢yn boundary conditions in the contact plame 0, are (i) constant
y=— TR for u=0 (24) temperature over the contact area0<a, and(ii) zero tempera-
men=2 Onlo(dn) ture gradient over the noncontact portion of the contact ptane

Also, the first eigenvalue approaches the asympfgte \/2'B'|' as <r=b making the problem considerably more difficult analyti-

As Bi—O0 the first term of the summation goes to the one-
dimensional total resistance and the sum of the remaining ter
goes to the spreading resistance of the system

Bi—0. The functions which appear have the asymptf2&} cally. This mixed boundary-value problem is discussed in some
detail in[2].

X Various analytical and numerical techniques were used to pro-

as x—0, tant)—x,  Jo(¥)—1, (- 2 duce an isothermal contact area for large relative contact radius

€<0.8. Roesd5] in an extensive unpublished work found the
spreading resistance for the equivalent isothermal flux distribution
néﬁrresponding tqu=—1/2. The analysis is highly mathematical;
wever, results in the form of a power-seri&$ were reported

Substituting these limits into the first term, then letting—&)
gives the relation for the dimensionless total one-dimensio
resistance. ho
The general relationship for the total system resistance gives
several special relationships depending on the values of the sys- 4akR=1-r e+r3e+rge®+r,e’ +roe+r et (27)

tem parameterse, 7, Bi, Bie. where the coefficients,, ... rq; are given in Table 1. It was

) ) found [5] that whene<0.3, the heat flux distribution produces a
Calculation of the Eigenvalues contact area temperature distribution which for most practical ap-

The foregoing general relationships require accurate valuesR¥cations can be considered to be isothermal. It was repgfed
the eigenvalues which must be calculated by means of the chif}dt whene=0.4 ande=0.5, the temperature along the edge
acteristic equation. The Bessel functiodg(x), J;(x) can be =& exceeded the _centr0|d temperature by approm_ma_tely_ 3.86
computed accurately by means of polynomial approximations apd 9.90%, respectively. Fet>0.5, the temperature distribution

with a computer algebra system. The roots of the characterisfcnonuniform. ) .
equation are located in the intervals Smythe[6] solved the mixed boundary value problem arising

from the steady flow of a current into a right circular cylinder of
(n—L7<s<nm, n=123... radiusb. The current enters the cylinder through a coaxial, per-
fectly conducting, circular disk of radiua. The solution was

and they have the following properties " . ; .
y hav Wwing propert based on the superposition of the equivalent isothermal flux dis-

for Bi—x, 4, are roots ofJy(65,)=0 tribution solution and the isoflux solution. This was accomplished
The first three roots aré, = 2.4048255585,= 55200781105, Y the following combined flux distribution:
=8.65372791323], and Q 1 1
. q= —{ €15 — | Z— 25
for Bi=0, &, are roots 0fJy(5,)=0 wb? 2¢J1—uZle

and the first four roots ares;=0, 6,=3.831705970, 3 with e=a/b andu=r/a. This flux distribution has two limits as
=7.015586670, 6,=10.17346814[23]. Also, as Bi~0, &1 0 ande—1. For the first limit, the flux distribution goes to the
—2Bi—0. The Newton-Raphson iterative method is reconyyx distribution corresponding to an isothermal circular contact

mended for calculation of the roots for any value of Bi. The relaairea on a half-space, i.q=Q/(2ma%\y1—u?). For the second
tion for thenth root is limit, the flux distribution goes to the uniform flux distribution,

0n,jd1(0n,j) —Bido(nj) q=Q/(mb?). o .
On,j+1= 6nj— - , =123 ... The approximate relationship g8] can be cast into the follow-
On,jJo(On,j) + Bida(Sh,)) ing form for the dimensionless spreadi istance:
(25) g preading resistance:
The calculations converge rapidly. Eight decimal place values are 4akR=(1-€>*)h(p=—1/2)+€>**Y(u=0) (28)
found after 5 to 6 iterations. where {u=—1/2) and y{u=0) are the dimensionless spreading

resistances defined ag=4akR; for the equivalent isothermal

Special Cases Arising From the General Relationship ~ flux and the isoflux distributions, respectively. . ,
The numerical values of the dimensionless spreading resistance

Sp_eC|aI cases arise naturally from the general relationship qSF the three flux distributiongu=1/2,0,-1/2) are given in Table
pending on the magnitude and/or range of the system paramet§rSeq,r hundred terms of the series solutions were used to com-
Several special cases are presented below. pute the four decimal place values shown. The values given for
€=0 are the half-space valu¢g]. The dimensionless spreading
resistance depends on the flux distribution such that the minimum
values correspond to the equivalent isothermal flux and the maxi-
§Rum values correspond to the parabolic flux distribution. The
isoflux values lie between these values over the full range. of

Spreading Resistance in Flux Tubes With Adiabatic Sides.
For this important case, Bi0, &, are the roots ofl;(4,)=0
which are computed by means of the following modified Stok
approximation:

B 6 6 4716 390291 The isothermal values computed by means of the solutions of
5n:Z 1- /? + F— S—BG + Tﬁsj (26) [5,6,11,17 are also presented in Table 3. For relative contact radii
1 1 1 1 in the range: &€=<0.5, the differences between the various mod-
with 8;=m7(4n+1) andn=1,2,3 . .. els is less than approximately 2% which occurs between the Roess
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Table 3 Dimensionless spreading resistance, 4  akR;

“n “m “m Negus and

€ 1/2 0 -1/2 Roesg5] Gibson[11] Yovanovich[17] Smythe[6]

0 1.125 1.0808 1 1 1 1 1

1 .9843 .9401 .8592 .8594 .8594 .8594 .8593

2 .8450 .8009 .7205 .7205 .7209 .7208 7207

3 .7085 .6649 .5853 .5853 .5865 .5865 .5865

A4 5763 .5337 .4558 .4558 4587 .4586 .4590

5 .4500 4092 .3342 .3342 .3398 .3396 .3408

.6 .3316 .2936 2232 2232 .2328 .2324 .2349

7 2235 .1896 1262 1262 .1409 .1403 1444

.8 .1284 .1008 .0483 .0478 .0680 .0672 .0723
[5] and Smythe[6] solutions. The correlation df5] gives the t t
largest differences for large values @fThe differences between for EHO, Reys— Rld:m + homa? (31)

e

the values calculated by the correlation equations of Gilhsh
and Negus and Yovanovidii7] are less than approximately 1%The dimensionless system resistance has the following limit:
for all values ofe. The approximate solution of Smyth@] is seen

to be very good up t@=0.7 where the values are approximately
2.4% greater than those obtained by the correlation equations of
[11] and[17].

r
for E—»O, 4akRys—Rj=—|= (32)

7| € €Big

This asymptote is valid for the parameter rangesB0<« and
) ) 0<Bi <.
Correlation Equations

The analytical solutions presented in the foregoing and the
analytical/numerical isothermal solution of Gibsfil] and the
isothermal and isoflux solutions of Negus and Yovano\itf]
are correlated in the same manner by the polynomial

Spreading Resistance of Isothermal Circular Source on
Thin Infinite Disk. Consider an isothermal circular source of
radiusa with heat flux parameten=—1/2 in contact with a thin
infinite disk e—0 of thicknesst and thermal conductivitk as
4akR=ay+a e+ aze’+age®+ase’ (29) shown in Fig. 3. Since the bottom surface is assumed to be iso-
thermal, therh,— 0. The solution for a closely related problem is

The correlation coefficients for the three analytical solutions afg e, in[1]. The solution for the temperature is given in terms of
based on fitting the numerical values found in Table 4. The caly infinite integral.

relation coefficients for the isothermal solution are those reportedrhe dimensionless spreading resistange: 4ka is given
by [11] and[17]. P 9 nge4kaRs. Is g

by
Dimensionless Spreading Resistances in Half-SpaceFor 4 (= B
e—0 and 7>1, the system resistance approaches the spreading = _f tan )sin(B)Jy(B) = 33
resistance in a half-space. The heat flux distributions and the cor- i 0 HBx)sINB)I(B B (33)

responding spreading resistances are given in Table 5. The ana- . . . ) .
lytical results arey(u=—1/2)=1, y{u=0)=1.0808 andy{u=1/ where y=t/a is the relative disk thickness. The hyperbolic tan-

2)=1.1252. gent can be expressed as
Perfect Thermal Contact Along Sides. If there is perfect tant By) = 1— 2e 2Px
thermal contact along the sides of the cylinder, then-Bi and anh(Sx) = 1+e2Px

then &, are the positive roots aly(5,)=0 which can be com- ) ) ) ) ) )
puted by means of the following modified Stokes approximatiod:ne d_|mefn3|onless spreading resistance can be written in the al-
ternative form

5,;% 1+ Bir 36—;4 + %1316_1 (30) . 8 [*e ?Pxsin(B)Iy(B) dB
0 0 0 l/f—l—;fo 1t+e 2Px B2 (34)

with Bg=m(4n—1) andn=1,2,3 . ..

Very Thin Cylinders. For very thin cylinders where the Which shows the very thick disk asymptote

thickness to source radius is much less than onetiz< 0.1 or
7€<0.1, the heat dissipated by the source flows directly to the
opposite face in a one-dimensional manner with negligible spredebr quick numerical integrations, the first form is recommended
ing. The system resistance approaches the one-dimensional resisy<2 and the second form is recommended for2. Accurate

as y—», y¢—1

tance for an isothermal source values ofiy were computed by means of computer algebra systems
Table 4 Correlation coefficients for spreading resistance solutions, 4 akR
n m n Gibson[11] N-Y [17] N-Y [17]
1/2 0 —-1/2 Isothermal Isothermal Isoflux
ao 1.12517 1.08085 0.999961 1 1 1.08076
—a, 1.41038 1.41002 1.40981 1.409183 1.40978 1.41042
as .235387 259714 .303641 .338010 .34406 .26604
as .0117527 .0188631 .0218272 .067902 .04305 —.00016
a; .0343458 .0420278 .0644683 ‘e .02271 .058266
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Table 5 Flux distributions and spreading resistances in half- 16 Ji( 8,€) @1

space —_— 36
e 59550 59
-1/2 0 1/2 ;
’ with
2 1 —u? .
a_Qq _ — 3;_” 61+ Bigtani 6, 7) 37
w -
2m1-1? - g #1775 tank(6,7) + Bi, 37)
4akR, 1 1.1252 ' L L .
3.2 and the first root of the characteristic equation is approximated by
the correlation
5 2.404826 38)
such as Maple and Mathematica. They are reported in Table 6 for ! 2.40482¢ >* #*%
selected values of the relative plate thickngs3he plate can be —\/ﬁ

modeled asnfinitely thick when y=100.
which gives values with a maximum error less than approximately
Correlation Equation for Spreading Resistance in Infinite 294 for the full range: &Bi<®. For Bi—0, since §;,— ZBi
Disk. A correlation equation based on the entries in Table 6 is 0, thendy(8;)— 1, J1(81)— (8,)/2 andd(5,€)— (51€)/2, and
the system resistance goes to the first term which approaches the
<x<10 (35) fin resistance with spreading resistance and end cooling

with correlation coefficients given in Table 7. The correlation  _, ~ ™% | * — V2Bi+ Bie tanf y2Bi7)
equation gives values af with a maximum difference of about ™ €D " 7e\2Bi| Bi,+ V2BitanH \2Bir)
0.4% relative to the tabulated values. The electrical experimental (39
valule;s. [3i22]|d|scu.ssed.at_}0\gle age in good agreement with thﬁwis relation shows the dependence of the general dimensionless
analytical values given in fable ©. fin resistance on the system parameters:, Bi, Bi,.

a,a,+agy™
S apty™

4‘,91 4

Extended Surface(Pin Fin) With End Cooling and Spread-
ing Resistance. The general solution approaches the solution fo, . : . . : :
an extended surfad@in fin) if Bi —0 and7>1, =0 for 0<Bi, Approx!matlon Relations for Spreading Resistance in
<= and O<e<1. If Bi<0.2, then the dimensionless system residieat Sink Base Plate
tance approaches the first term of the summation The general solution can be used to calculate the spreading

resistance in the rectangular base plate of a heat sink due to a
rectangular heat source as describef®®] and[21]. For this case
we set the heat flux parameter g8=-0 and Bi=0. The equivalent
q (r) source radius is obtained froe= \JA;77 and the cylinder radius
is obtained fromb= JA,77 whereAs andA, represent the plan
areas of the source and base plate respectively. The relative source
size was defined as=a/b, and the remaining system parameters
were defined as B+ hgb/k and 7=t/b wheret is the thickness of
a [ the base plate.
They nondimensionalized the constriction resistance based on
% 1 t k the centroid and area-average temperatures using the square root
of the contact area as recommended by Yovanovich in several
= papers. They compared the analytical results against some experi-
Zv mental results and numerical results over a range of the indepen-
h = 00 dent parameters, 7, Bi. The agreement between the analytical
e and numerical results were reported to be in very good agreement.

Lee et al.[21] recommended a simple closed-form expression

for the dimensionless constriction resistance based on the area-

]
\ 4

Fig. 3 Equivalent isothermal circular source on thin infinite

disk average and centroid temperatures. They defined the dimension-
Table 6 Dimensionless spreading resistances in infinite disk less spreading resistance parametepas/mkaR;, and they rec-
ommended the following approximations:
X U X 4 for the area-average temperature basis
0 0 2.0 0.7889 1
.10 0.1089 3.0 0.8559 —_(1—¢)32 4
20 0.2015 4.0 0.8910 Vave=5 (1= €7 (40)
.30 0.2824 5.0 0.9124 . .
40 0.3532 6.0 0.9268 and for the centroid temperature basis
.50 0.4149 7.0 0.9372
.60 0.4684 8.0 0.9450 1
.70 0.5148 9.0 0.9511 Uma=—(1— €)@, (41)
.80 0.5551 10 0.9560 N
.90 0.5901 20 0.9779
1.0 0.6206 100 0.9956 where
Bitanh(é.7)+ 6, . 1
Table 7 Correlation coefficients for infinite disk %Zm with 6=+ ﬁ
& & a3 a4 The foregoing approximations are stated to be withih0% of
0.002915 0.61378 0.99617 1.1783 the analytical and numerical resu(t20,21]. They did not, how-

ever, indicate were the maximum errors occur.
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= Gamma function
dimensionless eigenvalues;\ ,b

Summary and Concluding Remarks

ﬁ
> =
I

A general solution has been presented for spreading/ n- . ;
constriction and system resistances for a circular source on a finite e = relative SOurce size- alb
circular cylinder with side and end cooling. The dimensionless 0= tejmperature' dlf{erence,:T(r,z)—Tf
resistancesyy=4kaR;, and¥ =4kaR,depend on four dimen- Ay = eigenvalues; m"
sionless system parametees:r, Bi, Bi,, and selected values of w = heat flux distribution parameter
the heat flux parametgr=—1/2, 0, 1/2. Special cases which have p = electrical resistivity, m
been examined by several researchers arise directly from the gen- 7 = relative cylinder thickness;=t/b
eral relationships presented in this paper. Some important special ¢ = function defined in Eq(9)
cases are: ¢ = function defined in Eq(19)
) ) ) x = relative plate thickness:t/a
a. spreading resistance in a half-space0, y=f(u); ¥ = dimensionless system resistaneetkaRy
b. spfrzaadlyg resistance in a flux tube: =B, 1, ¢ ¢ = dimensionless spreading resistaneetkaR,
=f(e,pm); .
c. spreading resistance in a thin infinite diska<0.1, e 0, Subscripts
pu==12,he—, y=f(t/a); ave = average value
d. extended surfac(ipin fln) with end Cooling: Bk0.2, ©>1, e = Cy|inder end heat transfer coefficient
e=1, =0, 4kbRs,=f(7,Bi,Bic). f = fluid temperature
Selected values of the dimensionless spreading resistances in a fin = fin or extended surface
flux tube and an infinite plate are presented in tables. Correlation max = maximum value
equations are presented for dimensionless spreading resistances in s = spreading, source
a flux tube and an infinite plate. Sys = system

The dimensionless resistances can be computed quickly and t = flux tube
accurately by means of Computer Algebra Systems for all values
of the system parameters and the three heat flux parameter values.

The general relationships given in this paper can be used to
model many thermal problems encountered in microelectronic apghferences
telecommunication applications.
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