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Thermal Resistances of Circular
Source on Finite Circular Cylinder
With Side and End Cooling
General solution for thermal spreading and system resistances of a circular source
finite circular cylinder with uniform side and end cooling is presented. The solutio
applicable for a general axisymmetric heat flux distribution which reduces to three
portant distributions including isoflux and equivalent isothermal flux distributions.
dimensionless system resistance depends on four dimensionless system paramete
shown that several special cases presented by many researchers arise directly fro
general solution. Tabulated values and correlation equations are presented for se
cases where the system resistance depends on one system parameter only. W
cylinder sides are adiabatic, the system resistance is equal to the one-dimensional
tance plus the spreading resistance. When the cylinder is very long and side cool
small, the general relationship reduces to the case of an extended surface (pin fin
end cooling and spreading resistance at the base. The special case of an equi
isothermal circular source on a very thin infinite circular disk is presented.
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1 Introduction
Many researchers over several decades have studied diff

aspects of spreading/constriction resistance of a circular area
jected to different boundary conditions. Spreading/constriction
sistance solutions have been reported for steady heat condu
or current flow into the four regions shown in Fig. 1. The fo
regions are defined as:~i! an isotropic half-space,~ii ! a semi-
infinite circular flux tube,~iii ! a very thin disk of infinite extent,
and ~iv! a finite length circular cylinder with different film coef
ficients imposed on the side and end surfaces. The mathema
problems of current flow and heat conduction from
isopotential/isothermal circular area into a half-space are m
ematically analogous to the classical capacitance problem fo
isopotential thin circular disk in free space.

Mathematicians and physicists@1–3# applied different analyti-
cal methods to obtain the capacitance of an isopotential circ
disk in free space. Since the capacitance is based on the rat
the total charge to its potential, it was necessary to find the
symmetric charge density distribution on the surface of the d
This is an example of an inverse problem which requires the
lution of a complex mixed boundary-value problem@2#. Solutions
and spreading/constriction results for the analogous conduc
problem are summarized and discussed in@4#.

Electrical and mechanical engineers have used different ana
cal and numerical methods to find the spreading/constriction
sistances for the other regions shown in Fig. 1. Their results
frequently reported in tables and plots, and a few correlation eq
tions have been given for spreading/constriction resistance
function of one parameter such as the relative size of the
source for different flux distributions.

The main objective of this paper is to present a new gen
analytical solution for the system depicted in Fig. 1~d!. The gen-
eral solution will give the dimensionless system resistance wh
depends on four dimensionless system parameters and the
flux distribution parameter, and when applicable the spread
constriction resistances. The second objective is to show how
general solution goes directly to several special cases, previo
examined by other researchers, depending on the limiting va
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of some of the system parameters. The third objective is to re
solutions for some special cases. The numerical values will
presented in tables, and whenever possible, correlation equa
will be given.

Review of Previous Work
The studies on the thermal spreading/constriction resistanc

a circular heat source have a long history. Carslaw and Jaege@4#
reported the analytical results, obtained by several investiga
for the circular source of radiusa situated on an isotropic sub
strate of thermal conductivityk whose dimensions are much larg
than the source radius as shown in Fig. 1~a!. Analytical solutions
were reported for two boundary conditions: i! an isoflux circular
source and ii! an isothermal source. The spreading resistan
were defined for the two boundary conditions.

Roess@5# in an extensive unpublished work found the soluti
for spreading resistance of an quasi-isothermal circular sourc
radiusa placed on one end of a semi-infinite circular flux tube
radius b and isotropic thermal conductivityk as shown in Fig.
1~b!. The mixed boundary condition problem was resolved by
use of an equivalent isothermal flux distribution. The analysis
highly mathematical; however, Roess reported the results for
dimensionless spreading resistance 4kaRs as a function of the
relative source radiuse5a/b in the form of a power-series.

Smythe@6# solved the mixed boundary value problem arisi
from the steady flow of a current into a right circular cylinder
radiusb. The current enters the cylinder through a coaxial, p
fectly conducting, circular disk of radiusa. The solution was
based on the superposition of the equivalent isothermal flux
tribution solution and the isoflux solution. This was accomplish
by combining flux distributions to give an approximate flux di
tribution corresponding to an isothermal source.

Kennedy@7# found through analysis the temperature distrib
tions for steady conduction within a finite length flux tube
radiusb, thicknesst, and thermal conductivityk due to an isoflux
circular source of radiusa placed on one end of the flux tube
shown in Fig. 2. Three cases were examined correspondin
the boundary conditions specified along the lateral bound
r 5b and the endz5t. The three cases were:~i! along r 5b, 0
,z,t, q(b,z)50 and alongz5t, 0,r ,b, T(r ,t)50; ~ii !
along r 5b, 0,z,t, T(b,z)50 and along z5t, 0,r ,b,
q(r ,t)50; and ~iii ! along r 5b, 0,z,t, T(b,z)50 and along

in
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z5t, 0,r ,b, T(r ,t)50. Kennedy@4# reported the solutions fo
the temperatureT(r ,z) within the flux tube, the centroid tempera
tureT(0,0), and he presented plots for the normalized tempera
T(r ,z)/T(0,0).

Kennedy@7# did not present explicit relations for spreading a
system resistances. Since the temperature plots were nondi
sional, T(0,0)k/(qa), its easy to find the dimensionless syste
resistance based on the centroid temperature by dividing by
factor pka.

The system resistance is equal to the spreading resistance
T(b,z)50; otherwise, whenq(b,z)50, the total resistance is
equal to the spreading resistance plus the one-dimensional
duction resistance

Rsys5Rs1
t

kpb2 (1)

The dimensionless spreading resistance 4kaRs depends on the
two geometric parameters:e5a/b, the relative source size an
t5t/b, the relative thickness of the flux tube.

Mikic and Rohsenow@8# obtained analytical relations fo
spreading resistances for a circular heat source on one end
semi-infinite flux tube and a finite length finite flux tube as sho
in Figs. 1~b! and ~d!. They gave solutions for the isoflux sourc
and the quasi-isothermal source based on the equivalent iso
mal flux distribution for theq(b,z)50 boundary condition. They
presented plots of the dimensionless spreading resistance 4kaRs
as a function ofe for the semi-infinite flux tube.

It was shown through analysis that the spreading resistance
be obtained by means of the alternative definition:

QRs5
2

a2 E
0

a

T~r ,0!rdr 2
2

b2 E
0

b

T~r ,0!rdr (2)

whereT(r ,0) represents the temperature rise of points in the pl
of the heat sourcez50. Simple, approximate correlation equ
tions were presented for small values ofe.

Hunter and Williams@9# presented an approximate analytic
solution for the isothermal circular source on a semi-infinite fl
tube. The dimensionless spreading resistance 4kaRs was plotted

Fig. 1 Schematic of solution domains— „a… half-space, „b… flux
tube, „c… infinite plate, „d… finite length cylinder
170 Õ Vol. 125, JUNE 2003
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against e and compared against several approximate soluti
which are valid for small values ofe only. They did not give a
correlation equation for their numerical values.

Strong et al.@10# used finite difference methods, formulated
oblate spheroidal coordinates, to obtain source temperatures
dimensionless spreading resistances for several source hea
distributions for circular sources situated on the surface of iso
pic half-spaces. The analytical solutions presented in@4# were
used to validate the numerical scheme which was found to pro
accurate values of temperature and dimensionless spreading
tance. They gave plots of the source temperature distribution
tabulated values of the corresponding spreading resistance
each heat flux distribution.

Gibson@11# reported an exact method of approach to the co
plex mixed boundary value problem~isothermal source! for the
semi-infinite flux tube. The problem was reduced to a Fredho
integral equation. The integral was solved by standard method
obtain an expression for the dimensionless spreading resistan
plot of 4kaRs versuse for a wide range of values was present
along with a correlation equation.

Yovanovich@12# obtained a general analytical relation for th
dimensionless spreading resistance for a general, axisymm
heat flux distributionq(r ) over the circular source on a sem
infinite flux tube. He used the alternative definition of spread
resistance recommended by Mikic and Rohsenow@8#. From the
general relation, another general relation was found forq(r )
5q0@12(r /a)2#m whereq0 is the flux level at the centroid of the
source andm is the heat flux distribution parameter. By settin
m521/2, the equivalent heat flux distribution, and settingm50,
the isoflux distribution, he was able to get the spreading resista
relations reported by others. He also gave the spreading resist
relation for the heat flux distribution corresponding tom51/2.
Tabulated values of the three dimensionless spreading resista
for 0<e<0.8 were given. Several simple correlation equatio
were given for the three flux distributions.

Yovanovich@13# developed an integral method for finding th
spreading resistance of single, planar, isoflux sources of arbit
shape placed on isotropic half-spaces. The integral method
used to find the dimensionless spreading resistance of se

Fig. 2 Finite length cylinder with side and end cooling
Transactions of the ASME
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shapes such as regular polygons~which include the square an
circle!, rectangles, and triangles, as well as other singly conne
source areas.

Yovanovich and Burde@14# used the integral method@13# to
find the dimensionless spreading resistance of several
symmetric, isoflux sources based on the centroid and average
perature basis.

Yovanovich et al.@15# also used the integral method@13# to
obtain values of the dimensionless spreading resistances of
trary, planar, isoflux sources. They used the square root of
source area for the nondimensionalization, and reported
sources that had the same area and aspect ratio~e.g., a circle and
a square! had spreading resistances which differed by less t
approximately 1–2%.

Martin et al.@16# used the method of moments to find sprea
ing resistances for several sources such as circle, square and
lateral triangle. They obtained numerical results for isotherm
and isoflux boundary conditions. They also examined the effec
the boundary condition of the third kind which can be used
model the effect of a thin film such as an oxide. They presen
their numerical results in tabulated form and by several corr
tion equations.

Negus and Yovanovich@17# obtained an accurate solution fo
the dimensionless spreading resistance for the true isotherma
cular source on a semi-infinite flux. The solution was obtained
the linear superposition of Neumann solutions, and the res
were presented in graphical form and in the form of an accu
correlation equation.

Negus and Yovanovich@18# applied the method of optimized
images to find the spreading resistance of an isothermal circ
source on a semi-infinite flux tube having a square cross sec
The numerical results were presented as an accurate correl
equation.

Negus et al.@19# showed that when the square root of t
source area is used to nondimensionalize the spreading resis
and the relative size is replaced bye5AAs /At whereAs is the
source area andAt is the flux tube cross-sectional area, then t
dimensionless spreading resistance defined askAAsRs for circle/
circle, circle/square and square/square source-to-flux tube r
have very close values for 0,e,0.6.

For each system tabulated values were presented. Als
simple correlation equation was presented for the three syst
For the range 0<e<0.5, the maximum error is about 2%, and th
maximum error becomes about 4% when the range is extende
0<e<0.7.

Song et al.@20# and Lee et al.@21# presented analytical an
approximate solutions for the isoflux circular source on a fin
thickness circular disk with adiabatic sidesq(b,z)50 and with
cooling over the entire endz5t through a uniform convective
coefficient or contact conductance denoted ashe as shown in Fig.
2. The dimensionless spreading resistance and the relative so
size were defined as in@16#. The dimensionless spreading res
tance for this system depends on three dimensionless param
e5a/b, t5t/b, Bie5heb/k. They presented geometric relation
for conversion of a rectangular source on a rectangular plate t
equivalent circular source on an equivalent thin circular di
They presented a relationship for the equivalenthe for the case
where the entire end surface is cooled by a heat sink.

The final example of an electrical spreading resistance prob
is due to Foxall and Lewis@22# which is discussed in@3#. In this
case an electrical current enters an infinite thin disk~see Fig. 1~c!!
of thicknesst and electrical resistivityr, through a circular contac
area of radiusa, and leaves through the bottom surface of the d
which is in perfect contact with an ideal conductor. Experimen
values were reported@22# for five values of the relative disk thick
nesst/a510, 5, 2, 1, 0.5@3#. The experimental results were no
malized with respect to the half-space theoretical value and w
reported as 4aRs /r50.96, 0.90, 0.80, 0.64, 0.43 for the five rel
tive thicknesses respectively@3,22#.
Journal of Electronic Packaging
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This relatively brief review of the pertinent literature shows th
many researchers over six decades have examined many sy
consisting of a single circular source on substrates which w
modeled as regions shown in Fig. 1. The sources were isofl
isothermal or had other axisymmetric flux distributions. The n
merical results were presented in graphical and tabular form,
accurate or approximate correlation equations were also give

The system shown in Fig. 2 has a circular source of radiusa on
one end of a finite length circular cylinder of radiusb, thicknesst,
and thermal conductivityk. The sidesr 5b and the endz5t are
cooled through uniform, but different heat transfer coefficienth
andhe , respectively. The spreading and total resistances for
system are presently not available. The dimensionless sprea
and total resistances of this general problem will depend on s
eral system parameters such asa/b, t/b, hb/k, heb/k and the
source heat flux distributionm. The general relationships deve
oped for this system will give the particular cases discussed in
foregoing review.

General Problem Statement and Mathematical Formu-
lation

Consider a finite length circular cylinder of radiusb, thickness
t, and thermal conductivityk which is isotropic. There is a circula
heat source of radiusa located in the surfacez50 of the cylinder
and it is coaxial. The heat flux over the source area is assume
be axisymmetric, and the remainder of the surface is adiab
The lateral sider 5b and the opposite endz5t are cooled by a
fluid at fixed temperatureTf through uniform film coefficientsh
andhe , respectively. The system is depicted in Fig. 2.

The heat which enters the system through the source are
conducted through the system and leaves through the side and
surfaces. The maximum temperature rise occurs at the cente
the source area. The system thermal resistance is defined
respect to the average temperature rise of the source area.

The governing differential equation for the axisymmetric te
perature riseu(r ,z)5T(r ,z)2Tf is

1

r

]

]r S r
]u

]r D1
]2u

]z2 50, 0,r ,b, 0,z,t (3)

The general boundary conditions are

r 50,
]u

]r
50

r 5b,
]u

]r
52

h

k
u

(4)

z5t,
]u

]z
52

he

k
u

z50,
]u

]z
5H 2

q~r !

k
for 0,r ,a

0 for a,r ,b

The axisymmetric heat flux over the source area has the gen
form

q~r !5
Q~11m!

pa2 F12S r

aD 2Gm

for 0,
r

a
,1 (5)

where Q is the total heat transfer rate from the source into
system, andm is the heat flux distribution parameter. Three inte
esting distributions are obtained whenm521/2, 0, 1/2. The flux
distribution corresponding tom521/2 is minimum at the cente
and unbounded at the edge of the source area. This flux distr
tion is frequently used to approximate an isothermal source a
The second flux distribution corresponding tom50 is clearly an
JUNE 2003, Vol. 125 Õ 171
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isoflux distribution. The third flux distribution corresponding
m51/2 is parabolic; its maximum at the center and goes to zer
the edge of the source area.

General Solution
The general axisymmetric solution is

u~r ,z!5(
n51

`

@En cosh~lnz!1Fn sinh~lnz!#J0~lnr ! (6)

It satisfies the boundedness conditionu(0,z)Þ` on the axisr
50, and the eigenvaluesln are related to the positive roots of th
characteristic equation

dnJ1~dn!5BiJ0~dn! (7)

with dn5lnb, Bi5hb/k and J0(•) and J1(•) are Bessel func-
tions of the first kind of order zero and one, respectively@23#. The
parameter range is 0<Bi,`.

The boundary condition atz5t is satisfied if the Fourier-Besse
coefficients are related such that

Fn52Enfn (8)

with the function

fn5
Bie1dn tanh~dnt!

dn1Bie tanh~dnt!
(9)

where 0,t5t/b,` is the relative cylinder thickness; and wit
the boundary parameter: 0<Bie5heb/k,`. The functionfn has
two asymptotes corresponding to the limits on the end coo
parameter Bie . They are

Bie→0, fn→tanh~dnt! and Bie→`, fn→coth~dnt!

and if dnt.2.70, thenfn'1 for n>1. The remaining Fourier-
Bessel coefficients are found from the boundary conditions iz
50. These conditions require

En5
*0

aq~r !rJ0~lnr !dr

2fnln*0
brJ0

2~lnr !dr
(10)

After substitution forq(r ) and evaluation of the integrals, wit
application of the orthogonality property of Bessel functions, o
finds for the Fourier coefficients the general relationship

En5
2Q

pbk S 2

dne D m G~21m!J11m~dne!

fndn
2@J0

2~dn!1J1
2~dn!#

, n51,2,3 . . .

(11)

whereG~•! is the Gamma function@23#.
The Fourier coefficients for the three heat flux distribution

m521/2, 0, 1/2 are given in Table 1.

Maximum „Centroid… Temperature Rise
The maximum temperature rise which occurs at the cente

the source area is given by

umax5u~0,0!5(
n51

`

En (12)

Table 1 Fourier coefficients for three flux distributions

m52
1

2
, En5

Q

pbk
•

sin~dne!

fndn
2e@J0

2~dn!1J1
2~dn!#

m50, En5
Q

pbk
•

2J1~dne!

fndn
2e@J0

2~dn!1J1
2~dn!#

m5
1

2
, En5

Q

pbk
•

3@sin~dne!2cos~dne!~dne!#

fndn
4e3@J0

2~dn!1J1
2~dn!#
172 Õ Vol. 125, JUNE 2003
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This general relation applies to the three heat flux distribution

System Thermal Resistance
The total resistance of the system is defined with respect to

mean temperature rise of the source area

uave5
2

a2 E
0

a

ru~r ,0!dr

and

Rsys5
uave

Q

Since the temperature excess in the surfacez50 is

u~r ,0!5(
n51

`

EnJ0~lnr ! (13)

one finds for the system resistance the general relationship

Rsys5
2

Q (
n51

`

En

J1~dne!

dne
(14)

The dimensionless system resistanceC54akRsys is given by the
general relationship

C5
16

pe (
n51

` S 2

dne D m G~21m!J11m~dne!J1~dne!

fndn
3@J0

2~dn!1J1
2~dn!#

,

n51,2,3 . . . (15)

whereG~21m! is the Gamma function@23#. The general relation
reduces to the following three relations form521/2, the equiva-
lent isothermal source providede,0.6, andt.1, andm50, the
isoflux source, andm51/2, the parabolic flux distribution

for m52
1

2
, C5

8

pe (
n51

`
J1~dne!sin~dne!wn

dn
3@J0

2~dn!1J1
2~dn!#

(16)

and

for m50, C5
16

pe (
n51

`
J1

2~dne!wn

dn
3@J0

2~dn!1J1
2~dn!#

(17)

and form51/2

C5
24

pe (
n51

`
J1~dne!sin~dne!wn

dn
3@J0

2~dn!1J1
2~dn!#

F 1

~dne!22
1

~dne!tan~dne!G
(18)

where for convenience we introduce the end cooling functionwn
51/fn

wn5
dn1Bie tanh~dnt!

Bie1dn tanh~dnt!
(19)

The general solution for the total system resistance depend
four dimensionless system parameters

C5 f ~e,t,Bi,Bie! (20)

with parameter ranges 0,e<1, 0,t,`, 0<Bi,`, and 0<Bie
,`.

Characteristics of the General Relations
If the lateral sides of the cylinder are adiabatic, i.e., Bi50, then

dn are the roots ofJ1(dn)50, and the one-dimensional resistan
of the system is

R1D5
t

kpb2 1
1

hepb2 (21)

The dimensionless one-dimensional resistance for Bi50 is defined
as
Transactions of the ASME
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R1D* [4akR1D5
4e

p Ft1
1

Bie
G (22)

The dimensionless spreading resistance, defined asc54kaRs , is
therefore

c5C2R1D* . (23)

As Bi→0 the first term of the summation goes to the on
dimensional total resistance and the sum of the remaining te
goes to the spreading resistance of the system

c5
16

pe (
n52

`
J1

2~dne!wn

dn
3J0

2~dn!
, for m50 (24)

Also, the first eigenvalue approaches the asymptoted1→A2Bi as
Bi→0. The functions which appear have the asymptotes@23#

as x→0, tanh~x!→x, J0~x!→1, J1~x!→ x

2

Substituting these limits into the first term, then letting Bi→0
gives the relation for the dimensionless total one-dimensio
resistance.

The general relationship for the total system resistance g
several special relationships depending on the values of the
tem parameters:e, t, Bi, Bie .

Calculation of the Eigenvalues
The foregoing general relationships require accurate value

the eigenvalues which must be calculated by means of the c
acteristic equation. The Bessel functionsJ0(x), J1(x) can be
computed accurately by means of polynomial approximations
with a computer algebra system. The roots of the character
equation are located in the intervals

~n21!p,dn,np, n51,2,3, . . .

and they have the following properties

for Bi→`, dn are roots ofJ0~dn!50

The first three roots ared152.404825558,d255.520078110,d3
58.653727913@23#, and

for Bi50, dn are roots ofJ1~dn!50

and the first four roots ared150, d253.831705970, d3
57.015586670, d4510.17346814 @23#. Also, as Bi→0, d1
→A2Bi→0. The Newton-Raphson iterative method is reco
mended for calculation of the roots for any value of Bi. The re
tion for thenth root is

dn, j 115dn, j2
dn, j J1~dn, j !2BiJ0~dn, j !

dn, j J0~dn, j !1BiJ1~dn, j !
, j 51,2,3, . . .

(25)

The calculations converge rapidly. Eight decimal place values
found after 5 to 6 iterations.

Special Cases Arising From the General Relationship
Special cases arise naturally from the general relationship

pending on the magnitude and/or range of the system parame
Several special cases are presented below.

Spreading Resistance in Flux Tubes With Adiabatic Sides.
For this important case, Bi50, dn are the roots ofJ1(dn)50
which are computed by means of the following modified Stok
approximation:

dn5
b1

4 F12
6

b1
2 1

6

b1
42

4716

5b1
6 1

3902918

70b1
8 G (26)

with b15p(4n11) andn51,2,3 . . .
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Spreading Resistance: Isothermal Contact Area. Several
analytical studies@5,6,8,9,11,12,17,18# have considered the prob
lem of spreading resistance of an isothermal circular contact
located on the end of a very long circular flux tube. The mix
boundary conditions in the contact planez50, are ~i! constant
temperature over the contact area 0<r ,a, and~ii ! zero tempera-
ture gradient over the noncontact portion of the contact plana
,r<b making the problem considerably more difficult analy
cally. This mixed boundary-value problem is discussed in so
detail in @2#.

Various analytical and numerical techniques were used to p
duce an isothermal contact area for large relative contact ra
e,0.8. Roess@5# in an extensive unpublished work found th
spreading resistance for the equivalent isothermal flux distribu
corresponding tom521/2. The analysis is highly mathematica
however, results in the form of a power-series@5# were reported

4akRs512r 1e1r 3e31r 5e51r 7e71r 9e91r 11e
11 (27)

where the coefficientsr 1 , . . . ,r 11 are given in Table 1. It was
found @5# that whene,0.3, the heat flux distribution produces
contact area temperature distribution which for most practical
plications can be considered to be isothermal. It was reported@5#
that whene50.4 ande50.5, the temperature along the edger
5a, exceeded the centroid temperature by approximately 3
and 9.90%, respectively. Fore.0.5, the temperature distributio
is nonuniform.

Smythe@6# solved the mixed boundary value problem arisi
from the steady flow of a current into a right circular cylinder
radiusb. The current enters the cylinder through a coaxial, p
fectly conducting, circular disk of radiusa. The solution was
based on the superposition of the equivalent isothermal flux
tribution solution and the isoflux solution. This was accomplish
by the following combined flux distribution:

q5
Q

pb2 H e1.51
1

2eA12u2 F1

e
2e2.5G J

with e5a/b andu5r /a. This flux distribution has two limits as
e→0 ande→1. For the first limit, the flux distribution goes to th
flux distribution corresponding to an isothermal circular cont
area on a half-space, i.e.,q5Q/(2pa2A12u2). For the second
limit, the flux distribution goes to the uniform flux distribution
q5Q/(pb2).

The approximate relationship of@6# can be cast into the follow-
ing form for the dimensionless spreading resistance:

4akRs5~12e3.5!c~m521/2!1e3.5c~m50! (28)

wherec~m521/2! and c~m50! are the dimensionless spreadin
resistances defined asc[4akRs for the equivalent isotherma
flux and the isoflux distributions, respectively.

The numerical values of the dimensionless spreading resist
for the three flux distributions~m51/2,0,21/2! are given in Table
3. Four hundred terms of the series solutions were used to c
pute the four decimal place values shown. The values given
e50 are the half-space values@4#. The dimensionless spreadin
resistance depends on the flux distribution such that the minim
values correspond to the equivalent isothermal flux and the m
mum values correspond to the parabolic flux distribution. T
isoflux values lie between these values over the full range oe.
The isothermal values computed by means of the solutions
@5,6,11,17# are also presented in Table 3. For relative contact ra
in the range: 0<e<0.5, the differences between the various mo
els is less than approximately 2% which occurs between the R

Table 2 Coefficients for spreading resistance †5‡

r 1 r 3 r 5 r 7 r 9 r 11
1.40925 .295910 .0525419 .0210419 .0110752 .00631
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Table 3 Dimensionless spreading resistance, 4 akR s

e
m

1/2
m
0

m
21/2 Roess@5# Gibson@11#

Negus and
Yovanovich@17# Smythe@6#

0 1.125 1.0808 1 1 1 1 1
.1 .9843 .9401 .8592 .8594 .8594 .8594 .8593
.2 .8450 .8009 .7205 .7205 .7209 .7208 .7207
.3 .7085 .6649 .5853 .5853 .5865 .5865 .5865
.4 .5763 .5337 .4558 .4558 .4587 .4586 .4590
.5 .4500 .4092 .3342 .3342 .3398 .3396 .3408
.6 .3316 .2936 .2232 .2232 .2328 .2324 .2349
.7 .2235 .1896 .1262 .1262 .1409 .1403 .1444
.8 .1284 .1008 .0483 .0478 .0680 .0672 .0723
a

r

d

o

r

of

iso-
is
of

n-

e al-

ed

ms
@5# and Smythe@6# solutions. The correlation of@5# gives the
largest differences for large values ofe. The differences between
the values calculated by the correlation equations of Gibson@11#,
and Negus and Yovanovich@17# are less than approximately 1%
for all values ofe. The approximate solution of Smythe@6# is seen
to be very good up toe50.7 where the values are approximate
2.4% greater than those obtained by the correlation equation
@11# and @17#.

Correlation Equations
The analytical solutions presented in the foregoing and

analytical/numerical isothermal solution of Gibson@11# and the
isothermal and isoflux solutions of Negus and Yovanovich@17#
are correlated in the same manner by the polynomial

4akRs5a01a1e1a3e31a5e51a7e7 (29)

The correlation coefficients for the three analytical solutions
based on fitting the numerical values found in Table 4. The c
relation coefficients for the isothermal solution are those repo
by @11# and @17#.

Dimensionless Spreading Resistances in Half-Space.For
e→0 and t.1, the system resistance approaches the sprea
resistance in a half-space. The heat flux distributions and the
responding spreading resistances are given in Table 5. The
lytical results are:c~m521/2!51, c~m50!51.0808 andc~m51/
2!51.1252.

Perfect Thermal Contact Along Sides. If there is perfect
thermal contact along the sides of the cylinder, then Bi→`, and
then dn are the positive roots ofJ0(dn)50 which can be com-
puted by means of the following modified Stokes approximati

dn5
b0

4 F11
2

b0
22

62

3b0
4 1

15116

30b0
6 G (30)

with b05p(4n21) andn51,2,3 . . .

Very Thin Cylinders. For very thin cylinders where the
thickness to source radius is much less than one, i.e.,t/a,0.1 or
t/e,0.1, the heat dissipated by the source flows directly to
opposite face in a one-dimensional manner with negligible spre
ing. The system resistance approaches the one-dimensional
tance for an isothermal source
, JUNE 2003
ly
s of

the

re
or-
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ing
cor-
ana-

n:
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ad-
esis-

for
t

a
→0, Rsys→R1d5

t

kpa2 1
1

hepa2 (31)

The dimensionless system resistance has the following limit:

for
t

e
→0, 4akRsys→R1d* 5

4

p Ft

e
1

1

eBie
G (32)

This asymptote is valid for the parameter ranges: 0<Bi,` and
0,Bie,`.

Spreading Resistance of Isothermal Circular Source on
Thin Infinite Disk. Consider an isothermal circular source
radiusa with heat flux parameterm521/2 in contact with a thin
infinite disk e→0 of thicknesst and thermal conductivityk as
shown in Fig. 3. Since the bottom surface is assumed to be
thermal, thenhe→`. The solution for a closely related problem
given in @1#. The solution for the temperature is given in terms
an infinite integral.

The dimensionless spreading resistance,c54kaRs , is given
by

c5
4

p E
0

`

tanh~bx!sin~b!J1~b!
db

b2 (33)

wherex5t/a is the relative disk thickness. The hyperbolic ta
gent can be expressed as

tanh~bx!512
2e22bx

11e2bx

The dimensionless spreading resistance can be written in th
ternative form

c512
8

p E
0

` e22bx sin~b!J1~b!

11e22bx

db

b2 (34)

which shows the very thick disk asymptote

as x→`, c→1

For quick numerical integrations, the first form is recommend
for x,2 and the second form is recommended forx.2. Accurate
values ofc were computed by means of computer algebra syste
2

Table 4 Correlation coefficients for spreading resistance solutions, 4 akR s

m
1/2

m
0

m
21/2

Gibson@11#
Isothermal

N-Y @17#
Isothermal

N-Y @17#
Isoflux

a0 1.12517 1.08085 0.999961 1 1 1.08076
2a1 1.41038 1.41002 1.40981 1.409183 1.40978 1.4104
a3 .235387 .259714 .303641 .338010 .34406 .26604
a5 .0117527 .0188631 .0218272 .067902 .04305 2.00016
a7 .0343458 .0420278 .0644683 ¯ .02271 .058266
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such as Maple and Mathematica. They are reported in Table 6
selected values of the relative plate thicknessx. The plate can be
modeled asinfinitely thick whenx>100.

Correlation Equation for Spreading Resistance in Infinite
Disk. A correlation equation based on the entries in Table 6

c5
a1a21a3xa4

a21xa4
, 0<x<10 (35)

with correlation coefficients given in Table 7. The correlatio
equation gives values ofc with a maximum difference of abou
0.4% relative to the tabulated values. The electrical experime
values @3,22# discussed above are in good agreement with
analytical values given in Table 6.

Extended Surface„Pin Fin… With End Cooling and Spread-
ing Resistance. The general solution approaches the solution
an extended surface~pin fin! if Bi →0 andt.1, m50 for 0<Bie
,` and 0,e<1. If Bi,0.2, then the dimensionless system res
tance approaches the first term of the summation

Fig. 3 Equivalent isothermal circular source on thin infinite
disk

Table 5 Flux distributions and spreading resistances in half-
space

m 21/2 0 1/2

a2q

Q
1

2pA12u2

1

p

3A12u2

2p

4akRs 1
32

3p2
1.1252

Table 6 Dimensionless spreading resistances in infinite disk

x c x c

0 0 2.0 0.7889
.10 0.1089 3.0 0.8559
.20 0.2015 4.0 0.8910
.30 0.2824 5.0 0.9124
.40 0.3532 6.0 0.9268
.50 0.4149 7.0 0.9372
.60 0.4684 8.0 0.9450
.70 0.5148 9.0 0.9511
.80 0.5551 10 0.9560
.90 0.5901 20 0.9779
1.0 0.6206 100 0.9956

Table 7 Correlation coefficients for infinite disk

a1 a2 a3 a4

0.002915 0.61378 0.99617 1.1783
Journal of Electronic Packaging
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pe

J1
2~d1e!w1

d1
3J0

2~d1!
(36)

with

w15
d11Bie tanh~d1t!

d1 tanh~d1t!1Bie
(37)

and the first root of the characteristic equation is approximated
the correlation

d15
2.404826

F11S 2.404826

A2Bi
D 2.238G 1/2.238 (38)

which gives values with a maximum error less than approxima
2% for the full range: 0<Bi,`. For Bi→0, since d1→A2Bi
→0, thenJ0(d1)→1, J1(d1)→(d1)/2 andJ1(d1e)→(d1e)/2, and
the system resistance goes to the first term which approache
fin resistance with spreading resistance and end cooling

C→ 4

p

w1

ed1
→Rfin* 5

4

peA2Bi
FA2Bi1Bie tanh~A2Bit!

Bie1A2Bi tanh~A2Bit!
G

(39)

This relation shows the dependence of the general dimension
fin resistance on the system parameters:e, t, Bi, Bie .

Approximation Relations for Spreading Resistance in
Heat Sink Base Plate

The general solution can be used to calculate the sprea
resistance in the rectangular base plate of a heat sink due
rectangular heat source as described in@20# and@21#. For this case
we set the heat flux parameter tom50 and Bi50. The equivalent
source radius is obtained froma5AAs /p and the cylinder radius
is obtained fromb5AAp /p whereAs andAp represent the plan
areas of the source and base plate respectively. The relative so
size was defined ase5a/b, and the remaining system paramete
were defined as Bie5heb/k andt5t/b wheret is the thickness of
the base plate.

They nondimensionalized the constriction resistance based
the centroid and area-average temperatures using the square
of the contact area as recommended by Yovanovich in sev
papers. They compared the analytical results against some ex
mental results and numerical results over a range of the inde
dent parameters:e, t, Bi. The agreement between the analytic
and numerical results were reported to be in very good agreem

Lee et al.@21# recommended a simple closed-form express
for the dimensionless constriction resistance based on the a
average and centroid temperatures. They defined the dimen
less spreading resistance parameter asc5ApkaRs , and they rec-
ommended the following approximations:

for the area-average temperature basis

cave5
1

2
~12e!3/2fc (40)

and for the centroid temperature basis

cmax5
1

Ap
~12e!wc (41)

where

wc5
Bi tanh~dct!1dc

Bi1dc tanh~dct!
with dc5p1

1

Ape

The foregoing approximations are stated to be within610% of
the analytical and numerical results@20,21#. They did not, how-
ever, indicate were the maximum errors occur.
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Summary and Concluding Remarks
A general solution has been presented for spread

constriction and system resistances for a circular source on a fi
circular cylinder with side and end cooling. The dimensionle
resistances:c54kaRs , andC54kaRsys depend on four dimen-
sionless system parameters:e, t, Bi, Bie , and selected values o
the heat flux parameterm521/2, 0, 1/2. Special cases which hav
been examined by several researchers arise directly from the
eral relationships presented in this paper. Some important sp
cases are:

a. spreading resistance in a half-space:e→0, c5 f (m);
b. spreading resistance in a flux tube: Bi50, t.1, c

5 f (e,m);
c. spreading resistance in a thin infinite disk:t/a,0.1, e→0,

m521/2, he→`, c5 f (t/a);
d. extended surface~pin fin! with end cooling: Bi,0.2, t.1,

e51, m50, 4kbRfin5 f (t,Bi,Bie).

Selected values of the dimensionless spreading resistances
flux tube and an infinite plate are presented in tables. Correla
equations are presented for dimensionless spreading resistan
a flux tube and an infinite plate.

The dimensionless resistances can be computed quickly
accurately by means of Computer Algebra Systems for all va
of the system parameters and the three heat flux parameter va

The general relationships given in this paper can be use
model many thermal problems encountered in microelectronic
telecommunication applications.
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Nomenclature

As , At 5 source and flux tube area; m2

Bi 5 side surface Biot no.; Bi5hb/k
Bie 5 end surface Biot no.; Bie5heb/k
a, b 5 source and flux tube radii; m

ai 5 correlation coefficients
En , Fn 5 Fourier coefficients

h, he 5 side and end heat transfer coefficients; W/m2
•K

J0(•), J1(•) 5 Bessel functions of order 0 and 1
Jv(•) 5 Bessel function of arbitrary orderv

k 5 isotropic thermal conductivity; W/m•K
Q 5 heat transfer rate; W
q 5 source mean heat flux; W/m2

Rfin 5 fin resistance; K/W
Rs , Rsys 5 spreading and system resistances; K/W

R1D 5 one-dimensional system resistance; K/W
R1d 5 one-dimensional resistance; K/W

r i 5 Roess correlation coefficients
r, z 5 cylindrical polar coordinates; m

T(r ,z) 5 temperature in cylinder; K
t 5 cylinder and plate thickness; m
u 5 dimensionless position in source area;5r /a
b 5 dummy variable;5la

b0 5 parameter in modified Stokes approximation o
roots ofJ0(x)50

5 p(4n21), n51,2,3 . . .
b1 5 parameter in modified Stokes approximation o

roots ofJ1(x)50
5 p(4n11), n51,2,3 . . .
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G~•! 5 Gamma function
dn 5 dimensionless eigenvalues;5lnb
e 5 relative source size;5a/b
u 5 temperature difference;5T(r ,z)2Tf

ln 5 eigenvalues; m21

m 5 heat flux distribution parameter
r 5 electrical resistivity;V m
t 5 relative cylinder thickness;5t/b
f 5 function defined in Eq.~9!
w 5 function defined in Eq.~19!
x 5 relative plate thickness;5t/a
C 5 dimensionless system resistance;54kaRsys
c 5 dimensionless spreading resistance;54kaRs

Subscripts

ave 5 average value
e 5 cylinder end heat transfer coefficient
f 5 fluid temperature

fin 5 fin or extended surface
max 5 maximum value

s 5 spreading, source
sys 5 system

t 5 flux tube
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