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Abstract

New compact analytical models for predicting the effec-
tive thermal conductivity of regularly packed beds of rough
spheres immersed in a stagnant gas are developed. Existing
models do not consider either the influence of the spheres
roughness or the rarefaction of the interstitial gas on the
conductivity of the beds. Contact mechanics and thermal
analyses are performed for uniform size spheres packed in
SC and FCC arrangements and the results are presented in
the form of compact relationships. The present model ac-
counts for the thermophysical properties of spheres and the
gas, contact load, spheres diameter, spheres roughness and
asperities slope, and temperature and pressure of the gas.
The present model is compared with experimental data for
SC and FCC packed beds and good agreement is observed.
The experimental data cover a wide range of the contact
load, surface roughness, interstitial gas type, and gas tem-
perature and pressure.

Nomenclature
A = area, m2

aL = radius of macrocontact, m
aH = radius of Hertzian contact, m
bL = chord of macrogap, m
c1 = Vickers microhardness coefficient, Pa
c2 = Vickers microhardness coefficient
D = sphere diameter, m
E = Young’s modulus, Pa
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E0 = effective elastic modulus, Pa
Fc = normal contact force, N
FCC = Face Center Close
H∗ = c1 (σ

0/m)c2 , Pa
Kn = Knudsen number
k = thermal conductivity, W/mK
L = length, m
m = mean absolute surface slope
M = gas parameter, m
P = pressure, Pa
Pr = Prandtl number
Q = heat flow rate, W
q = heat flux, W/m2

R = thermal resistance, K/W
SC = Simple Cubic
T = temperature, K

Greek
α = non-dimensional parameter, ≡ σρ/a2H
αT = thermal accommodation coefficient
γ = exponent of general pressure distribution
γg = ratio of gas specific heats, ≡ cp/cv
Λ = mean free path, m
υ = Poisson’s ratio
ξ = non-dimensional radial position, ≡ r/aL
ρ = radius of sphere, m
σ = RMS surface roughness, m
σ0 = σ/σ0, σ0 = 1 µm
τ = non-dimensional parameter, ≡ ρ/aH
ω0 = bulk normal deformation at origin, m

Subscripts
0 = reference value, value at origin
1, 2 = solid 1, 2
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a = apparent
BR = boundary resistance
c = cell
g = gas, microgap
G = macrogap
H = Hertz
j = joint
L = large, macrocontact
r = real
s = solid, micro

INTRODUCTION

Packed beds have a wide variety of applications in ther-
mal systems. One of the significant characteristics of packed
beds is the high ratio of solid surface area to volume. This
property is useful in applications such as catalytic reactors,
heat recovery processes, heat exchangers, heat storage sys-
tems, the breeder blanket about fusion reactors [1], and
insulators. The insulator packed beds are often immersed
in a gas at reduced pressure.

The thermal conductivity of packed beds is not isotropic
and it is difficult to formulate a model that fully defines the
effective thermal conductivity. However, the structure of a
packed bed can be modeled assuming regularly packed beds.
A regularly packed bed is one in which the same arrange-
ment of spheres, uniform in size, is repeated throughout
the bed. Therefore a typical “basic cell” will represent
the entire bed. There are three such regular packings: 1)
Simple Cubic (SC), 2) Body Center Close (BCC), and 3)
Face Center Close (FCC). Tien and Vafai [2] showed that
the effective thermal conductivity of a random packed bed
filled by a single phase fluid presents two limits. The up-
per bound can be obtained considering the FCC packing
and the lower bound can be represented by the SC pack-
ing. Therefore, in this study only the thermal conductivity
of the SC and FCC arrangements will be studied. The SC
and FCC arrangements for packed beds of uniform diameter
spheres are shown in Fig. 1.

Each cell is made up of contact regions. A contact
region is composed of a contact area between two portions
of spheres, surrounded by a gas layer.

Many studies have been performed on the prediction
of thermal conductivity of packed beds filled with stag-
nant gas. The existing models can be categorized into two
main groups. The first is numerical models, e.g. finite ele-
ment methods (FEM) which can treat the three dimensional
problem by dividing the bed into many cells with tempera-
ture and heat flow matched at their boundaries. One should
keep in mind that it is a combined thermal and mechani-
cal three dimensional numerical analysis which makes the
FEM modeling extremely expensive from the calculative
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Figure 1. ARRANGMENT FOR SIMPLE CUBIC AND FACE CENTER

CLOSE PACKINGS

point of view [3]. Additionally, employing a numerical ap-
proach makes it difficult to extract the relative importance
of different conduction paths from such computer software.
Also, thermal contact resistance (TCR) of rough spheres
must be fed into the software as boundary conditions when
commercial FEM software is used, thus the TCR problem
must be solved separately. Buonanno and Carotenuto [4]
used a three dimensional FEM model to evaluate the ther-
mal conductivity of simple cubic and body centered cubic
packed beds and compared their model with experimen-
tal data collected by others. Buonanno et al. [3] and [5]
conducted experiments and measured the effective thermal
conductivity of uniformly sized rough stainless steel spheres.
Their packed bed was filled with air at atmospheric pressure
and 20◦ C temperature. They compared their experimen-
tal data with their FEM numerical model and showed good
agreement with the data. However, Buonanno et al. [3]
did not report any expression or relationship for predicting
the thermal conductivity of packed beds. Additionally, they
did not compare their model with any data at rarefied gas
pressures.

The second group of existing models is the analytical
models which break the problem into distinct conduction
paths, e.g., the contact area between spheres, the gas layer
between spheres, etc.; and calculates the conductivity of
the bed as a series/parallel combination of the individual
resistances for these paths. The advantage of the analytical
approach is that it enables one to evaluate easily the rela-
tive contributions and trends of each conduction path as a
function of the packed bed parameters/properties. Different
approaches were taken by researchers developing analytical
models, some researchers such as Slavin et al. [6] assumed
that the contact between two spheres is essentially a point
contact and the heat transfer through the contact region can
be ignored for hard materials. Ogniewicz and Yovanovich [7]
and Turyk and Yovanovich [8] developed analytical models
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for predicting the effective thermal conductivity of the ba-
sic cells of packed beds of uniformly sized spheres and com-
pared their models with experimental data. These models
were limited to smooth spheres.

To the authors’ knowledge there are no analytical mod-
els for predicting the thermal conductivity of packed beds
which take into account the effect of surface roughness and
rarefaction of the interstitial gas simultaneously. The objec-
tive of this work is to develop an analytical compact model
for packed beds of identical rough spheres immersed in a
stagnant gas at gas pressure varying from atmospheric to
vacuum and under various mechanical loads. The trends
predicted by the present model allows one to study the ef-
fect of important input variables involved in real packed
beds. It also provides design tools for predicting and im-
proving upon the thermal performance of random packed
beds.

THEORETICAL BACKGROUND

Modeling the thermal conductivity of spherical packed
beds includes two main analyses i) conduction between
rough spheres and ii) heat transfer through interstitial stag-
nant gas between solids. The geometry of a general joint is
shown in Fig. 2, where two spherical caps are placed in me-
chanical contact. The gap between the contacting bodies
is filled with a stagnant gas at pressure Pg and tempera-
ture Tg and heat is transferred from one sphere to another.
Thermal energy can be transferred across the joint via three
distinct modes: radiation, conduction through interstitial
gas in the gap, and conduction through the real contact
area. Thermal radiation across the gap remains small as
long as the surface temperatures are not too high and in
most applications can be neglected [9]. Natural convection
does not occur within in the gap when the Grashof num-
ber is less than 2500 [10]. In practical situations concerning
packed beds, the Grashof number is less than 2500, thus
the heat transfer through natural convection is small and
can be neglected. Therefore, the remaining heat transfer
modes are conduction through the microcontacts and con-
duction through the interstitial gas filling the gap between
contacting bodies.

A study of the heat conduction between contacting
rough spheres is the first step toward modeling the heat
transfer in packed beds. A contact region is the basic el-
ement that creates the packed beds. The heat transferred
in an isolated contact region determines the thermal behav-
ior of the entire bed. As schematically shown in Fig. 2,
conduction occurs through three main paths, the intersti-
tial gas within the microgap Qg, microcontacts Qs, and the
interstitial gas within the macrogap QG. As a result of the
small real contact area [11] and low thermal conductivities
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Figure 2. CONTACT OF ROUGH SPHERES WITH PRESENCE OF INTER-

STITIAL GAS

of interstitial gases, heat flow experiences a relatively large
thermal resistance passing through the joint, this phenom-
enon leads to a relatively high temperature drop across the
joint.

The thermal joint resistance of rough spherical surfaces
with the presence of an interstitial gas contains four ther-
mal resistance components, 1) the macrocontact constric-
tion/spreading resistanceRL, 2) the microcontacts constric-
tion/spreading resistance Rs, 3) resistance of the interstitial
gas in the microgap Rg, and 4) the resistance of interstitial
gas in the macrogap RG. Figure 3 presents the thermal resis-
tance network for a spherical rough joint with the presence
of an interstitial gas that is used in this study. As shown, the
macrogap provides a parallel path for conduction between
the two isothermal planes, therefore the joint resistance can
be calculated from

Rj =

"
1

(1/Rs + 1/Rg)
−1 +RL

+
1

RG

#−1
(1)

As shown in Fig. 3, RG has three components: the macro-
gap resistance and R1 and R2 corresponding to the bulk
thermal resistance of the solid layers in spheres 1 and 2,
respectively. The solid layers bulk resistances, R1 and R2,
are negligible compared to RG since the gas thermal con-
ductivity is much smaller than the thermal conductivity of
the solids, i.e., kg ¿ ks.

The above thermal resistances are discussed and simple
correlations are proposed for calculating each resistance in
the following sections.
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Microcontacts Thermal Resistance, Rs

Engineering (real) surfaces have roughness. If the as-
perities of a surface are isotropic and randomly distributed
over the surface, the surface is called Gaussian. When ran-
dom rough surfaces are placed in mechanical contact, real
contact occurs at the top of the surface asperities called mi-
crocontacts. The microcontacts are distributed randomly in
the apparent contact area or the macrocontact area. They
are located far from each other. The real contact area Ar,
the summation of the microcontacts, forms a small portion
of the nominal contact area, typically a few percent of the
nominal contact area. The contact between two Gaussian
rough surfaces is modeled by the contact between a single
Gaussian surface that has the combined surface character-
istics with a perfectly smooth surface, for more detail see
[12]. The combined roughness σ and surface slope m can
be found from

σ =
q
σ21 + σ22 and m =

q
m2
1 +m

2
2 (2)

The microcontacts are often assumed to be isothermal [12].
Thermal constriction/spreading resistance of microcontacts
can be modeled using a flux tube geometry [13] or if mi-
crocontacts are considered to be located far enough from
each other, the isothermal heat source on a half-space so-
lution [9] can be used. Bahrami et al. [14] compared these
solutions and showed that the microcontacts can be con-
sidered as heat sources on a half-space for most engineer-
ing applications. Bahrami et al. [14] assumed plastically
deformed asperities and used scale analysis techniques and
developed a compact model to predict the thermal constric-
tion/spreading resistance through the microcontacts, Rs

Rs =
0.565H∗ (σ/m)

ksF
(3)

where,

ks =
2k1k2
k1 + k2

H∗ = c1

µ
σ0

m

¶c2
where σ0 = σ/σ0 and σ0 = 1 µm, c1, c2, ks, and F are
a reference value, correlation coefficients determined from
the Vickers microhardness measurements [9], the harmonic
mean of solid thermal conductivities, and the applied load,
respectively. Yovanovich and Hegazy [15] showed through
experiments that the surface microhardness is much higher
than the bulk hardness and that the microhardness de-
creases until the bulk hardness is reached. They proposed
a correlation for determining the microhardness, Hmic =
c1 (dv/σ0)

c2 , where dv µm is the Vickers indentation diago-
nal. Sridhar and Yovanovich [16] suggested empirical rela-
tions to estimate Vickers microhardness coefficients, using
the bulk hardness of the material. Two least-square-cubic
fit expressions were reported

c1 = HBGM
¡
4.0− 5.77κ+ 4.0κ2 − 0.61κ3¢

c2 = −0.57 + 0.82κ− 0.41κ2 + 0.06κ3
(4)

where κ = HB/HBGM , HB is the Brinell hardness of the
bulk material, and HBGM = 3.178 GPa. The above cor-
relations are valid for the range 1.3 ≤ HB ≤ 7.6 GPa. In
situations where an effective value of microhardness Hmic
is known, the Vickers microhardness coefficients will be
c1 = Hmic and c2 = 0.

Macrocontact Thermal Resistance, RL

Bahrami et al. [17] studied mechanical contact of spher-
ical rough surfaces. A closed set of governing relationships
was reported for spherical rough contacts and solved nu-
merically. The actual contact geometry of the spheres was
replaced by a flat surface and a profile, which resulted in
the same undeformed gap between the surfaces [18]. Simi-
lar to the Hertzian theory and Greenwood and Tripp [19],
the spherical profile was approximated by a paraboloid in
the contact region. Also the contact was assumed to be
frictionless, i.e., it was assumed that there were no tan-
gential forces in the contact area. The bulk deformation
was assumed to be within the elastic limit of the solids and
the microcontacts were assumed to deform plastically. All
elastic deformations were considered to occur in one body,
which had an effective elastic modulus and the other body
was assumed to be rigid. The effective elastic modulus and
the equivalent radius of curvature can be found from

1

ρ
=
1

ρ1
+
1

ρ2
(5)

1

E0
=
1− υ21
E1

+
1− υ22
E2
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Bahrami et al. [17] proposed a general contact pressure dis-
tribution which covers the entire range of spherical rough
contacts including the Hertzian smooth limit. Simple cor-
relations were developed for the maximum contact pressure
P0 and the radius of the macrocontact area aL. Applying
the Buckingham Π theorem, it was shown that there are two
important governing non-dimensional parameters α and τ
that describe the contact problem. The non-dimensional
roughness parameter α, defined by Greenwood et al. [20],
is the ratio of roughness over the Hertzian maximum bulk
deformation, ω0,H

α =
σ

ω0,H
≡ σρ

a2H
= σ

µ
16ρE02

9F 2

¶1/3
(6)

where aH = (0.75Fρ/E0)1/3 is the Hertzian radius of con-
tact, i.e., the limiting contact case where both surfaces are
ideally smooth. The other non-dimensional parameter was
chosen as

τ =
ρ

aH
=

µ
4E0ρ2

3F

¶1/3
(7)

The general pressure distribution is [17]

P (ξ) = P0
¡
1− ξ2

¢γ
(8)

P 00 =
P0
P0,H

=
1

1 + 1.37α τ−0.075
(9)

aL
aH

=

(
1.605/

p
P 00 0.01 ≤ P 00 ≤ 0.47

3.51− 2.51P 00 0.47 ≤ P 00 ≤ 1
(10)

where P0,H = 1.5F/πa2H , ξ = r/aL, and γ = 1.5 (P0/P0,H)

(aL/aH)
2 − 1 are the maximum Hertzian contact pressure,

non-dimensional radial position, and the general pressure
distribution exponent, respectively. The proposed model
was compared with more than 220 experimental data points
collected by others and good agreement was observed [17].
The RMS difference between the radius of the macrocontact
predicted by the model and the data was reported to be
approximately 6.2 percent.

Yovanovich et al. [21] studied the thermal spreading re-
sistance of a heat source on a sphere with different boundary
conditions. They showed that for relatively small contact
radii, compared to the radius of the sphere, the constric-
tion resistance of the contact region is approximately equal
to the constriction resistance of a heat source on a half
space. In this study, it is assumed that the macrocontact
region is isothermal. Therefore, the macrocontact constric-
tion/spreading resistance is

RL =
1

2ksaL
(11)

where aL is calculated using Eq. (10).

Conduction Through Gas, Rg and RG

Conduction heat transfer in a gas layer between two
parallel plates is commonly divided into four heat-flow
regimes [22]: continuum, temperature-jump or slip, tran-
sition, and free-molecular. The parameter that character-
izes the regimes is the Knudsen number, Kn = Λ/d, where
Λ and d are the molecular mean free path and the distance
separating the two plates, respectively. The molecular mean
free path is defined as the average distance a gas molecule
travels before it collides with another gas molecule and it is
proportional to the gas temperature and inversely propor-
tional to the gas pressure [23]

Λ =
P0
Pg

Tg
T0
Λ0 (12)

where Λ0 is the mean free path value at some reference gas
temperature and pressure T0 and P0. The heat transfer in
a gas layer between two isothermal plates for all four flow
regimes can be effectively calculated from [23]

qg =
kg

d+M
(T1 − T2) (13)

where T1, T2, d, kg, and qg are the uniform temperatures
and the distance between the two isothermal parallel plates,
gas thermal conductivity, and the gap heat flux, respec-
tively. The gas parameter M is defined as

M =

µ
2− αT1
αT1

+
2− αT2
αT2

¶µ
2γg
1 + γg

¶
1

Pr
Λ (14)

where αT1, αT2, γg, and Pr are thermal accommodation
coefficients corresponding to the gas-solid combination of
plates 1 and 2, ratio of the gas specific heats, and gas
Prandtl number, respectively. Thermal accommodation co-
efficient αT depends on the type of gas-solid combination
and is in general very sensitive to the condition of the solid
surfaces. It represents the degree to which the kinetic en-
ergy of a gas molecule is exchanged while in collision with
the solid wall. Song and Yovanovich [24] purposed a corre-
lation for predicting αT for engineering surfaces as follows:

αT = exp

·
−0.57

µ
Ts − T0
T0

¶¸µ
M∗g

6.8 +M∗g

¶
(15)

+
2.4µ

(1 + µ)2

½
1− exp

·
−0.57

µ
Ts − T0
T0

¶¸¾
where

M∗g =
½
Mg for monatomic gases
1.4Mg for diatomic/polyatomic gases

where T0 = 273K. Equation (15) is general and can be used
for any combination of gases and solid surfaces for a wide
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temperature range. The agreement between the predicted
values and the experimental data is within 25 percent.

The authors developed a compact analytical model for
predicting the heat conduction through interstitial gas be-
tween rough spherical bodies [25]. The non-conforming re-
gion between the solids was divided into infinitesimal sur-
face elements where Eq. (13) could be used. Thermal re-
sistance of the interstitial gas through the microgap and
the macrogap were calculated by integrating these surface
elements over the macrocontact and the macrogap areas,
respectively. The microgap and the macrogap can be repre-
sented for the contact of two rough spheres as follows [25]:

Rg =
2
√
2σ a2

πkga2L ln

Ã
1 +

a2

a1 +M/
¡
2
√
2σ
¢! (16)

where,

a1 = erfc
−1
µ
2P0
H 0

¶
a2 = erfc

−1
µ
0.03P0
H 0

¶
− a1

RG =
2

πkg

·
S ln

µ
S −B
S −A

¶
+B −A

¸ (17)

where A = 2
p
ρ2 − a2L, B = 2

p
ρ2 − b2L, S = 2 (ρ− ω0) +

M, H
0
= c1 (1.62σ

0/m)c2 , and ω0 = a2L/2ρ. The inverse
complementary error function erfc−1 (x) can be determined
from [26]

erfc−1(x) =



1

0.218 + 0.735 x0.173
10−9 ≤ x ≤ 0.02

1.05 (0.175)
x

x0.12
0.02 < x ≤ 0.5

1− x
0.707 + 0.862x− 0.431x2 0.5 < x ≤ 1.9

(18)
The maximum relative difference between Eq. (18) and
erfc−1 (x) is less than 2.8 percent for the range of 10−9 ≤
x ≤ 1.9.

CONDUCTION IN BASIC CELLS

The solid fraction ε is the ratio of the solid volume to the
total volume of the packed bed, i.e., ε = Vs/V. Table 1 lists
the solid fraction for the three typical cells, SC, BCC, and
FCC. The solid fraction of a packed bed can be evaluated
by weighing the entire bed excluding the container weight.
If weight of the bed is Wb, the density of the solids ρs,

Table 1. SOLID FRACTION AND CELL DIMENSION FOR PACKED BEDS

Packing Cell Length Lc Solid Fraction ε

SC D π/6 = 0.524

BCC 2
√
3D/3

√
3π/8 = 0.680

FCC
√
2D

√
2π/6 = 0.740

 D

 D

2 3 D / 3

2S3 D / 3 S2 D

Simple Packing (SP) Body Center Close (BCC) Face Center Close (FCC)
e= 0.524 e= 0.680 e= 0.740

S2 D

Figure 4. DIMENSIONS AND ARRANGMENTS OF SC, BCC, FCC PACK-

INGS

and the volume of the bed Vb, the solid fraction is given
by ε = Wb/ (gVbρs). Figure 4 shows the plan view of these
three packing for a packed bed which is formed by spheres
of diameter D.

Consider a basic cell that has the length Lc and the
cross sectional area Ac, as shown in Fig. 5. The top and
bottom surfaces are isothermal and the four lateral walls are
adiabatic. The applied load is considered as a hydrostatic
pressure Pa acting on all the walls. This load can be a result
of one or more of the following: the structural load due to
the weight of spheres, thermal expansion of the spheres,
packing under pressure, exerted external load on the bed,
etc.

A real packed bed is a non-homogenous medium of dif-
ferent thermal conductivities corresponding to local varia-
tion of apparent load. Depending on this variation, different
approaches can be taken to calculate the effective thermal
conductivity of the bed. A proper treatment is to integrate
the local effective thermal conductivity over the entire bed
to find the apparent thermal conductivity. A simpler ap-
proach is to consider an average contact load which is con-
stant for all the joints in the bed. This average contact load
can be considered as the arithmetic mean between the high-
est and the lowest contact loads. In this study the latter
method is employed to develop compact expressions for the
effective thermal conductivity. However, the first method
can also be applied using the same approach.
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To evaluate the thermal resistance of the basic cell, the
following steps should be taken:

• Calculate the relation between the apparent load on
the cell and the contact load on the individual contact.
This relation is found from static equilibrium.

• Break up the unit cell into contact regions and find the
relation between the cell resistance and the resistance
of a contact region.

• Calculate the thermal joint resistance for the contact
region.

• Determine the apparent conductivity of the basic cell.
The following relation can be derived by considering the

thermal resistance of a homogenous medium:

ke =
Lc

Rc Ac
(19)

where Rc is the resistance of the cell.
There is another resistance that arises as a result of the

contact between the spheres and the plates of the container
where thermal energy enters and exists the bed. We may
call this the boundary resistance RBR. Therefore, the total
resistance of the packed bed is Rtotal = Rbed+2RBR where
the boundary resistances at both planes are assumed to be
identical, see Fig. 9. The total effective thermal conductiv-
ity of a packed bed including the boundary resistance can
be found from

ke,total =
Lbed

Ac (Rbed + 2RBR)
(20)

where Rbed = Lbed/ (ke Ac) and Lbed is the length of the
bed in the heat transfer direction. It should be noted that

the influence of the boundary resistance on the effective
conductivity of the bed depends on the length of the bed
and the diameter of the spheres. The boundary resistance
has the same components as the joint resistance discussed
in the previous section, see Fig. 3, and those relationships
can be used to calculate the boundary resistance. It should
be noted that because of the sphere-flat contact geometry of
RBR, the effective radius of curvature and the macrogap are
different in RBR than the ones used for the joint resistance
between two spheres.

Simple Cubic (SC) Packing Cell

The geometry of the SC unit cell is shown in Figs. 2
and 9 where bL = ρ, Ac = D

2, Lc = D, and ρ = D/2. Using
the general contact region analysis, one can find the thermal
joint resistance of the cell by applying Eq. (1) where the
components Rs, RL, Rg, and RG can be calculated using
Eqs. (3), (11), (16), and (17), respectively. The unit cell has
one contact region thus Rc = Rj,SC . The effective thermal
resistance of the SC packed beds is found from Eq. (19) as
follows:

ke,SC =
1

Rj,SC D
(21)

Kitscha and Yovanovich [27] conducted experiments and in-
vestigated the solid and gas conduction for a contact be-
tween a sphere and a flat. The load on the contact was
varied to study the effect of the applied load on the solid
and gas conduction. For each load (or contact size) the gas
pressure was varied from vacuum to atmospheric conditions.
Two gases were used, air and argon, to study the effect of
gas properties on the gas conduction. Two spherical carbon
steel samples of radii 12.7 and 25.4 mm were chosen. The
flat specimen was a steel 1020 with the surface roughness of
σ = 0.13 µm and an effective microhardness Hmic = 4 GPa.
Specimens were cylindrical with the same radius, bL = 12.7
mm. To minimize the radiation and convection heat trans-
fer to the surroundings, the lateral surfaces of the specimens
were insulated. Figures 6 to 8 illustrates the comparison be-
tween the present model and Kitscha and Yovanovich [27]
experimental data. The data show good agreement with
the model. The relative RMS difference between the model
and the data is approximately 7.2 percent.

As previously mentioned, Buonanno et al. [3] con-
ducted experiments and measured the effective thermal con-
ductivity of rough spherical packed beds. They tested beds
of uniform sphere size which were packed in the SC and
FCC arrangements. The spheres were stainless steel 100Cr6
of diameter 19.05 mm. Buonanno et al. [3] performed four
tests with different surface roughness for each packing. The
combined RMS surface roughness was varied from 0.03 to
1.7 µm. Their experimental apparatus and its properties
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YOVANOVICH 1974 DATA
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Figure 7. COMPARISON OF MODEL WITH KITSCHA AND

YOVANOVICH 1974 DATA

are described in Fig. 9. Thermal energy enters the packed
bed at the top copper plate and leaves the system at the
bottom copper plate, two flux meters were used to measure
the heat flow to the bed. The lateral sides of the bed were
insulated to insure one-dimensional heat transfer. They re-
ported an average contact load for each packing, which is
the arithmetic mean of the structural weight of the spheres.
Buonanno et al. [3] measured the total effective thermal
conductivity of the bed which included the boundary ther-
mal resistance RBR at the top and bottom copper plates.
To compare the present model with Buonanno et al.’s data
[3], the total thermal resistance of their packed bed, de-
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Kitscha and Yovanovich [27] data
carbon steel sphere of radius 12.7 mm
flat steel 1020, σ = 0.13 µm, bL = 12.7 mm
argon, Pr = 0.67, γg = 1.67, αT = 0.90, Λ0 = 66.6 nm
kg (W / m K) = 0.0159 + 4 x10−6 T (K)

present model
SC unit cell

F = 56 N

F = 467 N

Figure 8. COMPARISON OF MODEL WITH KITSCHA AND

YOVANOVICH 1974 DATA.

Rc

RBR

RBR

top copper plate

bottom copper plate

Fb

bF

D

L

r

basic
cell

Q

Buonanno et al. [3, 5] 
experimental apparatus
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Length of the bed = 15 cm
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spheres k = 60 W/mK

air at 20 C, 1 atm.
air k = 0.027 W/mK

copper k = 398 W/mK
copper E = 117 GPa

SC packing is shown.

bed

Figure 9. BUONANNO ET AL. 2003 EXPERIMENTAL APPARATUS FOR

SC PACKING

scribed in Fig. 9, is calculated using Eq. (20) where the
average contact load reported as 0.983 N is used. The com-
parison between the present model and Buonanno et al. [3]
data is shown Fig. 10.

Buonanno et al. [5] using the same experimental appa-
ratus described in Fig. 9, conducted experiments to study
the effect of applied load on the effective thermal conduc-
tivity of packed beds. They reported the contact loads for
two levels of combined surface roughness of 0.03 and 1.7
µm, without describing the method of applying the exter-
nal load. The present model is compared with the reported
data of [5] in Fig. 11. As shown both data sets show good
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Figure 10. COMPARISON OF PRESENT MODEL WITH BUONANNO ET

AL. 2003-A DATA, EFFECT OF ROUGHNESS SC PACKING
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100Cr6 stainless steel spheres of radius 19.05 mm
ks = 60 W / mK
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air at 1 atm pressure, T= 20 °C
kg = 0.027 W / mK, Pr = 0.7, γg = 1.4
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Figure 11. COMPARISON OF PRESENT MODEL WITH BUONANNO ET

AL. 2003-B DATA, EFFECT OF APPLIED LOAD SC PACKING

agreement with the present model.

Face Centered Cubic (FCC) Packing Cell

A schematic geometry of the FCC unit cell is shown
in Fig. 12 where 1/8th of the FCC cube shown in Fig.
1 is chosen, with Lc =

√
2D/2 and Ac = D2/2. From

symmetry, contact loads are identical. Assuming there are
no frictional or tangential forces in contact regions, one can
find a relationship between the apparent load on the cell
cross section and the contact load Fc =

√
2PaD

2/8.

1
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3

T
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Figure 12. UNIT CELL FOR FCC PACKING
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Figure 13. FCC CONTACT REGION, HEAT TRANSFER PATHS IN

MACROGAP

A FCC packing contact region is shown in Fig. 13 where
two 1/8 spheres make contact. For the FCC contact, the mi-
crocontact resistance Rs, the macrocontact resistance RL,
and the microgap resistance Rg can be calculated using Eqs.
(3), (11), and (16), respectively. Since the thermal conduc-
tivity of solids are much larger than the gas thermal con-
ductivity, the sphere surfaces can be assumed as isotherms.
Also, the top and the bottom plates of the cell are isotherms.
Therefore, the problem is reduced to finding the thermal re-
sistance between these isotherms. We consider two parallel
paths for conduction in the FCC macrogap. The first path
is the heat transfer between two spheres, indicated by Q1, in
which Eq. (17) can be used with bL = ρ tan ϕ to calculate
RG1. The angle ϕ is chosen arbitrarily to be 10◦ (π/18) by
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considering the flow lines between two spheres, see Fig. 13.
The second path is the heat transfer between the isothermal
plane z01 =

√
2D/2 and the isothermal sphere s0 = ρ cosφ,

indicated by Q2, which can be found from

Q2 =

Z Z
kg∆T cosφ dA

z01 − s0 +M
(22)

where dA = ρ2 sinφ dφ dθ is a surface element on the sphere
s0, where 0 ≤ φ ≤ 5π/36, and −π/4 ≤ θ ≤ π/4. Therefore,
the thermal resistance for path Q2 is

RG2 =
1

πkgρ

·
B ln

µ
B − 0.9036
B − 1

¶
− 0.09369

¸ (23)

where B =
√
2 +M/ρ. The heat transfer area correspond-

ing to the path Q1, a circle of radius bL, is relatively small
compared to the sphere surface area. This adds a constric-
tion/spreading to the path Q1 which can be estimated us-
ing Eq. (11), i.e., Rspread,G1 = 1/ (2ksbL). Therefore, the
macrogap thermal resistance for FCC is

1

RG,FCC
=

1

1/ (2ksbL) +RG1
+

1

RG2
(24)

Due to the relatively small gas layer thickness, most of the
heat transfer occurs through the path Q1; in other words
RG2 À RG1 thus Q2 may be neglected with respect to Q1.
The macrogap thermal resistance for the FCC contact can
be simplified to

RG,FCC = RG1 + 1/ (2ksbL) (25)

With all the components of the joint resistance, the thermal
contact resistance for a FCC contact region can be found
from Eq. (1). As can be seen in Fig. 12, there are four
parallel half-contact regions in the FCC unit cell. Thus,
the thermal resistance of the unit cell is half of a FCC con-
tact region, Rc = Rj,FCC/2. Using Eq. (19), the effective
thermal resistance for FCC packed beds is

ke, FCC =
2
√
2

Rj, FCC D
(26)

The total effective thermal conductivity of the FCC bed,
including boundary resistance, can be calculated using Eq.
(20).

Buonanno et al. [3] measured the apparent conductiv-
ity of FCC packed beds with four levels of roughness and
reported an average contact load (normal) without consid-
ering the effect of tangential/frictional forces in the con-
tact area. The reported mean contact load is the mean
structural weight of their FCC packed bed, Fc = 0.78 N.
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Buonanno et al. [3] data, FCC packing
100Cr6 stainless steel spheres of radius 19.05 mm
ks = 60 W / mK, Hmic = 8.32 GPa
Es = 200 GPa, νs = 0.3
air at 1 atm pressure, T = 20 °C
kg = 0.027 W / mK, Pr = 0.7, γg = 1.4
αT ≈ 0.78
Fc = 0.783 N

model, no friction model, a const. factor on
applied load is considered

Figure 14. COMPARISON OF PRESENT MODEL WITH BUONANNO ET

AL. 2003-A DATA, EFFECT OF ROUGHNESS FCC PACKING

Of course, the real normal contact loads in the bed could
not be measured directly. Due to the frictional/tangential
forces in the FCC contact area, normal loads which de-
termine the macrocontact area, will be smaller than the
reported value. As for the SC arrangement, the effect of
frictional/tangential forces is small and therefore can be ne-
glected.

As mentioned previously, the contact mechanics of the
present model do not account for tangential forces in the
contact area corresponding to the friction between the con-
tacting spheres. Considering the effect of friction on the
contact load is a complex task and requires knowledge of
the friction factor(s) between the spheres in the packed bed.
Therefore, a quantitative comparison between the present
model and the data of [3] is impossible. However, a quali-
tative comparison which shows the trends of the model and
the data is presented in Fig. 14. Two curves are shown for
the model. The dashed line in which the reported contact
load is used, i.e., Fc = 0.78 N. The solid curve represents
the model in which a constant factor of 0.5 (arbitrary) is
applied to the reported contact load to account for the fric-
tion between spheres. As expected, the difference between
the data and the model is larger at higher roughness values
which indicates that the effect of friction is more significant
at higher roughness values.

The present model is also compared with Buonanno et
al. data [5] where the effect of contact load on the effective
thermal conductivity was experimentally investigated. Two
sets of data were collected for two levels of combined sur-
face roughness, i.e., 0.03 and 1.7 µm as the applied load was
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Buonanno et al. [5] data, FCC packing
100Cr6 stainless steel spheres of radius 19.05 mm
ks = 60 W / mK, Hmic = 8.32 GPa
Es = 200 GPa, νs = 0.3
air at 1 atm pressure, T = 20 °C
kg = 0.027 W / mK, Pr = 0.7, γg = 1.4
αT ≈ 0.78

σ = 1.7 µm

σ = 0.03 µm

Figure 15. COMPARISON OF PRESENT MODEL WITH BUONANNO ET

AL. 2003-B DATA, EFFECT OF LOAD FCC PACKING

varied [5]. As discussed above, two constants were consid-
ered on the reported contact loads to account for the effect
of the tangential/frictional forces on the macrocontact, i.e.,
0.8 and 0.5 for 0.03 and 1.7 µm surface roughness data, re-
spectively. As shown in Figs. 14 and 15, the model shows
the trend of the data. It also can be concluded that the
effect of frictional forces becomes more important as the
surface roughness increases.

PARAMETRIC STUDY

The proposed model can be used to investigate the in-
fluence of important parameters/properties of a packed bed
on its effective thermal conductivity. The trends predicted
by the present model, as roughness and the contact load
vary, are shown in the previous section for both SC and
FCC packing where the model is compared with the ex-
perimental data. In this section, the effect of the gas type
and gas pressure and the relative size of spheres on the bed
thermal conductivity are investigated. Since, the trends of
both packing arrangements, i.e. SC and FCC, are similar
only the SC packing results are presented.

The influence of roughness on the SC joint resistance
and its components predicted by the model is shown in
Fig. 16. The same input parameters/properties of the SC
packed bed of [3] is used, see Fig. 9. As roughness is in-
creased, while other contact parameters listed in Fig. 16
are held constant, it can be seen that i) the microcontacts
resistance Rs increases linearly, see Eq. (3), ii) the contact
load spreads over a larger area or the macrocontact area in-
creases which leads to a lower macrocontact resistance RL,

σ, µm

R
j,

K
/W

10-3 10-2 10-1 100 101101

102

103

104

105

microcontacts Rs

microgap Rg

macrogap RG

macrocontact RL

joint resistance, Rj

stainless steel 100Cr6 spheres of radius 19.05 mm, ks = 60 W/mK
E = 200 GPa, ν = 0.3
air at 1 atm and 20 °C, kg = 0.026 W / mK, Pr = 0.7, γg = 1.4
αT = 0.78, Fc = 0.983 N

Figure 16. EFFECT OF ROUGHNESS OF JOINT RESISTANCE AND ITS

COMPONENTS, SC CONTACT REGION

iii) as a result of larger macrocontact area, the macrogap
area becomes smaller thus the macrogap resistance RG be-
comes higher (slightly in this case); also it can be observed
that most of the heat transfer occurs through the macro-
gap, and iv) the microgap resistance Rg is very high and can
be neglected. Another interesting trend can be observed in
the microgap resistance Rg. As roughness decreases, the
separation between two spheres in the macrocontact area
decreases, i.e., the size of the microgaps becomes smaller,
see Fig. 2, which has a decreasing effect on Rg. Also with
smaller microgaps, the rarefaction effect in the microgaps
becomes more important which leads to an increase in the
microgap resistance Rg. As a result of these two compet-
ing effects, the microgap resistance Rg decreases to a certain
point and then approaches its limit where roughness is zero,
as shown in Fig. 16. This limit can be found from Eq. (16)

lim
σ→0

Rg =
M

πkg a2H
(27)

where aH is the Hertzian contact radius. It should be noted
that for smooth surfaces the microcontacts resistance Rs =
0 and since Rs and Rg are in parallel, Eq. (1), the value
of Rg does not change the joint resistance. The trend seen
in Fig. 16 for the joint resistance is consistent with the
experimental data of [3].

Figure 17 illustrates the effect of the interstitial gas type
and the gas pressure on the effective thermal conductivity of
the same packed bed described above, with a surface rough-
ness σ = 0.5 µm. Two different gases, air and helium, are
chosen for the comparison since their thermal conductivities
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Figure 17. EFFECT OF GAS TYPE AND PRESSURE ON EFFECTIVE

THERMAL CONDUCTIVITY OF SC ARRANGEMENT

cover a wide range, i.e., 0.026 and 0.153 W/mK for air and
helium, respectively. For each gas the gas pressure is var-
ied from vacuum 10−5 to atmospheric pressure 760 torr, see
Fig. 17 for the bed and gases properties. It can be seen that
in a vacuum and very low gas pressures thermal conductivi-
ties of both beds are identical. As expected, with increasing
gas pressure the bed filled with helium shows higher effective
conductivity, a factor of 4.7 higher at atmospheric pressure.

The variation of the effective thermal conductivity of
a SC packed bed, the same bed as described above, ver-
sus the relative diameter of spheres D/Lbed is presented in
Fig. 18. The average contact load for each sphere diam-
eter value is considered as half of the weight of the stack
of spheres in a packed bed of 150 mm length and the den-
sity of 100Cr6 spheres is assumed to be 7800 kg/m3. All
other input parameters are held constant as the diameter
of spheres is varied over the range of 0.1 ≤ D ≤ 75 mm,
i.e., 0.0007 ≤ D/Lbed ≤ 0.5 , see Fig. 18 for other input
parameters. As shown, the effective thermal conductivity
increases as the diameter of the spheres increases. This is a
direct result of decreasing the total relative surface area of
the spheres in the packed bed Aspheres/Acell and increasing
the mean contact load. In addition, the variation of the
ratio Aspheres/Acell as a function of the relative size of the
spheres is shown in Fig. 18.

The effect of boundary resistance on the effective ther-
mal conductivity of the bed is also shown in Fig. 18. The
boundary resistance is calculated as discussed in Eq. (20).
Two curves are shown in the plot, the boundary resistance is
considered in calculating the solid curve and it is neglected
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Figure 18. EFFECT OF PARTICLE RADIUS ON EFFECTIVE THERMAL

CONDUCTIVITY OF SC PACKED BEDS

in the dashed curve. As shown, the effect of the boundary
resistance is relatively small where the relative size of the
spheres are small.

SUMMARY AND CONCLUSIONS

Analytical solutions for steady-state conduction heat
transfer in regularly packed beds of rough spheres with a
uniform diameter in the presence of a stagnant gas are de-
veloped. SC and FCC packing are studied since they present
the upper and lower bounds for the effective thermal con-
ductivity of randomly packed beds. Compact relationships
are derived for calculating the effective thermal conductivi-
ties of SC and FCC unit cells. These models account for the
thermophysical properties of spheres and the gas, contact
load, spheres diameter, spheres roughness and slope, and
temperature and pressure of the gas.

Experimental data [27] collected for a SC basic cell are
compared with the model. The data are collected at dif-
ferent applied loads where at each load the gas pressure is
varied from vacuum to atmospheric pressure. Experiments
include two diameters of stainless steel spheres with argon
and air as interstitial gas. The present model shows very
good agreement with the data of [27] with the RMS differ-
ence in the order of 7 percent.

The present model is also compared with experimental
data collected by Buonanno et al. [3] and [5] for SC and
FCC regularly packed beds. The data include a range of the
contact load and the surface roughness of the single-sized
stainless steel spheres in air at atmospheric condition. The
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present model shows excellent agreement with the SC data.
Due to the frictional/tangential forces in the FCC contact
region, the present model can not be compared quantita-
tively with the FCC data. However, the model shows the
trend of the FCC data in a qualitative comparison.

The influence of the surface roughness on the joint re-
sistance predicted by the model and its components are pre-
sented and their trends are discussed. It is shown that most
of the heat transfer occur through the macrogap. Effects of
the gas type and pressure and the relative size of the spheres
on the effective thermal conductivity of the beds are stud-
ied. It is observed that the thermal conductivity of the
packed beds increase by increasing the relative diameter of
the spheres. The influence of the boundary resistance on
the conductivity of packed beds is investigated. It is seen
that for an uncompressed packed bed, the effect of bound-
ary resistance is negligible where the ratio of the spheres
diameter over the bed length is approximately 0.02.
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