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Fluid Flow and Heat Transfer from a Cylinder
Between Parallel Planes

W. A. Khan,∗ J. R. Culham,† and M. M. Yovanovich‡

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

An integral approach is employed to investigate the effects of blockage on fluid flow and heat transfer from a
circular cylinder confined between parallel planes. The integral form of the boundary-layer momentum equation
is solved using the modified von Kármán–Pohlhausen method, which uses a fourth-order velocity profile inside the
hydrodynamic boundary layer. The potential flow velocity, outside the boundary layer, is obtained by the method
of images. A third-order temperature profile is used in the thermal boundary layer to solve the energy integral
equation for isothermal and isoflux boundary conditions. Closed-form solutions are obtained for the fluid flow and
heat transfer from the cylinder with blockage ratio and Reynolds and Prandtl numbers as parameters. It is shown
that the blockage ratio controls the fluid flow and the transfer of heat from the cylinder and delays the separation.
The results for both thermal boundary conditions are found to be in a good agreement with experimental/numerical
data for a single circular cylinder in a channel.

Nomenclature
b = blockage ratio, identical to D/ST

CD = total drag coefficient
CD f = friction drag coefficient
CDp = pressure drag coefficient
C f = skin-friction coefficient
Cp = pressure coefficient
cp = specific heat of fluid, J/kg · K
D = cylinder diameter, m
D f = shear force in flow direction, N
Dp = pressure force in flow direction, N
h̄ = average heat transfer coefficient, W/m2 · K
j = number of cylinders in transverse direction
k = thermal conductivity, W/m · K
NuD = average Nusselt number based on diameter

of cylinder, identical to h̄ D/k f

Pr = Prandtl number, identical to ν/α
p = pressure, N/m2

q = heat flux, W/m2

ReD = Reynolds number, identical to DU∞/ν
r, θ = polar coordinates
ST = vertical distance between parallel planes
s = distance along curved surface of circular cylinder

measured from forward stagnation point, m
T = temperature, ◦C
U (s) = potential flow velocity just outside boundary layer, m/s
u, v = velocity components in boundary layer, m/s
w(z) = complex potential in Cartesian coordinates, m2/s
x, y = Cartesian coordinates
Y = distance normal to and measured from surface

of circular cylinder, m
z = complex variable in Cartesian coordinates, m
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α = thermal diffusivity, m2/s
δ = hydrodynamic boundary-layer thickness, m
δT = thermal boundary-layer thickness, m
δ1 = displacement thickness, m
δ2 = momentum thickness, m
ζ = dummy variable
η = dimensionless normal distance
θ = angle measured, rad or deg
λ = pressure gradient parameter
µ = absolute viscosity of fluid, kg/m · s
ν = kinematic viscosity of fluid, m2/s
ρ = density of the fluid, kg/m3

τ = shear stress, N/m2

ψ , φ = stream and potential functions, m2/s

Subscripts

f = fluid or friction
p = pressure
r, θ = plane polar coordinates
s = separation
T = temperature
w = wall
∞ = freestream conditions

Introduction

T HE main objective of this study is to investigate analytically
the effects of blockage ratio b = D/ST on the fluid flow and

heat transfer from a cylinder under different thermal boundary con-
ditions. This parameter plays an important role in determining the
fluid flow and heat transfer from a cylinder confined between parallel
planes. In practice, a cylinder is placed in flows restricted by walls.
This configuration is found in many applications, such as crossflow
heat exchangers, shrouded heat sinks, and electric heating elements
in boilers. It has been observed by Žukauskas1 and others that, as the
blockage ratio increases, the velocity around the circular cylinder
outside the boundary layer increases and the pressure and velocity
distributions inside the boundary layer are changed accordingly. Po-
tential flow velocity outside the boundary layer can be obtained by
the method of images, which is a technique used in potential flow
modeling to represent the presence of a channel wall by creating an
image of the cylinder.

The fluid flow and heat transfer from a cylinder (infinite
flow conditions) have been studied analytically by Khan et al.,2

and experimentally/numerically by many researchers including
Žukauskas,1 Roshko,3 Achenbach,4 Schlichting,5 Wieselsberger,6

Churchill,7 Sucker and Brauer,8 Žukauskas and Ž iugžda,9 Eckert
395
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and Soehngen,10 Churchill and Bernstein,11 Morgan,12 Hilpert,13

Refai Ahmed and Yovanovich,14 Krall and Eckert,15 Giedt,16 and
Sarma and Sukhatme.17 However, the problem of fluid flow and
heat transfer from a cylinder placed inside a channel has not been
studied analytically so far.

A review of existing literature reveals that few experimental/
numerical studies exist regarding the configuration of the present
problem. Perkins and Leppert18 investigated local heat transfer co-
efficients from a uniformly heated cylinder with water in crossflow.
They used both potential flow and experimental pressure distribu-
tions to investigate and correlate the effects of blockage on the ve-
locity and heat transfer distributions.

Žukauskas1 analyzed the work of Akilba’yev et al.19 about the
influence of channel blockage on the flow and heat transfer of a
tube in a restricted channel. According to Žukauskas,1 they showed
that increasing channel blockage ratio from 0 to 0.8 caused the min-
imum pressure point to be displaced from θ = 70 to 90 deg, and
the separation point to move downstream to θ = 100 deg. Their
theoretical calculations, by the method of Merk20 using the po-
tential flow velocity distribution, showed that the heat transfer on
the front portion of the tube increases with an increase in block-
age ratio. Žukauskas and Ž iugžda9 performed a series of experi-
ments with different freestream geometries to investigate the effects
of channel blockage. They expressed the velocity distribution in
the outer boundary layer in terms of channel blockage and used
it to estimate the heat transfer behavior of a cylinder. Vaitiekünas
et al.21 investigated numerically the effects of the channel block-
age on the dimensionless shear stress, the location of Umax, point of
boundary-layer detachment, and the local heat transfer coefficients.
They approximated the velocity distribution outside the boundary
layer by the modified Hiemenz polynomial in which the coefficients
are functions of channel blockage. These functions were based on
the analysis of the experimental data of Žukauskas and Ž iugžda.9

They21 found satisfactory agreement with the experimental results
of Žukauskas and Ž iugžda.

Hattori and Takahashi22 performed experiments on forced con-
vection heat transfer from a single row of circular cylinders in cross-
flow. They measured local and average Nusselt numbers for a cylin-
der in the Reynolds number range from 80 to 6 × 103 and gave a
correlation for the average Nusselt number. Later Yamamoto and
Hattori23 verified numerically their heat transfer values for the same
arrangement. They found good agreement with those obtained from
experiments in water by Hattori and Takahashi.22

It is obvious from the literature survey that no analytical study ex-
ists to give a closed-form solution for the fluid flow and heat transfer
from a circular cylinder in a channel for a wide range of blockage ra-
tios, Reynolds numbers, and Prandtl numbers. In this study, a circu-
lar cylinder in a channel is considered in crossflow with a Newtonian
fluid (Pr ≥ 0.71) to investigate the effects of the blockage ratio on
the fluid flow and heat transfer from the cylinder for a wide range
of parameters, including blockage ratio, Reynolds numbers, and
Prandtl numbers. Closed-form solutions are obtained for the drag
coefficients and Nusselt numbers under different thermal boundary
conditions, which can be used for a wide range of parameters.

Analysis
Consider a uniform flow of a Newtonian fluid (Pr ≥ 0.71) past

a fixed circular cylinder of diameter D, confined between parallel
planes, as shown in Fig. 1. The approaching velocity of the fluid is

Fig. 1 Physical model and coordinate system.

U∞ and the ambient temperature is assumed to be T∞. The surface
temperature of the cylinder wall is Tw in the case of the isothermal
cylinder and the heat flux is q for the isoflux boundary condition.
The flow is assumed to be laminar, steady, and two dimensional.

Using an order-of-magnitude analysis, the reduced equations of
continuity, momentum, and energy in the plane polar coordinates
for an incompressible fluid can be written as follows:

the continuity,

∂ur

∂r
+ ur

r
+ 1

r

∂uθ

∂θ
= 0 (1)

the θ momentum,

ur
∂uθ

∂r
+ uθ

r

∂uθ

∂θ
= − 1

rρ

∂p

∂θ
+ ν

(
∂2uθ

∂r 2
+ 1

r

∂uθ

∂r
− uθ

r 2

)
(2)

the r momentum,

∂p

∂r
= 0 (3)

the energy,

ur
∂T

∂r
+ uθ

r

∂T

∂θ
= α

(
∂2T

∂r 2
+ 1

r

∂T

∂r

)
(4)

These equations can be rewritten by adopting a curvilinear system
of coordinates in which s denotes distance along the curved surface
of the circular cylinder measured from the forward stagnation point
A and Y is the distance normal to and measured from the surface
as shown in Fig. 2. In this system of coordinates, the velocity com-
ponents uθ and ur are replaced by u and v in the local s and Y
directions, whereas r dθ and dr are replaced by ds and dY , respec-
tively. The potential flow velocity just outside the boundary layer is
denoted by U (s), which will be determined by the method of im-
ages. Therefore, the governing equations in this curvilinear system
will be as follows:

the continuity,

∂u

∂s
+ ∂v

∂Y
= 0 (5)

the s momentum,

u
∂u

∂s
+ v

∂u

∂Y
= − 1

ρ

dp

ds
+ ν

∂2u

∂Y 2
(6)

the Y momentum,

dp

dY
= 0 (7)

Fig. 2 Flow over a circular cylinder.
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the energy,

u
∂T

∂s
+ v

∂T

∂Y
= α

∂2T

∂Y 2
(8)

the Bernoulli equation,

− 1

ρ

dp

ds
= U (s)

dU (s)

ds
(9)

Hydrodynamic Boundary Conditions
At the cylinder surface, that is, at Y = 0,

u = 0,
∂2u

∂Y 2
= 1

µ

∂p

∂s
(10)

At the edge of the boundary layer, that is, at Y = δ(s),

u = U (s),
∂u

∂Y
= 0,

∂2u

∂Y 2
= 0 (11)

Thermal Boundary Conditions
The boundary conditions for the uniform wall temperature (UWT)

and uniform wall flux (UWF) are

Y = 0,




T = Tw for UWT

∂T

∂Y
= − q

k f
for UWF

(12)

Y = 0,
∂2T

∂Y 2
= 0 (13)

Y = δT , T = T∞,
∂T

∂Y
= 0 (14)

Velocity Distribution Inside Boundary Layer
Assuming a thin boundary layer around the cylinder, the velocity

distribution in the boundary layer can be approximated by a fourth-
order polynomial as suggested by Pohlhausen,24

u/U (s) = (2η − 2η3 + η4) + (λ/6)(η − 3η2 + 3η3 − η4) (15)

where 0 ≤ η = Y/δ(s) ≤ 1 and λ is the pressure gradient parameter
given by

λ = δ2

ν

dU (s)

ds
(16)

With the help of velocity profiles, Schlichting5 showed that the pa-
rameter λ is restricted to the range −12 ≤ λ ≤ 12.

Velocity Distribution Outside Boundary Layer
When the method of images is used, a cylinder confined between

parallel planes (Fig. 1) can be modeled as a system of infinite trans-
verse row of doublets superimposed on a uniform flowfield (Fig. 3).
Kochin et al.25 and Perkins and Leppert18 pointed out this case. For
this case, the complex potential can be written as

w(z) = U∞z +
∞∑

j = −∞

µ

2π(z − i j ST )

= U∞z + µ

2ST
coth

(
π z

ST

)
(17)

where j is the number of doublets or cylinders. Therefore, the com-
plex velocity will be

w′(z) = U∞ − (
µπ

/
2S2

T

)[
1
/

sinh2(π z/ST )
]

(18)

At the stagnation points, z = ±D/2 and w′(±D/2) = 0. Therefore,
Eq. (18) gives

µ/2ST = (U∞ST /π) sinh2(π D/2ST ) (19)

Fig. 3 Transverse row of doublets
or circular cylinders.

When this value is substituted into Eq. (17), the required complex
potential will be

w(z) = φ + iψ = U∞[z + C coth(π z/ST )] (20)

where φ and ψ are the potential and stream functions and C is a
constant given by

C = (ST /π) sinh2(π D/2ST ) (21)

The stream function ψ in polar coordinates (r, θ) can be obtained
from Eq. (20) as follows:

ψ = U∞r sin θ

− C

[
U∞

sin(2πr sin θ/ST )

cosh(2πr cos θ/ST ) − cos(2πr sin θ/ST )

]
(22)

The radial and transverse components of velocity at the surface of
the cylinder can be written as

ur = −1

r

∂ψ

∂θ

∣∣∣∣
r = D/2

, uθ = ∂ψ

∂r

∣∣∣∣
r = D/2

(23)

which gives

ur = 0, uθ = U∞ f (θ) (24)

where

f (θ) = sin θ

−
(

2πC

ST

)[
cos(π D cos θ/ST ) sin θ

cosh(π D cos θ/ST ) − cos(π D sin θ/ST )

+ sin

(
π D sin θ

ST

)

× sinh(π D cos θ/ST ) cos θ + sin θ sin(π D sin θ/ST )

[cosh(π D cos θ/ST ) − cos(π D sin θ/ST )]2

]
(25)

Setting C1 = π D/ST and substituting the value of C , we get

f (θ) = sin θ − 2 sinh2

(
C1

2

)[
cos(C1 cos θ) sin θ

cosh(C1 cos θ) − cos(C1 sin θ)

+ sin(C1 sin θ) × sinh(C1 cos θ) cos θ + sin θ sin(C1 sin θ)

[cosh(C1 cos θ) − cos(C1 sin θ)]2

]

(26)
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The resultant potential flow velocity is

U = U∞ f (θ) (27)

Temperature Distribution
Assuming a thin thermal boundary layer around the cylinder,

the temperature distribution in the thermal boundary layer can be
approximated by a third-order polynomial,

(T − T∞)/(Tw − T∞) = A + BηT + Cη2
T + Dη3

T (28)

where ηT = Y/δT (s). When the aforementioned thermal boundary
conditions are used, the temperature distribution will be

(T − T∞)/(Tw − T∞) = 1 − 3
2 ηT + 1

2 η3
T (29)

for the isothermal boundary condition and

T − T∞ = (2qδT /3k f )
(
1 − 3

2 ηT + 1
2 η3

T

)
(30)

for the isoflux boundary condition.

Boundary-Layer Parameters
In dimensionless form, the momentum integral equation can be

written as

Uδ2

ν

dδ2

ds
+

(
2 + δ1

δ2

)
δ2

2

ν

dU

ds
= δ2

U

∂u

∂Y

∣∣∣∣
Y = 0

(31)

where

δ1 = δ

∫ 1

0

[
1 − u

U

]
dη (32)

δ2 = δ

∫ 1

0

u

U

[
1 − u

U

]
dη (33)

When velocity distribution from Eq. (15) is used, Eqs. (32) and (33)
can be written as

δ1 = (δ/10)(3 − λ/12) (34)

δ2 = (δ/63)(37/5 − λ/15 − λ2/144) (35)

assuming

Z = δ2
2

ν
, K = Z

dU

ds

Equation (31) can be reduced to a nonlinear differential equation of
the first order for Z , which is given by

dZ

ds
= H(K )

U
(36)

where H(K ) = 2 f2(K ) − 2K [2 + f1(K )] is a universal function
and is approximated by Walz26 using a straight line,

H(K ) = 0.47 − 6K (37)

with

f1(K ) = 63(3 − λ/12)

10(37/5 − λ/15 − λ2/144)
(38)

f2(K ) = 1

63

(
2 + λ

6

)(
37

5
− λ

15
− λ2

144

)
(39)

K = λ

3963

(
37

5
− λ

15
− λ2

144

)2

(40)

When Eq. (36) is solved with Eq. (37), the local dimensionless
momentum thickness can be written as

δ2

D
= 0.485√

ReD

√
1

f 6(θ)

∫ θ

0

f 5(ζ ) dζ (41)

The local dimensionless boundary-layer thickness can be obtained
from Eq. (16),

δ/D =
√

λ/2 ReD g(θ) (42)

where g(θ) is the first derivative of f (θ) with respect to θ obtained
from Eq. (26). When Eqs. (35) and (42) are solved and the results
are compared with Eq. (41), the values of the pressure gradient pa-
rameter λ are obtained corresponding to each position along the
cylinder surface. These values are positive from 0 ≤ θ ≤ θ1 = π/2,
for example, region 1, and negative from θ1 = π/2 ≤ θ ≤ θs , for ex-
ample, region 2, as shown in Fig. 2. Thus, the whole range of interest
0 ≤ θ ≤ θs can be divided into two regions, and the λ values can be
fitted separately for each blockage ratio by the least-squares method
into two polynomials. These polynomials can be used to determine
the drag and the local heat transfer coefficients in both regions.

Fluid Flow
The first parameter of interest is fluid friction, which manifests

itself in the form of the drag force FD , where FD is the sum of the
skin-friction drag D f and pressure drag Dp . Skin-friction drag is
due to viscous shear forces produced at the cylinder surface pre-
dominantely in those regions where the boundary layer is attached.
The component of shear force in the flow direction is given by

D f =
∫

A

τw

D

2
sin θ dθ (43)

where τw is the shear stress along the cylinder wall, which can be
determined from Newton’s law of viscosity,

τw = µ
∂u

∂y

∣∣∣∣
y = 0

(44)

In dimensionless form, it can be written as

C f = τw

/
1
2 ρU 2

∞ = 1
3

[
(λ + 12)

/√
ReD

]
f (θ)

√
2g(θ)/λ (45)

The angle of separation depends only on the velocity distribution
outside the boundary layer. Khan et al.2 have shown that, for infinite
flow conditions, separation is calculated to occur at θs = 107.71 deg.
From Eq. (45) it can be shown that the angle of separation depends
on the blockage ratio. The friction drag coefficient is defined as

CD f =
∫ π

0

C f sin θ dθ

=
∫ θs

0

C f sin θ dθ +
∫ π

θs

C f sin θ dθ (46)

Because no shear stress acts on the cylinder surface after boundary-
layer separation, the second integral will be zero and the friction
drag coefficient can be written as

CD f =
∫ θs

0

C f sin θ dθ

= 1

3
√

ReD

[∫ θ1

0

(λ1 + 12) f (θ) sin θ

√
2g(θ)

λ1
dθ

+
∫ θs

θ1

(λ2 + 12) f (θ) sin θ

√
2g(θ)

λ2
dθ

]
(47)
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The drag coefficient CD f is calculated for different blockage ratios
and correlated into a single expression:

CD f = [45.72 − 39.9 exp(−0.95b3.44)]√
ReD

(48)

Pressure drag is due to the unbalanced pressures that exist between
the relatively high pressures on the upstream surfaces and the lower
pressures on the downstream surfaces. The component of pressure
force in the flow direction is given by

Dp =
∫

A

p
D

2
cos θ dθ (49)

In dimensionless form, it can be written as

CDp =
∫ π

0

Cp cos θ dθ (50)

where Cp is the pressure coefficient and is defined as

Cp = �p
/

1
2 ρU 2

∞ (51)

The pressure difference �p is obtained by integrating Eq. (2) with
respect to θ . Then the pressure drag coefficient is calculated, using
Eq. (50), for different blockage ratios and correlated into a single
expression:

CDp = {6.1 − 4.95 exp(−0.76b2.63)}

+
[

1.49 − 0.23 exp(−5.81b2.15)

ReD

]
(52)

The total drag coefficient CD can be written as the sum of both drag
coefficients:

CD = [45.72 − 39.9 exp(−0.95b3.44)]√
ReD

+ [6.1 − 4.95 exp(−0.76b2.63)]

+ [1.49 − 0.23 exp(−5.81b2.15)]

ReD
(53)

Heat Transfer
The second parameter of interest in this study is the dimension-

less average heat transfer coefficient NuD for large Prandtl numbers.
This parameter is determined by integrating Eq. (8) from the cylin-
der surface to the thermal boundary-layer edge. When the presence
of a thin thermal boundary layer δT along the cylinder surface is
assumed, the energy integral equation for the isothermal boundary
condition can be written as

d

ds

∫ δT

0

(T − T∞)u dY = −α
∂T

∂Y

∣∣∣∣
Y = 0

(54)

When velocity and temperature profiles are used, and ζ = δT /
δ < 1 is assumed, Eq. (54) can be simplified to

δT
d

ds
[U (s)δT ζ(λ + 12)] = 90α (55)

Because s = (D/2)θ ⇒ ds = (D/2) dθ and U (s) = U∞ f (θ),
therefore,

δT
d

dθ
[ f (θ)δT ζ(λ + 12)] = 45D2

Pr ReD
(56)

This equation can be rewritten separately for the two regions
mentioned earlier, that is,

δT
d

dθ
[ f (θ)δT ζ(λ1 + 12)] = 45D2

Pr ReD
(57)

for region 1, and

δT
d

dθ
[ f (θ)δT ζ(λ2 + 12)] = 45D2

Pr ReD
(58)

for region 2. These two equations can be solved separately in the
two regions for the local thermal boundary layer thicknesses,

δT1

D
= 1

Re
1
2
D Pr

1
3

3

√
90 f1(θ)

(λ1 + 12)2 f 2(θ)

√
λ1

2g(θ)
(59)

δT2

D
= 1

Re
1
2
D Pr

1
3

3

√
90 f3(θ)

f 2(θ)

√
λ2

2g(θ)
(60)

where functions f1(θ) and f3(θ) are given by

f1(θ) =
∫ θ

0

f (θ)(λ1 + 12) dθ (61)

f2(θ) =
∫ θ

θ1

f (θ)(λ2 + 12) dθ (62)

f3(θ) = f1(θ)

λ1 + 12
+ f2(θ)

λ2 + 12
(63)

For the isothermal boundary condition, the local heat transfer coef-
ficient is defined as follows:

h(θ) = − k f (∂T /∂Y )|Y = 0

Tw − T∞
= 3k f

2δT
(64)

Thus, local heat transfer coefficients for both regions are written as

h1(θ) = 3k f

/
2δT1 , h2(θ) = 3k f

/
2δT2 (65)

which give the local Nusselt numbers for isothermal boundary
condition:

NuD1(θ) = 3

2
3

√
(λ1 + 12)2 f 2(θ)

90 f1(θ)

√
2g(θ)

λ1
Re

1
2
D Pr

1
3 (66)

NuD2(θ) = 3

2
3

√
f 2(θ)

90 f3(θ)

√
2g(θ)

λ2
Re

1
2
D Pr

1
3 (67)

The average heat transfer coefficient is defined as

h̄ = 1

π

∫ π

0

h(θ) dθ

= 1

π

[∫ θs

0

h(θ) dθ +
∫ π

θs

h(θ) dθ

]
(68)

It has been observed experimentally by many researchers that, at low
Reynolds numbers (up to ReD = 5000, according to Žukauskas and
Ž iugžda9), there is no appreciable increase in the local heat transfer
after the separation point. However, at high Reynolds numbers, the
local heat transfer increases from the separation point to the rear
stagnation point. Hence, the average heat transfer coefficient can be
written as

h̄ = 1

π

∫ θs

0

h(θ) dθ

= 1

π

[∫ θ1

0

h1(θ) dθ +
∫ θs

θ1

h2(θ) dθ

]
(69)
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When Eqs. (59–65) are used, Eq. (69) can be solved for the average
heat transfer coefficient that gives the average Nusselt number for
an isothermal cylinder:

NuD|isothermal = [0.843 − 0.25 exp(−2.65b2.5)] Re
1
2
D Pr

1
3 (70)

For the isoflux boundary condition, the energy integral equation can
be written as

d

ds

∫ δT

0

(T − T∞)u dY = q

ρcp
(71)

For constant heat flux and thermophysical properties, Eq. (71) can
be simplified to

d

dθ

[
f (θ)δ2

T ζ(λ + 12)
]= 45D2

Pr ReD
(72)

Rewriting Eq. (72) for the two regions in the same way as Eq. (56),
one obtains the dimensionless local thermal boundary layer thick-
nesses δT1/D and δT2/D under isoflux boundary condition,

δT1

D
= 1

Re
1
2
D Pr

1
3

3

√
45θ

(λ1 + 12) f (θ)

√
λ1

2g(θ)
(73)

δT2

D
= 1

Re
1
2
D Pr

1
3

3

√
45 f4(θ)

f (θ)

√
λ2

2g(θ)
(74)

with

f4(θ) = θ/(λ1 + 12) + (θ − π/2)/(λ2 + 12) (75)

The local surface temperatures for the two regions is obtained from
Eq. (30),

�T1(θ) = 2qδT1

/
3k f (76)

�T2(θ) = 2qδT2

/
3k f (77)

The local heat transfer coefficient is obtained from its definition as

h1(θ) = q/�T1(θ), h2(θ) = q/�T2(θ) (78)

which will give local Nusselt numbers for isoflux boundary condi-
tion as follows:

NuD1(θ) = 3

2
3

√
(λ1 + 12) f (θ)

45θ

√
2g(θ)

λ1
Re

1
2
D Pr

1
3 (79)

NuD2(θ) = 3

2
3

√
f (θ)

45 f4(θ)

√
2g(θ)

λ2
Re

1
2
D Pr

1
3 (80)

Following the same procedure for the average heat transfer coeffi-
cient as described earlier, one obtains the average Nusselt number
for an isoflux cylinder as

NuD|isoflux = [1.104 − 0.47 exp(−1.54b2.77)]Re
1
2
D Pr

1
3 (81)

Combining the results for both thermal boundary conditions, we
have

NuD

Re
1
2
D Pr

1
3

=
{

0.843 − 0.25 exp(−2.65b2.5) for UWT

1.104 − 0.47 exp(−1.54b2.77) for UWF

(82)

Results and Discussion
Flow Characteristics

The effects of the blockage ratio b on the velocity distribution
outside the boundary layer are shown in Fig. 4. It shows that as
the blockage ratio decreases the velocity outside the boundary layer
decreases. These results are compared with the experimental data
of Akilba’yev et al.19 (reported by Žukauskas1) for two blockage
ratios. A good agreement between potential theory and experiment
is observed for the front part of the cylinder where laminar boundary
layer exists.

The dimensionless local shear stress, C f
√

(ReD), is plotted in
Fig. 5 for b = 2.5. It shows that C f is zero at the stagnation point
and reaches a maximum at θ ≈ 60 deg. The increase in shear stress
is caused by the deformation of the velocity profiles in the boundary
layer, a higher velocity gradient at the wall, and a thicker boundary
layer. In the region of decreasing C f preceding the separation point,
the pressure gradient decreases further and finally C f falls to zero,
where boundary-layer separation occurs. Beyond this point, C f re-
mains close to zero up to the rear stagnation point. These results
are compared with the numerical results of Vaitiekünas et al.21 for
the same blockage ratio. The results are again in good agreement
for the front part of the cylinder. In Fig. 6, it can be seen that the
angle of separation depends on the blockage ratio. As the blockage
ratio increases, the location of the boundary-layer separation moves
backward. This movement is due to the change in the velocity distri-
bution outside the boundary layer. In Fig. 7, the effects of blockage
ratio on the drag coefficient can be seen for different Reynolds num-
bers. It is clear that the drag coefficient decreases with the blockage

Fig. 4 Effect of blockage ratio on velocity distribution.

Fig. 5 Distribution of dimensionless shear stress for given blockage
ratio.
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Fig. 6 Effect of blockage ratio on angle of separation.

Fig. 7 Effect of blockage ratio and Reynolds number on drag
coefficient.

ratio. The variation of the drag coefficient CD with Reynolds num-
ber ReD for different blockage ratios is shown in Fig. 8. In this case,
the drag coefficient decreases with the increase in Reynolds number
ReD for a specific blockage ratio. The present results are compared
with the experimental results of Wieselsberger6 for infinite flow con-
ditions. They are in good agreement except at ReD = 2 × 103, where
a downward deviation (23.75%) in the experimental results was no-
ticed. No physical explanation could be found in the literature for
this deviation.

Heat Transfer Characteristics
The comparison of local Nusselt numbers for the isothermal and

isoflux boundary conditions for a given blockage ratio is shown in
Fig. 9. The isoflux boundary condition gives a higher heat transfer
coefficient over the larger part of the circumference. On the front part
of the cylinder (up to θ ≈ 40 deg), there is no appreciable effect of
boundary condition. Higher heat transfer coefficients have also been
observed experimentally by Perkins and Leppert18 for a blockage
ratio of 0.41 with the isoflux boundary condition.

The results for average heat transfer from a single isoflux cylinder
are shown in Fig. 10 for a given blockage ratio and Prandtl number,
where they are compared with the experimental and numerical data

Fig. 8 Drag coefficient as a function of Reynolds number ReD for dif-
ferent blockage ratios.

Fig. 9 Local Nusselt number for two thermal boundary conditions.

Fig. 10 Average Nusselt number for isoflux cylinder.

of Hattori and Takahashi22 and Yamamoto and Hattori.23 It is clear
that the present results are in very good agreement with the previous
work for a given range of Reynolds numbers.

It is clear from Fig. 11 that the heat transfer values are higher
for the smaller blockage ratios, they decrease as the blockage ra-
tio decreases, and finally they approach to the values for an infi-
nite cylinder. The heat transfer values increase with the Reynolds
number. The effects of the blockage ratios on the heat transfer
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Fig. 11 Effect of blockage ratio and Reynolds number on average
Nusselt numbers.

Fig. 12 Effect of blockage ratio and thermal boundary condition on
heat transfer.

Fig. 13 Average Nusselt number for isothermal boundary condition.

parameter NuD/Re1/2
D Pr 1/3 for the two thermal boundary condi-

tions are shown in Fig. 12. Figure 12 shows that the heat transfer
rates are higher for the isoflux boundary condition. Heat transfer
rates, for both thermal boundary conditions, decrease first with the
blockage ratio and then become constant.

The average Nusselt numbers for the isothermal cylinder for a
given blockage ratio are compared in Fig. 13 with the experimental
results of Niggeschmidt27 (reported by Hausen28) and Hausen.28 The
average Nusselt number NuD values are found to be in a good agree-
ment with both results. However, both previous results are found to
be higher at high Reynolds number due to freestream turbulence.

Summary
The influence of blockage ratio on the fluid flow and heat trans-

fer from a circular cylinder, placed between two parallel planes,
has been investigated. The method of images is used to obtain the
velocity distribution outside the boundary layer. Three correlations
are obtained, Eq. (53) for total drag coefficient, Eq. (70) for heat
transfer from an isothermal cylinder, and Eq. (81) for heat trans-
fer from a cylinder under the isoflux boundary condition. These
correlations can be used to determine the drag coefficient and the
dimensionless heat transfer coefficient from a cylinder confined in
a channel with different blockage ratios. The present results indi-
cate good agreement with the experimental/numerical results for
a wide range of blockage ratio, Reynolds numbers, and Prandtl
numbers.
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verse Cylinders,” Wärme- und Stoffübertragung, Vol. 8, No. 3, 1975,
pp. 149–158.
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