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Thermal Contact Resistance of Nonconforming Rough Surfaces,
Part 2: Thermal Model

M. Bahrami,∗ J. R. Culham,† M. M. Yovanovich,‡ and G. E. Schneider§

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

A new analytical model is developed for thermal contact resistance (TCR) of nonconforming rough surfaces.
TCR is considered as the superposition of macro- and microthermal resistances. The effects of roughness, load, and
radius of curvature on TCR are investigated. It is shown that there is a value of surface roughness that minimizes
the TCR for a fixed load and geometry. Simple correlations for determining TCR, using relationships introduced
in Part 1 of this study, are derived that cover the entire range of TCR from conforming rough to smooth spherical
contacts. With introduction of an approximate model, it is shown that the effective microthermal resistance is
not a function of surface curvature and contact pressure profile. The comparison of the present model with 600
experimental data points shows good agreement in the entire range of TCR. A criterion for conforming contacts
is proposed that gives a range for the ratio of out-of-flatness to surface roughness.

Nomenclature
A = area, m2

a = radius of contact, m
a′

L = relative radius of macrocontact, aL/aH

b = flux tube radius, m
bL = specimen’s radius, mm
B = relative macrocontact radius, aL/bL

c1 = Vickers microhardness coefficient, GPa
c2 = Vickers microhardness coefficient
dv = Vickers indentation diagonal, µm
dr = increment in radial direction, m
E ′ = equivalent elastic modulus, GPa
F = external force, N
h = contact conductance, W/m2K
Hmic = microhardness, GPa
H ′ = c1(1.62σ ′/m)c2 , GPa
k = thermal conductivity, W/mK
m = mean absolute surface slope
ns = number of microcontacts
P = pressure, Pa
P ′

0 = relative maximum pressure, P0/P0,H

Q = heat flow rate, W
R = thermal resistance, K/W
r , z = cylindrical coordinates
s = 0.95/(1 + 0.071c2)
Y = mean surface plane separation, m
α = nondimensional parameter, σρ/a2

H
γ = general pressure distribution exponent
δ = maximum surface out-of-flatness, m
ε = flux tube relative radius, as/bs

ηs = microcontacts density, m−2
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κ = HB/HBG M

λ = nondimensional separation, Y/
√

(2)σ
ξ = nondimensional radial position, r/aL

ρ = radius of curvature, m
σ = rms surface roughness, µm
τ = nondimensional parameter, ρ/aH

ψ = spreading resistance factor

 = nondimensional parameter

Subscripts

a = apparent
B = Brinell
b = bulk
c = critical
H = Hertz
j = joint
L = macro
mac = macro
mic = micro
p = plastic deformation
r = real
s = micro, solid
v = Vickers
0 = value at origin
1, 2 = solid 1, 2

Introduction

H EAT transfer across interfaces formed by mechanical contact
of nonconforming rough solids occurs in a wide range of ap-

plications, such as microelectronics cooling, spacecraft structures,
satellite bolted joints, nuclear engineering, ball bearings, and heat
exchangers. Because of roughness of the contacting surfaces, real
contacts in the form of microcontacts occur only at the top of sur-
face asperities, which are a small portion of the nominal contact area,
normally less than a few percent. As a result of curvature or out-of-
flatness of the contacting bodies, a macrocontact area is formed, the
area where the microcontacts are distributed.

Thermal energy can be transferred between contacting bodies by
three different modes: 1) conduction, through the microcontacts,
2) conduction, through the interstitial fluid in the gap between the
solids, and 3) thermal radiation across the gap if the interstitial sub-
stance is transparent to radiation. According to Clausing and Chao1

radiation heat transfer across the interface remains small as long
as the body temperatures are not too high, that is, less than 700 K,
and in most typical applications can be neglected. In this study, the
surrounding environment is a vacuum; thus, the only remaining heat
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Fig. 1 Contact of two spherical rough surfaces in a vacuum.

Fig. 2 Thermal contact problem.

transfer mode is conduction at the microcontacts. As illustrated in
Fig. 1, heat flow is constrained to pass through the macrocontact and,
then, in turn through the microcontacts. This phenomenon leads to
a relatively high-temperature drop across the interface.

Two sets of resistances in series can be used to represent the
thermal contact resistance (TCR) for a joint in a vacuum: the large-
scale or macroscopic constriction resistance RL and the small-scale
or microscopic constriction resistance Rs (Refs. 1–3),

R j = Rs + RL (1)

Many theoretical models for determining TCR have been devel-
oped for two limiting cases: 1) conforming rough, where contacting
surfaces are assumed to be perfectly flat, and 2) elastoconstriction,
where the effect of roughness is neglected, that is, contact of two
smooth spherical surfaces. These two limiting cases are simplified
cases of real contacts because engineering surfaces have both out-
of-flatness and roughness simultaneously. As shown in Fig. 2, TCR
problems basically consist of three separate problems: 1) geometri-

cal, 2) mechanical, and 3) thermal; each subproblem also includes a
micro- and macroscale component. The heart of TCR is the mechan-
ical analysis. A mechanical model was developed and presented in
Part 1 of this study.4 The mechanical analysis determines the macro-
contact radius and the effective pressure distribution for the large-
scale contact problem, and the microcontact analysis gives the local
separation between the mean planes of the contacting bodies, the
local mean size and the number of microcontacts. The results of the
mechanical analysis are used in the thermal analysis to calculate the
microscopic and macroscopic thermal constriction resistances.

Few analytical models for contact of two nonconforming rough
surfaces exist in the literature. Bahrami et al.5 reviewed existing
analytical nonconforming rough TCR models and showed through
comparison with experimental data that none of the existing models
cover the two mentioned limiting cases and the transition region
in which both roughness and out-of-flatness are present and their
effects on TCR are of the same importance.

Theoretical Background
Thermal spreading resistance is defined as the difference between

the average temperature of the contact area and the average temper-
ature of the heat sink/source, which is located far from the contact
area, divided by the total heat flow rate Q (Ref. 6), R = �T/Q.
Thermal conductance is defined in the same manner as the film
coefficient in convective heat transfer, h = Q/(�T Aa).

Considering the curvature or out-of-flatness of contacting sur-
faces in a comprehensive manner is very complex because of its
random nature. Certain simplifications must be introduced to de-
scribe the macroscopic topography of surfaces using a few pa-
rameters. Theoretical approaches by Clausing and Chao,1 Mikic
and Rohsenow,3 Yovanovich,2 Nishino et al.,7 and Lambert and
Fletcher8 assumed that a spherical profile might approximate the
shape of the macroscopic nonuniformity. According to Lambert,9

this assumption is justifiable because nominally flat engineering
surfaces are often spherical, or crowned (convex) with a monotonic
curvature in at least one direction. The approximate relationship be-
tween the radius of curvature and the maximum out-of-flatness, for
relatively large radii of curvature (approaching flat), is10

ρ = b2
L

/
2δ (2)

where δ is the maximum out-of-flatness of the surface.
As discussed by Bahrami et al.,4 the contact between two

Gaussian rough surfaces can be approximated by the contact be-
tween a single Gaussian surface, having the effective surface char-
acteristics, placed in contact with a perfectly smooth surface. The
contact of two spheres can be replaced by a flat in contact with
a sphere incorporating an effective radius of curvature,11 effective
surface roughness, and surface slope as given by

σ =
√

σ 2
1 + σ 2

2 , m =
√

m2
1 + m2

2

1/ρ = 1/ρ1 + 1/ρ2 (3)

Figure 3 summarizes the geometrical procedure, which has been
widely used for modeling the actual contact between nonconforming
rough bodies.

When two nonconforming random rough surfaces are placed
in mechanical contact, many microcontacts are formed within the
macrocontact area. Microcontacts are small and located far from
each other. Thermal contact models are constructed based on the
premise that inside the macrocontact area a number of parallel
cylindrical heat channels exist. The real shapes of microcontacts
can be a wide variety of singly connected areas depending on the
local profile of the contacting asperities. Yovanovich et al.12 studied
the steady-state thermal constriction resistance of singly connected
planar contacts of arbitrary shape. By using an integral formulation
and a seminumerical integration process applicable to any shape,
they proposed a definition for thermal constriction resistance based
on the square root of the contact area. A nondimensional con-
striction resistance based on the square root of area was proposed,
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a) Contact of nonconforming
rough surfaces

b) Contact of two rough spher-
ical segments

c) Rough sphere–flat contact, ef-
fective radius of curvature

d) Equivalent sphere–flat contact
effective radius and roughness

Fig. 3 Geometrical modeling.

Fig. 4 Two flux tubes
in series contact.

which varied by less than 5% for all shapes considered. Yovanovich
et al.12 concluded that the real shape of the contact was a second-
order effect, and an equivalent circular contact, where surface area
is preserved, can be used to represent the contact.

As the basic element for macro- and microthermal analysis, ther-
mal constriction of the flux tube was employed by many researchers.
Figure 4 shows two flux tubes in a series contact. A flux tube con-
sists of a circular heat sink or source, which is in perfect thermal
contact with a long tube. Heat enters the tube from the source and
leaves the tube at the other end. Cooper et al.13 proposed a simple,
accurate correlation for calculating the thermal spreading resistance
of the isothermal flux tube,

Rflux tube 1 + Rflux tube 2 = ψ(ε)/2ksa = (1 − ε)1.5
/

2ksa (4)

where ε = a/b, ks = 2k1k2/(k1 + k2), and ψ(·) is the spreading re-
sistance factor. (See Bahrami et al.5 for more detail.) In Eq. (4), it is
assumed that the radii of two contacting bodies are the same, that is,
b1 = b2 = b. For the general case where b1 �= b2, thermal spreading
resistance will be Rflux tube = ψ(a/b)/4ka.

Figure 5 shows the thermal resistance network for nonconforming
rough contacts. The total or joint resistance can be written as

R j = RL ,1 + Rs,1 + Rs,2 + RL ,2 (5)

where
(

1

Rs

)

1,2

=
( ns∑

i = 1

1

Rs,i

)

1,2

(6)

where ns and Rs,i are the number of microcontacts and the resistance
of each microcontact, respectively. Subscripts 1 and 2 signify bodies
1 and 2.

Present Model
In addition to the geometrical and mechanical assumptions, which

were discussed in Part 1 of this study,4 the remaining assumptions
of the present model are as follows:

Fig. 5 Thermal resistance network for nonconforming rough contacts
in a vacuum.

Fig. 6 Geometry of
contact.

Fig. 7 Microcontacts distribution in contact area and thermal resis-
tance network for a surface element.

1) Contacting solids are isotropic and thick relative to the rough-
ness.

2) Radiation heat transfer is negligible.
3) Microcontacts are circular, and there is steady-state heat trans-

fer at microcontacts.
4) Microcontacts are isothermal. Cooper et al.13 proved that all

microcontacts must be at the same temperature provided the con-
ductivity in each body is independent of direction, position, and
temperature.

5) Surfaces are clean, and the contact is static.
Figure 6 shows the geometry of the contact with equivalent radius

of curvature and roughness, where aL is the radius of the macrocon-
tact area and bL is the radius of the contacting bodies.

The flux tube solution is employed to determine the macrocontact
thermal resistance, that is,

RL = (1 − aL/bL)1.5

2ksaL
(7)

Separation between the mean planes of contacting bodies and pres-
sure distribution are not uniform in the contact area; consequently,
the number and the average size of microcontacts decrease as the
radial position r increases. Figure 7 shows the modeled geome-
try of the microcontact distribution (macrocontact area the circle
with radius aL ) is divided into surface elements, where dashed rings
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Fig. 8 Thermal resis-
tance network for surface
elements.

have increment dr . Figure 7 shows the mean average size of mi-
crocontacts as small filled circles. Around each microcontact, a
dashed circle illustrates the flux tube associated with the micro-
contact. Whereas microcontacts can vary in both size and shape, a
circular contact of equivalent area can be used to approximate the
actual microcontacts because the local separation is uniform in each
surface element.

Local spreading resistance for microcontacts can be calculated
by applying the flux tube expression

Rs(r) = ψ[ε(r)]

2ksas(r)
(8)

where ε(r) = as(r)/bs(r) is the local microcontacts relative radius
and as(r) and ψ(·) are the local mean average microcontact radius
and the spreading resistance factor given by Eq. (4).

The microcontacts local density and relative radius can be calcu-
lated from4

ε(r) =
√

Ar (r)/Aa(r) =
√

1
2 erfc λ(r) (9)

ns(r) = 1
16 (m/σ)2{exp[−2λ2(r)]/erfc λ(r)}Aa (10)

where λ(r) = Y (r)/
√

(2)σ , Ar , and Aa are nondimensional separa-
tion and the real and the apparent contact area, respectively.

The thermal resistance network for a surface element dr is shown
in Fig. 7. In each element ns(r) microcontacts exist that provide
identical parallel paths for transferring thermal energy. Therefore,
microcontact thermal resistance for a surface element d Rs(r) is

d Rs(r) = Rs(r)/ns(r) (11)

As shown in Fig. 8, surface elements form another set of paral-
lel paths for transferring thermal energy in the macrocontact area.
Therefore, the effective microthermal resistance for the joint is

Rs = 1
/∑

1/d Rs(r) (12)

The joint resistance is the sum of the macro- and microthermal
resistances, that is, Eq. (1).

Results
As explained in Part 1,4 a simulation routine was developed to

calculate the thermal joint resistance. As an example, contact of a
25-mm sphere with a flat was considered and solved with the routine.
The contacting bodies are stainless steel and have a 1.41-µm equiva-
lent roughness. Table 1 lists the contact parameters. The mechanical
results were presented in Part 1,4 and Figs. 9 and 10 present thermal
outputs. As expected, the thermal resistance of the microcontacts
(resistance of the local mean microcontact) increases as r increases.
The microcontact relative radius ε has its maximum value at the cen-
ter of the contact and decreases with increasing radial position r .

To investigate the effect of input parameters on thermal joint
resistance R j and its components, that is, the macro RL and the
micro Rs thermal resistances, the simulation routine was run for a
range of each input parameter, while the remaining parameters in
Table 1 were held constant. Additionally, elastoconstriction thermal
resistance introduced by Yovanovich,14 indicated by RH , was also
included in the study. Elastoconstriction is a limiting case in which
the surfaces are assumed to be perfectly smooth, that is, aL = aH

and Rs = 0.

Table 1 Input parameters for
a typical contact problem

Parameters Value

ρ 25 mm
σ 1.41 µm
m 0.107
bL 25 mm
F 50 N
E ′ 112.1 GPa
c1/c2 6.27 GPa/−0.15
ks 16 W/mK

Fig. 9 Microthermal contact resistance.

Fig. 10 Microcontact relative radius.

The effect of roughness on macro-, micro-, and joint resistances
are shown in Fig. 11. Recall that the joint resistance is the sum-
mation of the macro- and microcontact resistances. With relatively
small roughness, the macrothermal resistance dominates the joint
resistance and the microthermal resistance is negligible; also the
joint resistance is close to the elastoconstriction thermal resistance.
By increasing roughness, aL becomes larger; thus, the macrother-
mal resistance decreases and the microthermal resistance increases,
and at some point they become comparable in size. An additional
increase in the surface roughness leads to a situation where the mi-
crothermal resistance controls the joint resistance. It also can be seen
from Fig. 11 that for a fixed geometry and load, there is a roughness
that minimizes the thermal joint resistance.

The effect of load on micro-, macro-, and joint thermal resistances
is shown in Fig. 12. At light loads, because of the small number and
size of the microcontacts, the microthermal resistance dominates.
As the load increases, the joint resistance decreases continuously,
micro- and macrothermal resistances become comparable in size,
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Fig. 11 Effect of roughness on TCR.

Fig. 12 Effect of load on TCR.

Fig. 13 Effect of radius of curvature on TCR.

and, at larger loads, the macrothermal resistance becomes the con-
trolling part. At higher loads, the joint resistance approaches the
elastoconstriction resistance as if no roughness exists.

Figure 13 shows the effect of radius of curvature. At very small
radii, the macrothermal resistance dominates due to the small size
of macrocontacts. As the radius of curvature increases, approach-
ing the flat surface, the microthermal resistance becomes more
important, and the macro resistance becomes smaller. Eventually
when aL = bL , the macroresistance falls to zero. Note that the mi-
crothermal resistance does not change as the surface curvature ρ

varies over a wide range. This is a very important trend and will be
discussed later.

Alternative Approach
The goal of this study is to develop simple correlations for deter-

mining TCR. In this section, a general expression for the microther-
mal spreading resistance is derived, which, in conjunction with the
macrothermal resistance, Eq. (7), gives a correlation to calculate the
thermal joint resistance in a vacuum environment.

The amount of heat transferred in a nonconforming rough contact
is

Q =
∑

dQ =
∫

contact plane

∫
dQ (13)

where dQ is the heat transferred in a surface element. The local
thermal joint conductance is a function of r

Q =
∫

contact plane

∫
hs(r)�Ts dAa (14)

where dAa and �Ts = constant are the area of a surface element and
the temperature drop, respectively. Because the macrocontact area
is approximated as a circle,

Q = 2π�Ts

∫ aL

0

hs(r)r dr (15)

The effective thermal microconductance for a joint can be defined as
hs = Q/Aa�Ts . Therefore, the effective microcontact conductance
can be found from

hs = 2π

Aa

∫ aL

0

hs(r)r dr (16)

or in terms of thermal resistance, where R = 1/(h Aa),

Rs = 1

2π

[∫ aL

0

hs(r)r dr

]−1

(17)

Yovanovich15 proposed an accurate expression for determining the
thermal conductance of conforming rough contacts,

hs = 1.25ks(m/σ)(P/Hmic)
0.95 (18)

where Hmic is the microhardness of the softer material in contact.
When Eqs. (17) and (18) are combined, a relationship between ther-
mal microresistance and pressure distribution can be found,

Rs = σ

2.5πmks

{∫ aL

0

[
P(r)

Hmic(r)

]0.95

r dr

}−1

(19)

Microhardness depends on several parameters: mean surface rough-
ness σ , mean absolute slope of asperities m, type of material, method
of surface preparation, and applied pressure. According to Hegazy,16

surface microhardness can be introduced into the calculation of rel-
ative contact pressure in the form of the Vickers microhardness,

Hv = c1(d
′
v)

c2 (20)

where Hv is the Vickers microhardness in gigapascal, d ′
v = dv/d0,

where d0 = 1 µm, and c1 and c2 are correlation coefficients de-
termined from Vickers microhardness measurements. Song and
Yovanovich17 developed an explicit expression relating microhard-
ness to the applied pressure

P/Hmic = (P/H ′)1/1 + 0.071c2 (21)

where H ′ = c1(1.62σ ′/m)c2 , σ ′ = σ/σ0, and σ0 = 1 µm.
Sridhar and Yovanovich18 developed empirical relations to esti-

mate the Vickers microhardness coefficients, using the bulk hard-
ness of the material. Two least-square-cubic fit expressions were
reported:

c1 = HBG M (4.0 − 5.77κ + 4.0κ2 − 0.61κ3) (22)

c2 = −0.57 + (1/1.22)κ − (1/2.42)κ2 + (1/16.58)κ3 (23)
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where κ = HB/HBG M , HB is the Brinell hardness of the bulk mate-
rial, and HBG M = 3.178 GPa. The preceding correlations are valid
for the range 1.3 ≤ HB ≤ 7.6 GPa with the rms percent difference
between data and calculated values reported to be 5.3 and 20.8%
for c1 and c2, respectively. However, in situations where an effec-
tive value for microhardness Hmic,e is known, the microhardness
coefficients can be calculated from c1 = Hmic,e and c2 = 0.

Combining Eqs. (19) and (21) gives

Rs = σ H ′s

2.5πksm

{∫ aL

0

[P(r)]sr dr

}−1

(24)

where s = 0.95/(1 + 0.071c2). A general pressure distribution was
proposed in Part 1 of this study,4 which covers the entire spherical
rough contacts including flat contacts,

P(ξ) =






F
/

πb2
L Fc = 0

P0(1 − ξ 2)γ F ≤ Fc

P0,c(1 − ξ 2)γc + (F − Fc)
/

πb2
L F ≥ Fc (25)

where ξ = r/aL and γ = 1.5(P0/P0,H )(aL/aH )2 − 1. Fc is the crit-
ical force where aL = bL , and it is given by

Fc = (4E ′/3ρ)
[

max
{

0,
(
b2

L − 2.25σρ
)}] 3

2 (26)

where max {x, y} returns the maximum value between x and y.
Substituting the pressure distribution for F ≤ Fc into Eq. (24), we
obtain

Rs = σ(H ′/P0)
s

2.5πmksa2
L

[∫ 1

0

(1 − ξ 2)sγ ξ dξ

]−1

(27)

After evaluating and simplifying the integral, we obtain

Rs = σ(1 + sγ )

1.25πmksa2
L

(
H ′

P0

)s

(28)

For F ≥ Fc, the effective microcontact thermal resistance, following
the same method, becomes

Rs = σ

1.25πmksb2
L

[(
H ′

P0,c

)s

(1 + sγc) +
(

π H ′b2
L

F − Fc

)s]
(29)

where P0,c and γc are the values at the critical force. The general
relationship for microthermal resistance can be summarized as

R∗
s =






(
π H ′b2

L

/
F
)s

Fc = 0

(bL/aL)2(H ′/P0)
s(1 + sγ ) F ≤ Fc

(H ′/P0,c)
s(1 + sγc) + [

π H ′b2
L

/
(F − Fc)

]s
F ≥ Fc

(30)

where R∗
s = 1.25πb2

L ks(m/σ)Rs .
Equation (30) can be simplified by introducing an approximation.

Because the Vickers coefficient c2 is negative and in the range of
−0.35 ≤ c2 ≤ 0, the parameter s = 0.95/(1 + 0.071c2) is close to
one, that is, 0.95 ≤ s ≤ 0.97 and can be approximated as s = 1. When
this simplification, is introduced, the microthermal resistance Rs ,
that is, Eq. (24) simplifies to

Rs = σ H ′

2.5πksm

[∫ aL

0

P(r)r dr

]−1

(31)

From a force balance, one can write

F = 2π

∫ aL

0

P(r)r dr

and Eq. (31) becomes

Rs = (H ′/1.57ks F)(σ/m) (32)

Fig. 14 Comparison between approximate and full model, conforming
rough contacts.

where the leading constant in Eq. (18) has been changed from 1.25
to 1.57 to compensate for introducing the approximation, where the
exponent s is set one. The approximate model, Eq. (32), is compared
with the full model for conforming rough contacts, [the first of
Eqs. (30)] in Fig. 14, where an average value of s = 0.96 was chosen.
It can be seen that the approximate model shows good agreement
with the full model in the range of 2 × 10−4 ≤ P/H ′ ≤ 5 × 10−2,
which includes a wide range of loading, that is, moderate and high
loads. The difference between the approximate and the full model
increases in light loads, P/H ′ < 10−4.

Equation (32) is general and applicable to all contact geometries,
that is, conforming and non-conforming rough contacts. With use
of the approximate model, the microthermal resistance Rs becomes
simpler to apply. In addition, the approximate effective microther-
mal resistance is independent of the surface curvature. This trend
can also be observed in Fig. 13, where it should be noted that the
full model (computer program) with no simplifications was used to
construct the plot. Also from the approximate relationship, it can
be concluded that the profile of the pressure distribution does not
effect the effective microthermal resistance.

Superimposing Eqs. (7) and (32), the joint resistance, using the
approximate Rs , is found:

R j = H ′

1.57ks F

(
σ

m

)
+ (1 − aL/bL)1.5

2ksaL
(33)

From Eq. (33) one can conclude that 1) the effective microthermal
resistance, except for the thermal conductivity, is only a function of
the contact microscale characteristics, that is, surface roughness σ ,
slope m, microhardness H ′, and load F , and 2) on the other hand,
the macrothermal resistance is a function of the macroscale contact
parameters, the macrocontact radius aL , and size of the contact-
ing bodies bL . These conclusions are in agreement with the TCR
analysis in Fig. 2. From Part 1 of this study,4 we know that the
macrocontact radius is a function of the effective elasticity modulus
E ′, radius of curvature ρ, surface roughness σ , and the load F .

The applied load and the surface roughness appear to play impor-
tant roles in both macro- and microthermal resistances. The effect
of surface roughness on the macroresistance is limited to the macro-
contact radius aL . The applied load is the connecting bridge between
the macro- and micromechanical analyses because the force balance
must be satisfied in both analyses.

Comparison with Experimental Data
During the last four decades, a large number of experimental data

have been collected for a wide variety of materials such as brass,
magnesium, nickel 200, silver, and stainless steel (SS) in a vacuum.
About 600 data points were collected from an extensive review of
the literature and summarized and compared with the present model.
As summarized in Table 2, the experimental data form a complete
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set of the materials with a wide range of mechanical, thermal, and
surfaces characteristics used in applications where TCR is of con-
cern. The data also include the contact between dissimilar metals
such as Ni200–Ag and SS–carbon steel (CS).

Generally, TCR experimental procedures include two cylindri-
cal specimens of the same diameter bL , which are pressed coaxi-
ally together by applying an external load in a vacuum chamber.
After reaching steady-state conditions, TCR is measured at each
load. These experiments have been conducted by many researchers
such as Burde19 and Clausing and Chao.1 Table 3 indicates the
researchers, reference publications, specimen designation, and the
material type used in the experiments (Refs. 1, 3, 16, and 19–24).

Table 2 Range of parameters
for the experimental data

Parameter Range

bL , mm 7.15–14.28
P/H ′ 5.4 × 10−6–0.02
E ′, GPa 25.64–114.0
F , N 7.72–16,763.9
ks , W/mK 16.6–227.2
m 0.04–0.34
σ , µm 0.12–13.94
ρ, m 0.013–120

Table 3 Reseacher and specimen materials
used in comparisons

Ref. Researcher Material

A Antonetti23 Ni200
Ni200–Ag

B Burde19 SPS 245, CS
CC Clausing–Chao1 Al2024 T4

Brass Anaconda
Mg AZ 31B

SS303
F Fisher20 Ni 200–CS
H Hegazy16 Ni200

SS304
Zircaloy4

Zr-2.5%wt Nb
K Kitscha21 Steel 1020–CS
MM McMillan–Mikic24 SS303
MR Mikic–Rohsenow3 SS305
M Milanez et al.22 SS304

Table 4 Geometrical, mechanical, and thermophysical properties, rough sphere–flat contacts

Ref. E ′, GPa σ , µm/m ρ, m c1, GPa/c2 ks , W/mk bL , mm

B,A-1 114.0 0.63/0.04 0.013 3.9/0 40.7 7.2
B,A-2 114.0 1.31/0.07 0.014 3.9/0 40.7 7.2
B,A-3 114.0 2.44/0.22 0.014 3.9/0 40.7 7.2
B,A-4 114.0 2.56/0.08 0.019 4.4/0 40.7 7.2
B,A-5 114.0 2.59/0.10 0.025 4.4/0 40.7 7.2
B,A-6 114.0 2.58/0.10 0.038 4.4/0 40.7 7.2
CC,1A 38.66 0.42/- 14.0 1.6/−0.04 141 12.7
CC,8A 38.66 2.26/- 14.7 1.6/−0.04 141 12.7
CC,1B 49.62 0.47/- 3.87 3.0/−0.17 125 12.7
CC,2B 49.62 0.51/- 4.07 3.0/−0.17 125 12.7
CC,3B 49.62 0.51/- 3.34 3.0/−0.17 102 12.7
CC,4B 49.62 0.51/- 4.07 3.0/−0.17 125 12.7
CC,3S 113.7 0.11/- 21.2 4.6/−0.13 17.8 12.7
F,11A 113.1 0.12/- 0.019 4.0/0 57.9 12.5
F,11B 113.1 0.12/- 0.038 4.0/0 57.9 12.5
F,13A 113.1 0.06/- 0.038 4.0/0 58.1 12.5
K,T1 113.8 0.76/- 0.014 4.0/0 51.4 12.7
K,T2 113.8 0.13/- 0.014 4.0/0 51.4 12.7
MM,T1 113.7 2.7/0.06 0.128 4.0/0 17.3 12.7
MM,T2 113.7 1.75/0.07 2.44 4.0/0 22 12.7
MR,T1 107.1 4.83/- 21.2 4.2/0 19.9 12.7
MR,T2 107.1 3.87/- 39.7 4.2/0 19.9 12.7

The comparison includes all three regions of TCR, that is,
the conforming rough, the elastoconstriction, and the transition.
Tables 4 and 5 list the experiment number, that is, the number
that was originally assigned to a particular experimental data set
by the researchers, and geometrical, mechanical, and thermal prop-
erties of the experimental data, as reported. Clausing and Chao,1

Fisher,20 Kitscha,21 and Mikic and Rohsenow3 did not report the
surface slope m; the Lambert and Fletcher8 correlation was used
to estimate these values (see Part 14). Additionally, the exact val-
ues of radii of curvature for conforming rough surfaces were not
reported. Because these surfaces were prepared to be optically flat,
radii of curvature in the order of ρ ≈ 100 m are considered for these
surfaces.

Figure 15 shows the comparison between the present model and
the experimental data, with Eqs. (7) and (20), where

R∗
j = ksbL R j


 = (1 − B)1.5

2B

+






(σ/m)

1.25πbL

(
H ′

P

)s

Fc = 0

(σ/m)(1 + sγ )

1.25πbL B2

(
H ′

P0

)s

F ≤ Fc

(σ/m)

1.25πbL

{(
H ′

P0,c

)s

(1 + sγc) +
(

π H ′b2
L

(F − Fc)

)s}
F ≥ Fc

(34)

where B = aL/bL ≤ 1 and P0 = P0,H /(1 + 1.37ατ−0.075) is the
maximum contact pressure. The parameter 
 is the nondimen-
sional TCR predicted by the (full) model, that is, 
 = R∗

s + R∗
j

or R∗
j = 
. Therefore, the model is shown by a 45-deg line

in Fig. 15. The macrocontact radius aL can be determined
from4

aL = aH

(
1.80

√
α + 0.31τ 0.056

/
τ 0.028

)
(35)

Using Eq. (35), a relationship for B can be found as a function of
nondimensional and geometrical parameters,

B = aL/bL = max
{

1, 1.80(aH /bL)
(√

α + 0.31τ 0.056
/

τ 0.028
)}

(36)
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Table 5 Geometrical, mechanical, and thermophysical properties for conforming rough contacts

Ref. E ′, GPa σ , µm m c1, GPa c2 ks , W/mk bL , mm

A,P3435 112.1 8.48 0.34 6.3 −0.26 67.1 14.3
A,P2627 112.1 1.23 0.14 6.3 −0.26 64.5 14.3
A,P1011 112.1 4.27 0.24 6.3 −0.26 67.7 14.3
A,P0809 112.1 4.29 0.24 6.3 −0.26 67.2 14.3
A,P1617 63.9 4.46 0.25 0.39 0 100 14.3
A,P3233 63.9 8.03 0.35 0.39 0 100 14.3
H,NI12 112.1 3.43 0.11 6.3 −0.26 75.3 12.5
H,NI34 112.1 4.24 0.19 6.3 −0.26 76.0 12.5
H,NI56 112.1 9.53 0.19 6.3 −0.26 75.9 12.5
H,NI78 112.1 13.9 0.23 6.3 −0.26 75.7 12.5
H,NI910 112.1 0.48 0.23 6.3 −0.26 75.8 12.5
H,SS12 112.1 2.71 0.07 6.3 −0.23 19.2 12.5
H,SS34 112.1 5.88 0.12 6.3 −0.23 19.1 12.5
H,SS56 112.1 10.9 0.15 6.3 −0.23 18.9 12.5
H,SS78 112.1 0.61 0.19 6.3 −0.23 18.9 12.5
H,Z412 57.3 2.75 0.05 3.3 −0.15 16.6 12.5
H,Z434 57.3 3.14 0.15 3.3 −0.15 17.5 12.5
H,Z456 57.3 7.92 0.13 3.3 −0.15 18.6 12.5
H,Z478 57.3 0.92 0.21 3.3 −0.15 18.6 12.5
H,ZN12 57.3 2.50 0.08 5.9 −0.27 21.3 12.5
H,ZN34 57.3 5.99 0.16 5.9 −0.27 21.2 12.5
H,ZN56 57.3 5.99 0.18 5.9 −0.27 21.2 12.5
H,ZN78 57.3 8.81 0.20 5.9 −0.27 21.2 12.5
M,SS1 113.8 0.72 0.04 6.3 −0.23 18.8 12.5

Fig. 15 Comparison of present model with experimental data.

Experimental data are distributed over four decades of 
 from ap-
proximately 0.03 up to 70. The model shows good agreement with
data over the entire range of comparison with the exception of a few
points. The approximate model [Eq. (33)] was also compared with
experimental data using the same method and showed good agree-
ment; because the plots are almost identical, a direct comparison of
the approximate model with data is not presented.

In most of the conforming rough data sets, such as that of
Hegazy,16 experimental data show a lower resistance at relatively
light loads in comparison with the model, and the data approach
the model as the load increases. This trend can be observed in al-
most all conforming rough data sets (Fig. 15). This phenomenon,
which is called the truncation effect,22 is important at light loads
when surfaces are relatively rough. A possible reason for this be-
havior is the Gaussian assumption of the surface asperities, which

implies that asperities with infinite heights exist. Milanez et al.22

experimentally studied the truncation effect and proposed corre-
lations for maximum asperities heights as functions of surface
roughness.

If the external load increases beyond the elastic limit of the con-
tacting bodies, elastoplastic and plastic deformations occur. The
plastic macrocontact radius aP is larger than the elastic radius aL ,
that is aP > aL . Consequently, lower TCR will be measured; this
trend can be clearly seen in the Fisher20 data sets F,11A,Ni–CS
(Fig. 15).

The accuracy of experimental data were reported by Antonetti,23

Fisher,20 and Hegazy16 to be 8.1, 5, and 7%, respectively. Unfor-
tunately, the uncertainty of other researchers’ data is not available.
Because of the mentioned approximations to account for unreported
data, the accuracy of the full model is difficult to assess. However,
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the rms and the average absolute difference between the model and
data are approximately 13.6 and 9.3%, respectively. The rms and
the average absolute difference between the approximate model and
data are approximately 14.8 and 10.9%, respectively, as a result of
choosing the constant in Eq. (32) to be 1.57.

Criterion for Conforming Contacts
A criterion for determining a flat surface was derived in Part 1

of this study,4 implying that when the effect of surface curvature on
contact pressure distribution is negligible the surface is ideally flat.
It was shown that if the surface roughness and curvature are in the
same order of magnitude, that is, δ/σ ∼ 1 with no load applied, the
macrocontact reaches the edge of the contacting bodies and aL = bL .

From the TCR point of view, the conforming or flat contact
can be defined as a contact in which the macrothermal resistance
RL is negligible. As already discussed, surface curvature has no
effect on the microthermal resistance (the approximate model).
Thus, the effect of surface curvature is limited to the macrothermal
resistance RL .

The macrothermal resistance is determined from Eq. (7), which
can be rewritten in the nondimensional form as

R∗
L = ks RL bL = (1 − B)1.5/2B (37)

where B = aL/bL ≤ 1. As shown in Fig. 16, the macrothermal re-
sistance is zero at B = 1, that is, aL = bL (perfectly flat contacts);
as B decreases from 1 to 0.8, the macrothermal resistance increases
from 0 to 0.05. This increase is relatively small and considered neg-
ligible. Therefore, it is reasonable to set the flat contact criterion to
B = 0.8, where the macro thermal resistance is almost negligible.
Note that for 0.8 ≤ B ≤ 1 (large radii of curvature) the microthermal
resistance controls the joint resistance (Fig. 13).

A correlation for determining the macrocontact radius aL was
proposed in Part 1 of this study4 for surfaces with relatively large
radii of curvature, aL = 1.5aH

√
(α + 0.45). Using this relationship,

one can write B = 0.8 = 1.5(aH /bL)
√

(α + 0.45). Substituting the
nondimensional parameter, α = σρ/a2

H and Eq. (2), we obtain

σ/δ = 2
[
0.28 − 0.45(aH /bL)2

]
(38)

As can be seen from Eq. (38), the relative out-of-flatness is a function
of aH /bL , which contains the applied load, the elastic properties,
and the geometry of the contacting bodies. As shown in Part 1,4 an
increase in surface roughness results in an increase in the macro-
contact radius. When B = aL/bL = 0.8 is set, depending on the level
of surface roughness, a range for aH /bL can be estimated, approxi-
mately 0.7 ≤ aL/aH ≤ 0.96, which results in 0.56 ≤ aH /bL ≤ 0.77.
This range means that the increase in the macrocontact radius (com-
pared to the smooth Hertzian radius) is within a 5–30% increase. It is
a reasonable estimate, when it is noted that we are investigating the

Fig. 16 Macrothermal resistance.

contact of surfaces with relatively large radii of curvature under light
loads. When Eq. (38) and the mentioned range for aH /bL are com-
bined, a range for δ/σ can be found for flat contacts, approximately
3 ≤ δ/σ ≤ 30 from very rough to very smooth surfaces, respectively.

Conclusions
TCR of nonconforming rough surfaces was considered as the

superposition of macro- and microthermal resistance components
accounting for the effects of surface curvature and roughness, re-
spectively. TCR problems were categorized into three main regions:
1) the conforming rough limit, where the contacting surfaces are
flat and the effect of surface curvature can be ignored, and thus,
the microthermal resistance dominates the joint resistance; 2) the
elastoconstriction limit, in which the radii of the contacting bodies
are relatively small and the effect of roughness on the TCR is neg-
ligible and the macro resistance is the controlling part; and 3) the
transition region, where the macro- and microthermal resistances
are comparable.

The results of the mechanical model presented by Bahrami
et al.,4 that is, the local mean separation, the local mean radius,
and the number of microcontacts, were used to develop an analyt-
ical thermal model for determining TCR of nonconforming rough
contacts in a vacuum. The thermal model was constructed based on
the premise that the mean separation between the contacting sur-
faces in an infinitesimal surface element can be assumed constant.
Therefore, the conforming rough model of Cooper et al.13 could be
implemented to calculate the surface element thermal resistance.
The surface element thermal resistances were integrated over the
macrocontact area to calculate the effective microthermal resistance
of the contact. The macrocontact resistance was calculated using the
flux tube solution.

The effects of the major contact parameters, that is, roughness,
load, and radius of curvature, on TCR were investigated. It was
shown that there is a value of surface roughness that minimizes
TCR. Additionally, at large loads the effect of roughness on the
TCR becomes negligible.

Through the use of the general pressure distribution introduced
by Bahrami et al.4 and the Yovanovich15 correlation for thermal
conductance of conforming rough contacts, simple correlations for
determining TCR were derived that cover the entire range of TCR
from conforming rough to smooth spherical contacts. The input
parameters to utilize the proposed correlations are load F , effec-
tive elasticity modulus E ′, Vickers microhardness correlation coef-
ficients c1 and c2, effective surface roughness σ and surface slope m,
effective surface out-of-flatness δ or radius of curvature ρ, radius
of the contacting surfaces bL , and harmonic mean of the thermal
conductivities ks .

By the introduction of an approximate model for the microther-
mal resistance, it was shown that the microthermal resistance Rs is
independent of the surface curvature and the profile of the contact
pressure. Additionally, the micro- and the macrothermal resistances
are functions of the micro- and macroscale contact parameters, re-
spectively. The applied load appears directly in both resistances; the
surface roughness influences the macrothermal resistance implicitly
through the macrocontact radius.

The present model was compared with more than 600 experimen-
tal data points and showed good agreement over the entire range
of TCR. The rms difference between the model and the data was
estimated to be approximately 13.6%. The list of materials in the
comparison formed a complete set of the metals used in applications
where TCR is of concern. It was also shown that the present model
is applicable to dissimilar metals.

A criterion for specifying the conforming rough contact was de-
veloped. A contact is conforming where the equivalent surface out-
of-flatness is approximately between 3 and 30 times the equivalent
surface roughness for very rough to very smooth surfaces, respec-
tively.
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