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Abstract

An analytical model is developed for natural convection in the two-dimensional region formed by an isothermal,
heated horizontal cylinder concentrically located in a larger, cooled horizontal cylinder. The model is comprised of
a combination of three asymptotic solutions, the diffusive limit, the laminar boundary layer limit, and the transition
flow limit, and is applicable to a wide range of aspect ratios and inner and outer boundary shapes. Validation of the
model is performed using numerical and experimental data from the literature for the circular annulus and a number of
other geometries. The model and data are in good agreement, with an average RMS difference of 6% for the circular
annulus and less than 9% for the other geometries.

Nomenclature

A cross section area; (m2)
d diameter; (m)
F(Pr) Prandtl number function
g gravitational acceleration; (m/s2)
GL body gravity function
k thermal conductivity; (W/mK)
ke f f effective thermal conductivity; (W/mK)
L general characteristic length; (m)
m mass; (kg)
n combination parameter
NuL Nusselt number, ≡ QL/ (kPi∆T )
P perimeter; (m)
Pr Prandtl number, ≡ ν/α
Q heat transfer rate per unit length; (W/m)
RaL Rayleigh number, ≡ gβ∆T L 3/ (να)
S�
L dimensionless conduction shape factor

t time; (s)
T temperature; (oC)
Tb bulk fluid temperature; (oC)
u velocity; (m/s)

Greek Symbols
α thermal diffusivity; (m2/s)
β thermal expansion coefficient; (1/K)
δ gap spacing; (m)
ν kinematic viscosity; (m2/s)
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Subscripts
bl boundary layer
tr transition
e effective
i inner boundary
o outer boundary

Introduction

Natural convection heat transfer in a horizontal two-
dimensional annular region with uniform temperature
boundary conditions on the inner and outer surfaces has
been studied extensively by a number of researchers.
These publications provide experimental and numerical
CFD data for a wide range of different geometries, in
particular the limiting case of the concentric circular an-
nulus. The formulation of an analytical model to predict
the total heat transfer rate through these annular geome-
tries is of interest for a variety of industrial applications,
including nuclear reactor design, energy conversion and
storage and solar energy. The availability of easy-to-use,
analytically based models that are applicable to a wide
range of annulus geometries will provide the means to
quickly and accurately predict operating temperature and
heat transfer prior to more costly and time consuming
CFD analysis or prototype testing.

The problem of interest in the current study involves
natural convection in the two dimensional system con-
sisting of an isothermal, heated, horizontal cylinder con-
centrically located in a larger isothermal, cooled, hori-
zontal cylinder, for a variety of cylinder shapes. The lim-
iting case of the horizontal circular annulus is shown in
Fig. 1. Since the inner and outer boundaries are heated
uniformly and do not intersect, heat transfer in the annu-
lus occurs between the inner and outer boundaries only.
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Fig. 1 Schematic of Horizontal Circular Annulus

The most widely studied horizontal annulus geome-
try in the literature is the concentric circular cylinders,
with over 20 publications currently available that con-
tain experimental and numerical data for the average
heat transfer through the enclosed region. These in-
clude the experimental studies of Beckmann1, Voigt and
Krischer2, Kraussold3, Liu et al.4, Grigull and Hauf5,
Lis6, Koshmarov and Ivanov7, Kuehn and Goldstein8,9

and Collins et al.10. Numerical data for the con-
centric circular annulus are reported by Crawford and
Lemlich11, Abbott12, Projahn et al.13, Farouk and
Guceri14, Cho et al.15, Prusa and Yao16, Mahony et al.17,
Date18, Rao et al.19 and Yoo20. Teertstra et al.21 present a
comprehensive review of all experimental and numerical
data, along with a comparison of available correlations
and analytical models.

A number of studies for the horizontal annulus with
different inner and outer boundary shapes are presented
in the literature. Those that include average heat transfer,
as summarized in Table 1, include the concentric ellipti-
cal cylinders of Lee and Lee22, the square and hexag-
onal cylinders in a circular cylinder of Chang et al.23

and Glakpe and Asfaw24, the square and rhombic cylin-
ders of Oosthuizen and Paul25, Moukalled et al.26 and
Moukalled and Acharya27, and the circle in a square
cylinder of Moukalled and Acharya27.

A variety of methods for predicting total heat trans-
fer rate in horizontal annuli are currently available in
the literature, ranging from correlations of experimental
or numerical data to analytically-based modeling tech-
niques. Many of the experimental and numerical stud-
ies include empirically-based correlations of the aver-
age heat transfer data; however, these correlations are
limited to narrow application ranges and are developed
for specific geometries, making them unsuitable for the
general case. Raithby and Hollands28 and Kuehn and
Goldstein29 present models applicable to the limiting
case of the horizontal circular annulus only. Boyd30

presents an empirical model for annuli with arbitrarily
shaped boundaries; however, the complex formulation of
this model requires that the boundary shape be clearly

Table 1 Review of horizontal annulus studies and data

Geometry
Authors /

Range of Independent Parameters

Lee & Lee22

Po/Pi = 1.32
7×102 ≤ Raδ ≤ 104

Chang et al.23

1.96≤ Po/Pi ≤ 3.93
4×103 ≤ RaPi ≤ 3.2×106

Oosthuizen & Paul25

6 ≤ Po/Pi ≤ 20
300≤ RaPi ≤ 2.2×104

Glakpe & Asfaw24

Po/Pi = 2.09
100 < Raδ < 105

Moukalled et al.26

1.25≤ Po/Pi ≤ 1.875
2.4×104 ≤ RaPi ≤ 8.1×108

Moukalled & Acharya27

1.5≤ Po/Pi ≤ 1.75
0 < RaPi ≤ 6.6×109

Moukalled & Acharya27

2.12≤ Po/Pi ≤ 6.37
0 < RaPi ≤ 6.7×107

defined, making it difficult to use for all but the simplest
geometries. No models are currently available that pre-
dict average heat transfer rate in the annulus formed be-
tween differentially shaped isothermal cylinders for the
full range of relative boundary size and Rayleigh num-
ber.

The objective of the current study is to develop an
analytical modeling technique to predict the total heat
transfer rate in the 2D annular region formed between
isothermal convex inner and concave outer boundaries
having similar or different shapes. The model will be
comprised of a combination of three asymptotic solu-
tions, the diffusive limit, the laminar boundary layer flow
limit and the low Rayleigh number transition flow limit,
and will be developed using physically based analysis
techniques without empirically derived correlation coef-
ficients. It will be applicable to the full range of Rayleigh
number, from the conduction limit to the laminar bound-
ary layer convection limit, and will be valid for a wide
range of aspect ratios, including the limiting case of the
external convection solution, Po/Pi → ∞.

2

American Institute of Aeronautics and Astronautics



AIAA-2005-0959

log(Ra)

lo
g(

N
u)

TransitionConductive
Limit

Convective
Limit

Fig. 2 Schematic of trends of total heat transfer rate

Model Development

The parameter of interest in this research study is the
total heat transfer rate (per unit length), Q, through the
enclosure from the inner to outer boundaries. This total
heat transfer rate is non-dimensionalized by the Nusselt
number, defined using the overall temperature difference,
Ti−To, and a arbitrary scale length, L :

NuL =
Q L

kPi (Ti −To)
(1)

where Pi is the perimeter of the inner boundary. The
Rayleigh number is defined using the same overall tem-
perature difference and length scale:

RaL =
gβ (Ti−To) L3

να
(2)

where all properties are evaluated at the bulk fluid
temperature, Tb. For three-dimensional body shapes,
Yovanovich31 recommends that the square root of the ac-
tive surface area be used as the characteristic length. Us-
ing

√
A minimizes the differences in Nusselt number be-

tween bodies have similar shape and aspect ratio, which
allows complex geometries to be approximated by sim-
ple, more easily characterized body shapes. The two-
dimensional analog, the perimeter of the inner body, Pi,
is selected as the characteristic length for the horizontal
annulus problem.

The modeling procedure for natural convection heat
transfer in the horizontal annulus is based on an analyti-
cal model developed by Teertstra32 for three-dimensional
enclosures. The basis of the model is described in Fig. 2,
where the general behavior of the dimensionless heat
transfer rate, Nu, as a function of Rayleigh number is
shown. Three distinct regions can be identified based
on critical values of the Rayleigh number: the diffusive
limit, Ra � Racr , where heat transfer is dominated by
conduction, independent of Rayleigh number and equiv-
alent to the dimensionless conduction shape factor,

RaPi

N
u c
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Fig. 3 Convection-only data8,9

NuL = S�
L ; the convective limit, Ra � Racr , where heat

transfer is dominated by convection at the inner and outer
boundaries; and the transition region, typically spanning
one to two decades of Ra, where values of Nu move
smoothly between the limiting cases.

For natural convection from an isothermal, convex
body in an infinite, quiescent region, Yovanovich31 rec-
ommends an analytic model based on the linear superpo-
sition of the diffusive limit, corresponding to pure con-
duction, with a convective asymptote. Teertstra32 shows
that this behavior also holds for natural convection in a
three dimensional region formed between a heated body
and a cooled enclosure. The validity of the linear super-
position assumption for the annulus problem is demon-
strated by examining the convection-only data of Kuehn
and Goldstein8,9 determined by:

Nuconv = NuPi −S�
Pi

(3)

These convection-only data are presented in Fig. 3,
where it can be seen that two clearly defined asymp-
totic solutions exist for the convective portion of the heat
transfer. For high values of Rayleigh number, the domi-
nant mode of heat transfer is boundary layer convection,

as indicated by the asymptotic relationship Nu ∝ Ra 1/4
Pi

on Fig. 3. As the Rayleigh number decreases, the data
approaches a second asymptote, where Nu∝RaPi . These
two asymptotes for the convective portion of the heat
transfer are combined using the composite solution tech-
nique of Churchill and Usagi33

NuPi = S�
Pi

+
(
Nu −n

tr +Nu −n
bl

)−1/n (4)

where Nutr and Nubl are the asymptotic solutions corre-
sponding to transition flow and laminar boundary layer
flow, respectively. The following sections will describe
the development of each of the three components of the
model for the horizontal annulus.
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Conduction Shape Factor
Correlations and models for the dimensionless conduc-
tion shape factor, S�

Pi
, for a variety of annulus geometries

are available in conduction texts34 and handbooks35. The
use of numerical simulations to provide conduction re-
sults is another alternative to determine the conduction
shape factor. An alternate approach to approximate the
conduction shape factor is based on a two rule method in-
volving the equivalent concentric circular annulus. The
dimensionless conduction shape factor for the concentric
circles is34

S�
Pi

=
2π

ln(do/di)
(5)

The diameter of the equivalent inner circle is determined
by preserving the inner boundary perimeter, such that
di = Pi/π, while the outer circle diameter is based on
preserving the area between the boundaries, A

A =
π
4

(
d 2

o −d 2
i

)

do =

√
4A
π

+
P 2

i

π2 (6)

Substituting into Eq. (5) gives an approximate model for
the dimensionless conduction shape factor for the gen-
eral annulus as a function of the inner perimeter and cross
sectional area

S�
Pi

=
2π

ln
√

4π
(
A/P2

i

)
+1

(7)

Laminar Boundary Layer Convection
For high Rayleigh number, the heat transfer in the annu-
lus is dominated by laminar boundary layer convection,
and a model to predict this asymptote is developed based
on the following assumptions; that the boundary layers
are sufficiently thin such that they do not intersect, and
that the fluid in the core region is stationary and at a uni-
form, bulk temperature, Tb. From these assumptions the
convection in the annulus can be treated as a series com-
bination of film resistances at the inner and outer bound-
aries, Ri and Ro, respectively

R = Ri +Ro (8)

Relating this total resistance to the Nusselt number gives

Nubl =
1

k (Ri +Ro)
=

1
kRi (1+Ro/Ri)

(9)

Based on the definition of film resistance, a new quantity,
the dimensionless bulk temperature, φ, can be defined

Ri =
Ti−Tb

Q
, Ro =

Tb−To

Q
,

Ri

Ro
=

Ti −Tb

Tb−To
= φ (10)

Substituting φ and Nui = 1/ (kRi) into Eq. (9) gives

Nubl =
Nui

1+1/φ
(11)

The natural convection at the inner and outer boundaries,
Nui and Nuo, are modeled based on the method presented
by Yovanovich31 and Jafarpur36 for convex isothermal
bodies. Converting the scale length of the expression
presented by these authors in terms of the perimeter P
gives

NuP = F (Pr) GP Ra 1/4
P (12)

where the Prandtl number function is defined as37

F (Pr) =
0.67[

1+(0.5/Pr)9/16
]4/9

(13)

The body gravity function GP is determined based on the
general expression of Lee et al.38 modified for two di-
mensional geometries

GP =

[
24/3

P

∫ P/2

0
sin1/3 φdP

]3/4

(14)

where φ is the angle between the gravity vector and a

vector normal to the surface and
∫ P/2
0 represents integra-

tion over half of the perimeter from the lower to upper
stagnation points (assumes symmetry about the vertical
axis.) Applied to the inner boundary, the model yields

Nui = F (Pr) GPi Ra 1/4
i (15)

Rai =
gβ (Ti −Tb)P 3

i

να

= RaPi ·
(

Ti −Tb

Ti −To

)
=

RaPi

(1+1/φ)

Substituting this relationship for Nu i into Eq. (9) gives

Nubl =
F (Pr) GPi Ra 1/4

Pi

(1+1/φ)5/4
(16)

The dimensionless bulk temperature φ is determined
based on a ratio of the film resistances at the inner and
outer boundaries

φ =
Ri

Ro
=

Nuo

Nui
=
(

GPo

GPi

) (
Tb−To

Ti −Tb

)1/4(Po

Pi

)3/4

=
(

GPo

GPi

)(
Po

Pi

)3/4 1

φ1/4
(17)

Solving for φ and substituting into Eq. (16) gives the final
expression for the laminar boundary layer convection
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Fig. 4 Transition flow in horizontal circular annulus

asymptote for the horizontal annulus

Nubl =
F(Pr) GPi Ra 1/4

Pi[
1+
(

GPi

GPo

)4/5( Pi

Po

)3/5
]5/4

(18)

For the limiting case of the circular annulus where GP =
1.028, the ratio of the body gravity functions reduces to
zero and the model expression simplifies to

Nubl =
(1.028)F(Pr) Ra 1/4

Pi[
1+
(

di

do

)3/5
]5/4

(19)

Transition Flow Convection
The third asymptotic component in the horizontal annu-
lus model occurs in the transition between the conduction
and laminar boundary layer convection limits. As the
Rayleigh number decreases, the boundary layers on the
inner and outer surfaces of the annulus grow and eventu-
ally merge. For values of Ra near or less than this critical
value, three distinct regions form within the annulus, as
shown in Fig. 4 for the example of the circular annulus;
the top and bottom-end regions and the central region.
The heat transfer in the central region is dominated by
conduction in the radial direction, and the energy equa-
tion expressed in polar coordinates39 for this geometry
reduces to

1
r

d
dr

(
r
dT
dr

)
= 0 (20)

The radial temperature distribution tends to induce a
small, buoyancy-driven flow in the annulus, upwards
with respect to the gravity vector in the inner half of the
central region and downwards in the outer half. Assum-
ing steady state, constant properties, and no radial veloc-
ity component, the momentum equation39 for flow tan-
gential to the boundary in the circular annulus simplifies
to the following

d
dr

(
1
r

d
dr

(r u)
)

= gβ (T −Tb) (21)

At the limit of narrow gap spacing with respect to the in-
ner and outer boundaries, δ << di , do, the annulus is
modeled based on the equivalent problem of flow be-
tween vertical, parallel plates, as shown in Fig. 5. The
energy and momentum equations are transformed as fol-
lows

1
r

d
dr

(
r
dT
dr

)
→ d2T

dy2 = 0 (22)

d
dr

(
1
r

d
dr

(r u)
)
→ d2u

dy2 = geβ (T −Tb) (23)

Solving these coupled equations as presented by
Rohsenow and Choi40 gives an expression for the veloc-
ity distribution across in the central region

u =
geβ
12ν

(Ti−To)
(
δe

2

)2
[(

y
δe/2

)3

−
(

y
δe/2

)]
(24)

where ge and δe represent effective values from the
equivalent circular annulus. As a result of the buoyancy-
induced flow in the central region, natural convection
heat transfer occurs in the top and bottom-end regions

Fig. 5 Schematic of vertical cavity problem
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of the vertical cavity, as described by Batchelor41 and
Eckert and Carlson42. As shown in Fig. 5, an enthalpy
balance can be performed on each end region, relating
the conduction heat transfer, Qi and Qo, with the heat
transferred by advection to and from the central region,
Qout and Qin. The net enthalpy flux into and out of the
central region is determined based on an integration of
the temperature and velocity profiles: for the inner half
of the cavity:

Q =
∫ 0

δ/2
ρdpu (T −To) dy (25)

where the temperature rise is defined with respect to the
outer wall temperature, To. Applying this methodology
to the control volume formed at the bottom of the cavity,
the enthalpy flux into and out of bottom-end region can
be determined

Qout =
23
120

ρcp geβ (Ti−To)2 δ3
e

96ν
(26)

Qin =
7

120
ρcp geβ (Ti−To)

2 δ3
e

96ν
(27)

For the bottom end region, it is assumed that the bound-
ary layer on the inner, heated surface is much thinner
than that on the outer, cooled surface, such that Qi >>
Qo. Therefore, applying an energy balance gives the net
heat transfer into the bottom-end region

Qi = Qout −Qin =
ρcp geβ (Ti−To)2 δ3

e

720ν
(28)

Repeating the analysis for the top-end region yields the
same result, leading to the conclusion that the total heat
transfer rate due to convection for the transition flow
asymptote is equivalent to Qi from Eq. (28). Non-
dimensionalizing Qi using a Nusselt number based on
the general scale length L gives:

NuL =
QL

kL′ (Ti−To)
=

1
720

L
L′

ge

g
Raδe

(29)

The effective length of the vertical cavity, L′, is modeled
based on the arithmetic average of the inner and outer
perimeters, and the effective gravitational coefficient, ge,
is calculated from an area-weighted integration over a
cylindrical surface at the midpoint of the enclosed region

ge =
1
A

∫ ∫
A
g sinθ dA =

π
4

g (30)

Substituting these relationships and L = Pi into Eq. (29)
and simplifying yields the final expression for the transi-
tion flow asymptote for the horizontal annulus

Nutr =
1

90π
(δe/Pi)3

(1+Po/Pi)
RaPi (31)

The effective gap spacing, δe, is modeled using the same
equivalent circular annulus used in the conduction anal-
ysis. From Eq. (6) the effective gap spacing for any an-
nular region can be approximated as a function of the
perimeter of the inner boundary, Pi, and the enclosed
area, A

δe

Pi
=

1
2π

[√
4πA

P 2
i

+1−1

]
(32)

In the case of the circular annulus, where the gap spacing
reduces to δ= (do−di)/2, the transition flow asymptote
simplifies to the following

Nutr =
1

720π4

(do/di−1)3

(1+do/di)
RaPi (33)

Model Validation

The model for natural convection in the horizontal
annulus is validated using experimental and numerical
average heat transfer data for ten different geometries
from the literature, having both similar and different in-
ner and outer boundary shapes. In Figs. 6 - 8, the simpli-
fied model for the circular annulus is compared with data
from a number of previous studies, includingRao et al.19,
Yoo20, Kuehn and Goldstein8,9, Farouk and Guceri14,
Prusa and Yao16 and Mahony et al.17. Substituting the
simplified expressions for the diffusive, laminar bound-
ary layer and transition flow limits into the general ex-
pression, Eq. (4), and simplifying yields

NuPi =
2π

ln

(
do

di

) +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

(1.028) F(Pr)Ra 1/4
Pi(

1+
(

di

do

)3/5
)5/4

⎤
⎥⎥⎥⎥⎥⎦

−2

+

⎡
⎢⎢⎢⎣ 1

720π4

(
do

di
−1

)3

(
1+

do

di

) RaPi

⎤
⎥⎥⎥⎦
−2
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−1/2

(34)

where the value of the combination parameter n = 2 is se-
lected that provides the best fit of the available data. The
model is compared with data for four different diameter
ratios: do/di = 1.175 and 1.2 in Fig. 6, do/di = 2.6 in
Fig. 7 and do/di = 5 in Fig. 8. In each case the model is
in good agreement with the data, with an average RMS
difference of 6%, and all trends in the data are clearly re-
flected by the model, such as the critical Rayleigh num-
ber and the onset of transition and boundary layer con-
vection.
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Fig. 6 Model validation: circular annulus,
do/di = 1.175, 1.2
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Fig. 7 Model validation: circular annulus,
do/di = 2.6
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Fig. 8 Model validation: circular annulus,
do/di = 5
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Fig. 9 Model validation: concentric elliptic cylinders

Figure 9 compares the model with numerical data
of Lee and Lee22 for the horizontally and vertically-
oriented concentric elliptic cylinders, as shown in the
schematic in Table 1. Average heat transfer rate is re-
ported by these authors in terms of an effective conduc-
tivity, ke f f , defined as the apparent value of the thermal
conductivity required for pure conduction to equal nat-
ural convection. The effective conductivity, normalized
using the thermal conductivity, k, is related to the Nusselt
number and conduction shape factor by:

ke f f

k
=

NuPi

S�
Pi

(35)

When dimensionless effective conductivity is used to
quantify the average heat transfer rate, the results for all
geometries approach a common asymptote, ke f f /k → 1
at the diffusive limit.

The results of the comparison of the model with nu-
merical data of Lee and Lee22, expressed in terms of
ke f f/k, as well as the semi-major and semi-minor axes
dimensions, a and b, are presented in Fig. 9. The model
predictions are determined based on the enclosed area,
A, the inner and outer perimeters, Pi and Po, and body
gravity functions for the inner and outer boundaries, G i

and Go, and the equations derived in the previous sec-
tions. A combination parameter value of n = 1 was se-
lected in this case, which provided a much better fit of
the data than n = 2. Figure 9 shows the good agreement
between the model and the data, and also demonstrates
that there are no significant differences in the results due
to orientation, as expected for the conduction-dominated
conditions.

The model is also compared with data for the an-
nulus formed between a square inner and circular outer
cylinder of Chang et al.23 in Fig. 10, where results for
two different sizes of inner cylinder, corresponding to
Po/Pi = 3.93 and 1.96, and two different orientations, de-
noted square and diamond as shown in Table 1, are
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Fig. 10 Model validation: square and diamond in circle
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Fig. 12 Model validation: circle in square

reported. Once again, a combination parameter value of
n = 1 was used in Eq. (4) and the model and data are
in good agreement, with an RMS difference of less than
6%.

Figure 11 compares data of Glakpe and Asfaw24 for
a hexagonal shaped cylinder concentrically located in a

circular cylinder, as shown Table 1, with the model us-
ing n = 1 for Eq. (4). Using ke f f /k as the independent
variable, the model and the data are seen to be in close
agreement.

Finally, numerical data for circular cylinders inside
a square cylinder of Moukalled and Acharya27 are com-
pared with the model. Three different inner cylinder di-
ameters are examined, resulting in perimeter ratio values
of Po/Pi = 6.37, 3.18 and 2.12, and the RMS difference
between the data and the model is 9%.

Summary

An analytical model has been developed that predicts
total heat transfer rate due to natural convection in the
2D, annular region formed between isothermal inner
and outer boundaries having similar or different shapes.
The model is based on a combination of asymptotic ex-
pressions for three limiting cases, the diffusive limit,
the laminar boundary layer limit and the transition flow
limit. The model is applicable to a wide range of annu-
lus geometries, and a simplified expression is presented
for the limiting case of the concentric circular annulus.
Agreement between the model and existing numerical
and experimental data from the literature is quite good,
with an average RMS difference of approximately 6 -
9% for all cases examined in this work.
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drischen Gasschichten bei Natürlicher Konvektion,”
Forschung auf dem Gebiete des Ingenieurwesens, Vol. 2,
1931, pp. 165 - 178.

2Voigt, H. and Krischer, D., “Die Wärmeübertragung
in Zylindrischen Luftschichten bei Natürlicher Konvek-
tion,” Forschung auf dem Gebiete des Ingenieurwesens,
Vol. 2, 1932, pp. 303 - 306.
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