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Analytical Modeling of Natural Convection in Concentric
Spherical Enclosures

P. Teertstra,∗ M. M. Yovanovich,† and J. R. Culham‡

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

A modeling procedure is developed for natural convection heat transfer from an isothermal heated sphere located
at the center of an isothermal, cooled, spherical-shaped enclosure. The model is based on the linear superposition
of conduction and convection solutions, where the convective component is determined based on a combination
of two limiting cases, laminar boundary-layer convection and transition flow convection. Validation of the model
is performed using experimental and numerical data from the literature. The model and data are shown to be in
good agreeement, with an rms difference of 2–4%.

Nomenclature
A = area, m2

C, C̄cs = coefficients
d = diameter, m
F(Pr) = Prandtl number function
GL = body gravity function
g = gravitational acceleration, m/s2

k = thermal conductivity, W/mK
ke = effective thermal conductivity, ≡ k NuL/S�

L, W/mK
L = general characteristic length, m
NuL = Nusselt number, ≡ QL/(k Ai�T )
n = combination parameter
Pr = Prandtl number, ≡ ν/α
Q = total heat-transfer rate, W
R = thermal resistance, ≡ (Ti − To)/Q, ◦C/W
RaL = Rayleigh number, ≡ gβ(Ti − To)L3/(να)
r = radius, m
S = conduction shape factor, m
S�
L = dimensionless shape factor, ≡ SL/Ai

T = temperature, ◦C
Tb = bulk fluid temperature, ◦C
α = thermal diffusivity, m2/s
β = thermal expansion coefficient, 1/K
δ = gap spacing, ≡ (do − di )/2, m
ν = kinematic viscosity, m2/s
φ = dimensionless bulk temperature
ψ = spherical tangential coordinate

Subscripts

b = bulk fluid
bl = boundary-layer flow
conv = convection
i = inner body
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LB = lower bound
o = outer body
tr = transition flow
UB = upper bound

Introduction

N ATURAL convection in enclosures has been widely stud-
ied both experimentally and analytically by a number of

researchers for applications spanning a variety of disciplines, in-
cluding nuclear reactor design, energy transmission and storage,
solar energy, and microelectronics systems. Of particular interest
to the designers of electronic equipment for outdoor or harsh en-
vironments, including avionics systems, is natural convection in
the enclosure formed between a heated body and its surrounding
cooled enclosure. The formulation of easy-to-use design tools for
the thermal analysis of these equipment provides a mechanism for
quickly and accurately predicting operating temperatures and per-
forming tradeoff and parametric studies, prior to more costly and
time-consuming computational-fluid-dynamics analysis or proto-
type testing.

The problem of interest in the current study involves natural con-
vection between an isothermal heated sphere of diameter di located
at the center of an isothermal, cooled spherical enclosure of diam-
eter do, as shown in Fig. 1. This type of enclosure is characterized
by a fluid region that has clearly defined, nonintersecting inner and
outer boundaries, such that heat transfer occurs between the inner
and outer boundaries only. Although not indicative of the more com-
plex geometries found in typical electronics enclosures, the models
developed for the concentric spheres will form the basis for future
models of more complex enclosure configurations.

Experimental and numerical data for natural convection heat
transfer in the concentric spheres have been presented by a num-
ber of researchers over the past 40 years. Bishop et al.,1,2 Mack and
Hardee,3 Scanlan et al.,4 and Weber et al.5 present experimental data
for the concentric spherical enclosure, focusing on the high Rayleigh
number, laminar boundary-layer flow regime. Most of the remaining
studies involve numerical simulations of the spherical enclosure, in-
cluding Mack and Hardee,3 Astill et al.,6 Caltagirone et al.,7 Singh
and Chen,8 Ingham,9 Wright and Douglass,10 Fujii et al.,11 Garg,12

Chu and Lee,13 and Chiu and Chen.14 Teertstra et al.15 present exper-
imental data for four different concentric spheres, do/di = 1.5, 2, 3,
and 4.8, measured in a reduced pressure environment, where the re-
sulting change in density leads to a variation in the Rayleigh number
of up to five decades from atmospheric conditions. These data will
be used to identify trends in the physical behavior of the system, as
well as for validation of the completed modeling algorithms.

The parameter of interest in this research study is the total heat-
transfer rate Q through the enclosure from the inner to outer bound-
aries, determined from the temperature gradient in the fluid layer
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Fig. 1 Schematic of con-
centric spherical enclosure.

Fig. 2 Schematic of total heat-transfer rate solution trends.

adjacent to the inner body surface:

Q =
∫

Ai

∫
−k

∂T

∂r

∣∣∣∣
r = ri

d Ai (1)

The total heat-transfer rate is nondimensionalized by the Nusselt
number defined using the overall temperature difference (Ti − To)
and an arbitrary scale length L:

NuL = QL
k Ai (Ti − To)

(2)

The Rayleigh number is defined using the same overall temperature
difference and length scale:

RaL = gβ(Ti − To)L3

να
(3)

where all fluid properties are evaluated at the bulk temperature Tb.
The numerical data of Astill et al.6 for concentric spheres is used

to describe the characteristics of the average heat-transfer rate as
a function of Rayleigh number. These authors present critical val-
ues for the Rayleigh number Racr, where the dominant mode of
heat transfer changes from conduction to convection. Three dis-
tinct regions are identified by Astill et al.,6 as shown in Fig. 2:
1) the conduction, or diffusive limit, Ra � Racr, where heat trans-
fer is dominated by conduction, independent of Rayleigh number
and equivalent to the dimensionless conduction shape factor, that is,
NuL = S�

L; 2) the convective limit, Ra � Racr, where heat transfer
is dominated by convection at the inner and outer boundaries; and
3) the transition region where values of Nu move smoothly be-
tween the limiting cases, typically spanning one to two decades of
Ra depending on geometry.

The effective conductivity ke is an alternate parameter used to
quantify the average heat-transfer rate in many studies. It is defined
as the apparent value of thermal conductivity required for pure con-
duction through the enclosed region to be equal to convection. Pre-
vious researchers typically present results in terms of dimensionless
effective conductivity ke/k, where k is the actual thermal conduc-
tivity of the fluid. The dimensionless effective thermal conductivity
is related to the Nusselt number and conduction shape factor S�

L by

ke/k = NuL
/

S�
L, ke/k ≥ 1 (4)

When dimensionless effective conductivity is used, all results ap-
proach a common asymptote ke/k → 1 for the conductivity asymp-
tote Ra < Racr.

Correlations of the experimental and numerical data presented in
the literature by Bishop et al.,2 Scanlan et al.,4 Weber et al.,5 Astill
et al.,6 and Wright and Douglass10 are valid over a limited range of
Rayleigh number, typically corresponding to boundary-layer con-
vection. The only model in the literature for the concentric spheres
that is valid for the full range of Rayleigh numbers is presented
by Raithby and Hollands16 in terms of the dimensionless effective
conductivity:

ke

k
= C̄cs

δ
1
4

di do

Ra
1
4
δ

d
− 7

5
i + d

− 7
5

o

, δ = do − di

2
(5)

where the coefficient C̄cs is a combination of the Prandtl number
function and an empirically derived coefficient C .

C̄cs = C · 0.56

(
Pr

0.846 + Pr

) 1
4

(6)

Based on the measurements of Bishop et al.2 and Scanlan et al.4 for
do/di = 2, Raithby and Hollands16 select a value for the coefficient
C = 1.32 that provides good agreement between the model and the
data. The model is recommended for use when ke/k > 1; for all
other cases where values of ke/k are calculated that are less than
one, the conduction limit ke/k = 1 is used.

Comparison of the Raithby and Hollands16 model for the
do/di = 2 concentric spheres with the available numerical data for
the transition region reveals that the model underpredicts the data
by approximately 10% over the full range to the conduction limit.
In the case of larger diameter ratios, such as the do/di = 4.8 experi-
mental data of Teertstra et al.,15 the underprediction of the Raithby
and Hollands16 model reached 25% near the transition region.

The cause of these differences between the data and the Raithby
and Hollands16 can be traced back to the original two-term anal-
ysis of the heat transfer in the enclosure; one term that describes
boundary-layer convection at the limit of large Rayleigh number
and the other term corresponding to the conduction shape factor
solution. Using a piecewise function to combine these expressions
results in a model that “switches” from convection to conduction
at Racr, thereby neglecting the enhancement caused by combined
conduction and convection in the transition region.

The goal of the current study is the development of an analytically
based modeling procedure for natural convection in the concentric
spherical enclosure that is valid over the full range of Rayleigh
number, from the conduction limit to the laminar boundary-layer
convection limit. The model will be applicable for a wide range
of aspect ratios, including the limiting case of the external convec-
tion solution do/di → ∞ and will not rely on empirically derived
correlation coefficients.

Model Development
The previous models of Raithby and Hollands16 and Kuehn and

Goldstein17 for the two-dimensional circular annulus are based on
a combination of two terms: one to quantify heat transfer caused
by convection and a second for the conduction limit. These terms
can be combined using either the Churchill and Usagi18 composite
technique, such as Kuehn and Goldstein,17 or in a piecewise fash-
ion, as in Raithby and Hollands.16 This two-term approach assumes
that heat transfer in the enclosure occurs by one of two mecha-
nisms: conduction through the gap or convection through boundary
layers on the inner and outer surfaces. When laminar boundary-
layer convection is the dominant heat-transfer mode, it is assumed
that no interaction occurs between the inner and outer boundary
layers. As the Rayleigh number decreases and the boundary layers
approach each other, the two-term model assumes a direct transition
to conduction-dominated heat transfer occurs.
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Fig. 3 Convection-only reduced experimental data15: concentric
spheres, do/di = 2.

The experimental data of Teertstra et al.15 are used to demonstrate
that a two-term model is inadequate to describe the heat-transfer pro-
cess in the enclosure. For natural convection from a heated body in
a full-space domain, Yovanovich19 recommends linear superposi-
tion of the convective asymptote with the diffusive limit. Assuming
this relationship holds for the enclosure, it is possible to predict the
portion of the heat transfer caused by convection from experimental
data Nu√

Ai using the following relationship:

Nuconv = Nu√
Ai

− S�√
Ai

(7)

where the conduction shape factor S�√
Ai

is available from the exact
solution for conduction in the spherical shell. Convection-only data
Nuconv computed by Eq. (7) are presented in Fig. 3 for do/di = 2.

Figure 3 clearly demonstrates that, once the conduction portion
of the heat transfer has been reduced from the data, the relation-
ship between Nuconv and Ra√

Ai approaches a second asymptotic
solution when Ra√

Ai < 3 × 105. This indicates that an additional
term should be incorporated in the existing models to account for
changes that occur in the transition region, where boundary layers
merge, a velocity distribution is established in the core region, and a
transition flow pattern emerges. The general form of this three-term
model is

Nu√
Ai

= S�√
Ai

+ (
Nu−n

tr + Nu−n
bl

)−1/n
(8)

where the asymptotic solutions for transition flow Nutr and
boundary-layer flow Nubl are combined using the Churchill and
Usagi18 composite technique. The combination parameter n will
be selected based on a comparison with the available experimental
data.

The square root of the inner body surface area
√

Ai has been
selected as the characteristic length for the dimensionless quanti-
ties based on two criteria. First, for large-aspect-ratio enclosures
do/di → ∞, heat transfer is controlled by convection at the inner
boundary; therefore, the scale length should be related to inner di-
mensions only and be independent of the outer boundary geometry.
Second, Yovanovich19 and Jafarpur20 have shown that, when

√
Ai

is used, complex geometries can be successfully modeled using
equivalent bodies of similar aspect ratio that are more easily char-
acterized. In the following sections component models for each of
the asymptotes in Eq. (8) will be developed.

Conduction Shape Factor
The thermal resistance for the concentric spherical shell is deter-

mined from a simple conduction analysis in spherical coordinates21:

R = (1/2πk)(1/di − 1/do) (9)

Incorporating the gap thickness δ by substituting do = di + 2δ gives

R = δ/πkdi (di + 2δ) (10)

The equivalent dimensionless conduction shape factor is determined
by

S�√
Ai

= 1
/

k
√

Ai R = √
πdi

/
δ + 2

√
π (11)

Equation (11) represents a linear combination of two limiting cases:
for small gap spacing δ � di , the first term is dominant, correspond-
ing to one-dimensional; planar resistance; as the gap spacing be-
comes large, S�√

Ai
tends to the constant value of a sphere in a full

space region 2
√

π .

Laminar Boundary-Layer Convection
At the limit of large Rayleigh number, assuming the fluid in the

core region is of uniform temperature and that the gap spacing δ is
large compared to the boundary-layer thickness, the convective heat
transfer through the enclosure can be modeled as a series combina-
tion of two thermal resistances:

Rconv = Ri + Ro (12)

where Ri and Ro refer to thermal resistance caused by convection
at the inner and outer boundaries, respectively. This total resistance
is expressed as a Nusselt number:

Nubl = (
1
/

k
√

Ai

)
[1/(Ri + Ro)]

= (
1
/

k
√

Ai

)
(1/Ri )[1/(1 + Ro/Ri )] (13)

From the definitions of the thermal resistances, the ratio Ro/Ri in
Eq. (13) is recast in terms of dimensionless bulk temperature φ:

Ri = (Ti − Tb)/Q, Ro = (Tb − To)/Q

Ri/Ro = (Ti − Tb)/(Tb − To) = φ (14)

Substituting φ and Nui = 1/(k
√

Ai Ri ) into Eq. (13) gives

Nubl = Nui/(1 + 1/φ) (15)

The convective component at the inner body Nui is modeled using
the method presented by Yovanovich19 and Jafarpur20 for natural
convection from isothermal, arbitrarily shaped bodies:

Nu√
A = F(Pr)G√

A Ra
1
4√

A
(16)

where the Prandtl number function F(Pr) valid for all isothermal
body shapes is presented by Churchill and Churchill22:

F(Pr) = 0.67

[1 + (0.5/Pr)9/16]
4
9

(17)

and the body gravity function G√
A is presented by Lee et al.23:

G√
A =

[
1

A

∫
A

∫ (
P sin θ√

A

) 1
3

dA

] 3
4

(18)

For the inner body, the convection model is

Nui = F(Pr)G√
A Ra

1
4

i (19)

Rai = gβ(Ti − Tb)
(√

Ai

)3

να

= Ra√
Ai

(
Ti − Tb

Ti − To

)
= Ra√

Ai

1

[(Ti − Tb)/(Ti − Tb) + (Tb − To)/(Ti − Tb)]

= Ra√
Ai

1

1 + 1/φ
(20)



300 TEERTSTRA, YOVANOVICH, AND CULHAM

Substituting Eqs. (19) and (20) into Eq. (15) and simplifying yields

Nubl =
F(Pr)G√

A Ra
1
4√

Ai

(1 + 1/φ)
5
4

(21)

Evaluating the dimensionless bulk temperature using the natural
convection modeling procedure from Eq. (16) provides the follow-
ing relationship between φ and the enclosure geometry:

φ = Ri

Ro
=

√
Ao Nuo√
Ai Nui

=
√

Ao√
Ai

G√
Ao

G√
Ai

(Tb − To)
1
4

(Ti − Tb)
1
4

(√
Ao

) 3
4(√

Ai

) 3
4

=
(

Ao

Ai

) 7
4 G√

Ao

G√
Ai

1

φ
1
4

(22)

Solving Eq. (22) for φ and substituting into Eq. (21) results in the
general model for the boundary-layer flow convective asymptote:

Nubl =
F(Pr)G√

Ai
Ra

1
4√

Ai[
1 + (Ai/Ao)7/10

(
G√

Ai

/
G√

Ao

) 4
5
] 5

4

(23)

For the particular problem of the concentric spherical enclosure,
Ai = πd2

i , and Ao = πd2
o , and the body gravity functions evaluate

to

G√
Ao

= G√
Ai

= 1.014 (24)

The general expression for the laminar boundary-layer asymptote
can be simplified as follows:

Nubl =
F(Pr)(1.014)Ra

1
4√

Ai[
1 + (di/do)

7
5
] 5

4

(25)

All thermofluid properties are evaluated at the bulk fluid tempera-
ture, determined by rearranging Eq. (22) in terms of Tb:

Tb = Ti + To(do/di )
7
5

1 + (do/di )
7
5

(26)

Transition Flow Convection
The third and final asymptote corresponds to convective heat

transfer that occurs in the transition between the conduction and
laminar boundary-layer convection limits. As the Rayleigh number
decreases, the boundary layers on the inner and outer surfaces of
the enclosure grow and eventually merge along the midplane when
Ra < Racr. For Rayleigh number at or below this critical value, the
enclosed region can be divided into three regions as shown in Fig. 4:
the top-end and bottom-end regions (adjacent to the axis of sym-
metry) and the central region. The energy equation in spherical co-
ordinates, assuming steady-state, constant properties, axisymmetric
geometry, and neglecting frictional heating is

ur
∂T

∂r
+ uψ

r

∂T

∂ψ
= α

[
1

r 2

∂

∂r

(
r 2 ∂T

∂r

)
+ 1

r 2 sin ψ

∂

∂ψ

(
sin ψ

∂T

∂ψ

)]
(27)

When the Rayleigh number is at or below the transition value,
heat transfer in the central region is dominated by conduction in
the radial direction. As a result, the temperature gradient in the
tangential direction ∂T/∂ψ and velocity in the radial direction ur

Fig. 4 Transition flow in concentric spherical enclosure.

can be neglected, reducing the energy equation to the familiar one-
dimensional Laplace equation in spherical coordinates:

1

r 2

d

dr

(
r 2 dT

dr

)
= 0 (28)

This radial temperature distribution results in a small, buoyancy-
induced flow within the region; an upwards flow with respect to the
gravity vector in the inner half of the shell and a downwards flow
in the outer half. Assuming steady-state, constant properties and
an axisymmetric system, the uψ momentum equation in spherical
coordinates is

ur
∂uψ

∂r
+ uψ

r

∂uψ

∂ψ
+ ur uψ

r
= g sin ψβ(T − Tb)

+ ν

[
1

r 2

∂

∂r

(
r 2 ∂uψ

∂r

)
+ 1

r 2 sin ψ

∂

∂ψ

(
sin ψ

∂uψ

∂ψ

)]
(29)

As in the case of the energy equation, assuming conduction domi-
nated heat transfer and a fully developed flow pattern in the central
region as shown in Fig. 4 results in a simplification of the momen-
tum equation by neglecting the radial velocity ur = 0 and the the
tangential velocity gradient ∂uψ/∂ψ = 0:

1

r 2

d

dr

(
r 2 du

dr

)
= − gβ

ν
sin ψ(T − Tb) (30)

where Tb is the midplane temperature. For the limiting case of nar-
row gap spacing with respect to the inner and outer boundary dimen-
sions δ � di , do, the governing equations in spherical coordinates
can be related to the equivalent problem of flow between vertical
plates by defining a local Cartesian coordinate system, as shown in
Fig. 4. The radial coordinate is related to the local Cartesian coor-
dinate by

r = ri + δ/2 + y, i − δ/2 ≤ y ≤ δ/2 (31)

and the temperature gradient in spherical coordinates is related to
the local coordinate system by

dT

dr
= dT

dy

dy

dr
= dT

dy

d

dr

(
r − ri − δ

2

)
= dT

dy
(32)

Therefore, at the limit δ � ri the energy and momentum equations
are transformed to the local coordinate system:

1

r 2

d

dr

(
r 2 dT

dr

)
→ d2T

dy2
= 0 (33)

1

r 2

d

dr

(
r 2 du

dr

)
→ d2u

dy2
= − geβ

ν
(T − Tb) (34)

where ge = g sin ψ is the effective gravitation coefficient.
Bird et al.24 and Rohsenow and Choi25 present a solution of these

governing equations for the vertical, differentially heated channel.
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Fig. 5 Schematic of verti-
cal cavity model regions.

Solving the energy equation (33) for isothermal boundary conditions
T (−δ/2) = Ti and T (δ/2) = To gives

T − Tb = −[y/(δ/2)](Ti − Tb), Tb = (Ti + To)/2 (35)

Substituting this expression into the momentum (34) and solving
with a no-slip condition at the wall yields

u = (geβ/12ν)(Ti − To)(δ/2)2{[y/(δ/2)]3 − y/(δ/2)} (36)

In the central region, the heat transfer is caused by conduction only,
and the linear temperature distribution results in fluid motion caused
by buoyancy effects. The addition of the top-end and bottom-end
regions to the analysis, as shown in Fig. 5, transforms the vertical
parallel plate problem to that of natural convection in a vertical
cavity. Batchelor26 and Eckert and Carlson27 present a method for
analysis of convective heat transfer in the vertical cavity based on
an enthalpy balance within the control volumes formed at the top-
end and bottom-end regions, as shown in Fig. 5. For the bottom-end
control volume, an enthalpy balance is performed that equates the
heat transfer by conduction Qi and Qo with the heat transfer through
advection by the fluid entering and exiting the control volume from
the inner and outer halves of the central region Qin and Qout. The
enthalpy flux from the central region Qout is determined based on
an integration of the temperature and velocity distributions. For the
inner half of the cavity,

Qout =
∫ 0

−δ/2

ρcpW ′u(T − To) dy (37)

where W ′ is the width of the control volume and the temperature rise
is defined with respect to the outer wall temperature To. Substituting
Eqs. (35) and (36) for the temperature and velocity distributions and
solving the integral yields

Qout = 23

120

ρcpW ′geβ(Ti − To)
2δ3

96ν
(38)

Repeating the analysis for the enthalpy flux for the outer half of the
control volume gives

Qin = 7

120

ρcpW ′geβ(Ti − To)
2δ3

96ν
(39)

For the bottom-end control volume it is assumed that the boundary
layer on the inner, heated surface is much thinner than on the outer,
cooled surface, such that Qi � Qo. Therefore, the total enthalpy
balance for the bottom-end region is

Qi = Qout − Qin = ρcpW ′geβ(Ti − To)
2δ3

720ν
(40)

The analysis for the top-end region control volume yields an equiv-
alent result, with the total heat transfer to the cooled outer surface
given by

Qo = Qin − Qout = ρcpW ′geβ(Ti − To)
2δ3

720ν
(41)

Therefore, the total heat-transfer rate caused by convection for the
transition flow asymptote is equivalent to Qi in the bottom-end
region and Qo in the top-end region.

The total heat-transfer rate is nondimensionalized by the Nusselt
number:

Nutr = Q
√

Ai

kL ′W ′(Ti − To)
(42)

where L ′ × W ′ is the cross-sectional area of the equivalent cavity.
Substituting Q from the enthalpy balance, Eq. (40), and simplifying
the resulting expression yields

Nutr = 1

720

√
Ai

L ′
geβ(Ti − To)δ

3

να

= 1

720

√
Ai

L ′
ge

g

(
δ√
Ai

)3

Ra√
Ai

(43)

The effective gravitation coefficient is calculated based an area-
weighted integration over a spherical surface at the midplane of the
enclosed space:

ge = 1

A

∫
A

∫
(g sin ψ)r 2 sin ψ dA = g

π

4
(44)

The ratio of the gap spacing to the inner surface area is easily cal-
culated for the concentric spheres:

δ
/√

Ai = (do − di )
/

2
√

πdi (45)

The length of the equivalent cavity is determined from an arithmetic
average of the inner and outer dimensions L ′ = (Lo + Li )/2, where
effective lengths Lo and Li that reflect the dimensions and shape
of the boundaries are required. Defining the width W according to
the maximum perimeter of the body on a plane perpendicular to g
provides an upper bound for the Nusselt number:

WUB = πd, LUB = A/WUB = d (46)

The lower bound results from defining the effective length as the dis-
tance from the bottom to top stagnation points, or half the perimeter
of the body on a plane parallel to the gravity vector:

LLB = πd/2 (47)

The bounds on effective length are combined using a geometric
mean:

L ′ =
√

(Lo + Li )UB(Lo + Li )LB

=
√

1
2 · (π/4)(do + di ) (48)

Substituting the relationships for effective gravitation coefficient
and effective length into Eq. (43) completes the model for the tran-
sition flow asymptote:

Nutr =
√

2/π

11520

(do/di − 1)3

(do/di + 1)
Ra√

Ai
(49)
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Model Validation
The natural convection model developed in the preceding sec-

tion is validated using the experimental data of Teertstra et al.15 and
other numerical and experimental data from the literature for a wide
range of diameter ratios and Rayleigh number. A combination pa-
rameter value n = 2 was selected, which provides a good fit to the
experimental data of Teertstra et al.15

Figure 6 compares the convection-only portion of the model with
the experimental data of Teertstra et al.15 reduced using Eq. (7),
where S�√

Ai
is the exact solution for conduction shape factor in

the concentric spherical shell. This comparison with the composite
model for the convection terms is used in the selection of a com-
bination parameter n = 2, which provides good agreement of the
model with the data throughout the transition region. The larger dif-
ferences shown in Fig. 6 as the Rayleigh number decreases further
are caused by uncertainty in the experimental data, which becomes
more significant as Nu√

Ai → S�√
Ai

and Nuconv → 0.
The full model is compared with the experimental data of

Teertstra et al.15 for four different concentric spherical enclosures,
do/di = 1.5, 2, 3, and 4.8, in Fig. 7. This plot shows the excellent
agreement between the model and the data, with the model success-
fully following the trends of the data and the transition from con-
duction to convection-dominated heat transfer occurring at different
Rayleigh numbers depending on the diameter ratio. The overall rms
difference between the data and the model is 3–4%, with a maxi-
mum difference of 7%. A full list of the percent differences is given
in Table 1.

Figures 8–10 compare the model with existing numerical and
experimental data from the literature for a wide range of diameter
ratio from the do/di = 1.03 numerical data of Astill et al.6 presented
in Fig. 8 to the do/di = 50 numerical data of Fujii et al.11 in Fig. 10.
The model and data are in good agreement in all cases presented in

Fig. 6 Convection-only model validation with experimental data of
Teertstra et al.15

Fig. 7 Model validation with Teertstra et al.15

Table 1 Comparison of
model predictions vs data15

do/di rms, % Max, %

1.5 4.3 7.3
2 3.0 5.8
3 2.3 4.9
4.8 2.8 4.9

Fig. 8 Model validation with previous data: do/di <– 1.2.

Fig. 9 Model validation with previous data: 1.25 <– do/di < 2.

Figs. 8–10. The large amount of scatter in the experimental data of
Bishop et al.2 makes it difficult to provide an accurate fit of all of
the data points; however, both Figs. 9 and 10 demonstrate that the
model is in good agreement with the majority of the data. Figure 8c
also compares the model with the experimental measurements of
Chamberlain28 for an isothermal sphere in a full space domain, a
limiting case of the concentric spherical enclosure do/di → ∞, for
which the three-term model is in excellent agreement.

The majority of the numerical and experimental data presented in
the literature involves the do/di = 2 concentric spherical enclosure,
and all available data for this configuration are compared with the
model predictions in Fig. 11. All of these data represent the result of
numerical simulations with the exception of the experimental data
of Bishop et al.2 All of these data are in good agreement with each
other, with the majority of the data within ±5% for Ra√

Ai < 106.
As can be seen from Fig. 11, the three-term natural convection
model provides excellent agreement with the data over the full range
of Rayleigh numbers, from the numerical conduction limit data of
Garg12 through the transition region to the experimental laminar
boundary-layer data of Bishop et al.2

Also included in Fig. 11 is the two-term model of Raithby and
Hollands,16 which provides an effective fit of the data for high val-
ues of Rayleigh numbers Ra√

Ai ≈ 107; however, for Ra√
Ai ≤ 106

this model underpredicts the data by approximately 10% over the
full range to the conduction limit. The piecewise method used by
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Fig. 10 Model validation with previous data: do/di >– 2.5.

Fig. 11 Model validation with previous data and models: do/di = 2.

Fig. 12 Model validation with previous data and models: do/di = 4.8.

Raithby and Hollands16 results in a model that neglects the contri-
bution of conduction to the heat transfer for intermediate values of
Rayleigh number in the transition region.

The model and data of Teertstra et al.15 for do/di = 4.8 are com-
pared with the model of Raithby and Hollands16 in Fig. 12. As in
the preceding plot, Fig. 12 demonstrates that the two-term model of
Raithby and Hollands16 underpredicts both the model and the data,
with a maximum difference of 25% at Racr.

Summary
A model has been developed for natural convection heat transfer

in the concentric spherical enclosure with isothermal conditions on
the inner (heated) and outer (cooled) boundaries. The model is based
on three limiting case solutions, corresponding to the diffusive limit,
laminar boundary-layer convection, and transition flow convection.
A full validation with published numerical and experimental results

has demonstrated the effectiveness of the model for a wide range of
diameter ratios and Rayleigh number, with an average rms difference
of 2–3%. Because it is formed based on asymptotic solutions for
limiting geometry cases, the model is applicable to a wide range
of diameter ratios; however, because the model has been validated
using air data only it is recommended that only fluids with Prandtl
number values near unity be considered. The modeling procedure
developed for this fundamental geometry will provide the basis for
future analyses of more complex enclosure configurations.
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