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Natural Convection
Measurements for a Concentric
Spherical Enclosure
An experimental test program is described for the measurement of natural convection for
an isothermal, heated sphere centrally located in an isothermal, cooled spherical enclo-
sure. A transient test method is used in a reduced pressure environment to provide data
for a wide range of Rayleigh number, from the limiting case of laminar boundary layer
convection to the diffusive limit. Tests are performed using a fixed outer diameter for four
different inner sphere diameters, resulting in diameter ratios in the range 1.5�do /di
�4.8. The data are in excellent agreement with the exact solution for the conductive limit
and are shown to be bounded by a model for the isolated, isothermal sphere.
�DOI: 10.1115/1.2188476�
Introduction
The problem of natural convection in the enclosed region

formed between an isothermal heated body and its surrounding,
isothermal cooled enclosure is currently of some interest to de-
signers of microelectronics equipment. In an effort to protect elec-
tronics from environmental contaminants such as dust or mois-
ture, circuits are often housed in sealed enclosures, especially in
outside plant applications. The ability to model natural convection
heat transfer within these sealed enclosures would be of great
benefit, providing quick and easy-to-use design tools for prelimi-
nary design tasks such as parametric studies and trade-off analy-
sis.

Research is currently underway to develop analytically based
models to predict convective heat transfer in these systems. Of
particular importance to the model development process is the
enclosure formed between isothermal concentric spheres, the most
fundamental type of doubly connected enclosure. It is anticipated
that the lessons learned during the development of a natural con-
vection model for the concentric spheres will be directly appli-
cable to more complex enclosure geometries.

One of the most important elements in the development of ana-
lytical models is the availability of experimental data over the full
range of the independent parameters. Accurate data are vital in
order to reveal trends, such as limiting cases or transition behav-
ior, and for the validation of the completed models. The current
literature contains only a limited set of experimental data for the
isothermal concentric sphere problem from Bishop et al. �1�,
Scanlan et al. �2�, Weber et al. �3� and Powe et al. �4�. Bishop et
al. �1� performed air measurements at atmospheric pressure for a
single outer sphere diameter and four inner sphere diameters,
leading to diameter ratios of do /di=1.25,1.67,2.0, and 2.5. Scan-
lan et al. �2� performed measurements for water and silicon oil-
filled spherical enclosures, with 4.7�Pr�4148 for five diameters
ratios ranging from do /di=1.09 to 2.81. The data are limited to a
narrow range of high Rayleigh numbers indicative of the bound-
ary layer flow limit. Weber et al. �3� repeated the measurements of
Scanlan et al. �2� for vertically eccentric enclosures and Powe et
al. �4� present a photographic study of flow patterns between an
arbitrarily shaped body and its spherical enclosure, of which the
concentric spheres is a special case. The remaining data available
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in the literature are derived from numerical simulations of the
spherical enclosure, including those presented by Mack and
Hardee �5�, Astill et al. �6�, Caltagirone et al. �7�, Singh and Chen
�8�, Ingham �9�, Wright and Douglass �10�, Fujii et al. �11�, Garg
�12�, Chu and Lee �13� and Chiu and Chen �14�. There are no
experimental data in the current literature for the isothermal con-
centric spherical enclosure valid for the full range of Rayleigh
number that includes the transition from convection to
conduction-dominated heat transfer.

The objective of the current study is to perform measurements
of natural convection heat transfer for isothermal concentric
spheres for the full range of Rayleigh number, from the laminar
boundary layer flow limit to the conductive limit. The procedure
for performing the measurements will be developed, the test ap-
paratus will be described, and data for four different diameter
ratios will be presented.

Problem Definition
The problem of interest involves convective heat transfer from

a sphere, diameter di, to a concentric spherical shell with inner
diameter do, as shown in Fig. 1. Isothermal boundary conditions
exist at both the inner and outer boundaries, as follows:

Inner boundary T = Ti

Outer boundary T = To

where Ti�To. The total heat transfer rate through the enclosed
region is determined at the inner boundary by

Q =� �
Ai

− k
��

�n
dA, � = T�r� � − Tb �1�

where T�r�� is the temperature distribution adjacent to the inner
boundary along an outward-facing normal, and Tb is the bulk fluid
temperature in the enclosure. Assuming constant fluid properties
and nondimensionalizing yields the dimensionless total heat trans-
fer rate

QL
� =

QL
kAi�Ti − To�

=
L
Ai
� �

Ai

−
��

�n
dA �2�

where L is a general scale length and the dimensionless tempera-

ture excess � is defined as
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� =
T�r�� − Tb

Ti − To
�3�

The average heat transfer coefficient for the enclosure h is defined
based on the average heat flux at the inner boundary and the
overall temperature difference

h =
�Q/Ai�

�T
�4�

where �T=Ti−To. Nondimensionalizing h using the general scale
length L gives the area-mean Nusselt number, which can be
shown to be equivalent to the dimensionless heat transfer rate

NuL =
hL
k

=
QL

kAi�T
= QL

� �5�

The Rayleigh number is defined using the same parameters

RaL =
g��TL3

��
�6�

There exists several methods whereby the Rayleigh number can
be varied during experimental testing. Changes to the temperature
difference �T result in only small variations in RaL, typically less
than one decade. Varying the dimensions of the body requires
fabrication and testing of a number of specimens of different
sizes. The best method for providing a large variation in the Ray-
leigh number for natural convection is through variation of the
fluid properties by a change of the gas pressure, as described by
Saunders �15� and Hollands �16�. Varying RaL by applying a par-
tial vacuum to the test environment allows the use of a single test
specimen operating over a small temperature difference to easily
span four or more decades of Rayleigh number.

Modeling the air in the enclosure as an ideal gas at bulk tem-
perature Tb gives the following expression for the density:

	 =
p

RTbZ
�7�

where R is the gas constant for air and Z is the compressibility
factor for air. Substituting into Eq. �6� gives a new definition for
the Rayleigh number as a function of p

RaL =
g��TL3p2cp

R2Tb
2k
Z2 �8�

where the fluid properties, �, cp, k, and 
, are constant with re-
spect to pressure and are evaluated at the bulk temperature Tb. The
compressibility Z is a function of both the bulk fluid temperature
and pressure.

For values of RaL less than some critical value, the heat transfer

Fig. 1 Schematic of concentric spherical enclosure
in the enclosure is conduction dominated and independent of the
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Rayleigh number. In these cases, the dimensionless heat transfer
rate is equivalent to the dimensionless conduction shape factor
QL

� =SL
� , which is defined by Yovanovich as �17�

SL
� =

L
Ai
� �

Ai

−
��

�n
dA �9�

The conduction shape factor is related to the thermal resistance by

SL
� =

1

kLR
�10�

Using the exact solution for the thermal resistance of a concentric
spherical shell �19�, the conduction shape factor is

SL
� =

2L

di�1 −
di

do
� �11�

Since the problem of interest involves only spherical body
shapes and the size of the inner sphere is the only variable geo-
metric parameter, the diameter of the inner sphere is selected as
the scale length for all dimensionless parameters, such that L
=di.

Experimental Apparatus
In order to perform the required measurements, an experimental

apparatus was created consisting of a single, spherical enclosure,
and a series of inner spheres of various diameters. The outer
spherical enclosure was constructed of two aluminum blocks with
hemispherical cavities machined into one side, as shown in Fig. 2,
so as to form a spherical shell when joined together. Aluminum
6061 was used due to its high value of thermal conductivity to
provide a near-isothermal boundary condition, and the hemi-
spherical surfaces were polished to minimize radiation heat trans-
fer.

The size of the enclosure was selected based on two main cri-
teria. First, because many of the tests were to be performed at
reduced pressures, it was necessary that the maximum dimensions
of the apparatus not exceed the space available within the avail-
able vacuum chamber. Second, in order to avoid rarefaction ef-
fects the gap spacing between the inner and outer boundaries �
had to be much larger than the mean free path of gas � as defined
by the Knudson number

Kn =
�

�
�12�

The mean free path of air as a function of pressure and tempera-
ture can be determined by �18�

� = 6.4 
 10−8� 1

p�atm���T�K�
288

��m� �13�

Ensuring that Kn�0.01 for the full range of pressures and tem-
peratures anticipated in the experimental program provides a

Fig. 2 Spherical enclosure with 25 mm diameter sphere
lower limit for the outer sphere dimensions. Based on these two
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criteria, the dimensions of the outer enclosure were chosen such
that its diameter was do=120 mm.

In order to provide data for a wide range of diameter ratios,
four different spherical inner bodies were machined from 6061
aluminum. The diameters of the spheres and the resulting diam-
eter ratios are given in Table 1. Each sphere was suspended at the
center of the enclosure using a 4–6 mm diameter threaded phe-
nolic rod turned into tapped holes on both the inner and outer
enclosure walls, as shown in Fig. 3. All wiring to the inner sphere
was connected through a single, 6 mm diameter hole at the top of
the enclosure.

All temperature measurements were performed using T-type
copper-constantan thermocouples affixed at the surfaces of the
inner and outer spheres in shallow, small diameter holes using
aluminum-filled epoxy. The temperature at the outer surface of the
enclosure was measured using six 30 AWG �0.254 mm� thermo-
couple wires distributed at the top, bottom, and midplane, while
the two thermocouples at the top and bottom of the inner body
used smaller diameter, 36 AWG �0.127 mm� wires to reduce con-
duction losses. All thermocouples measurements were based on an
external reference junction that was maintained at 0±0.1°C by an
ice point cell.

Each of the inner spheres were heated using an embedded dc-
powered cartridge heater. Constantan wires were used for all con-
nections rather than copper to reduce heat losses through the
wires; 24 AWG �0.508 mm� to provide power to the heaters and
36 AWG to measure voltage. The current to the heater was mea-
sured using a calibrated shunt resistor.

The outer enclosure walls were cooled by six cold plates at-
tached on the exterior surface of the blocks using thermally con-
ductive grease at the joints. Heat was removed from the system
using a glycol-water mixture circulated through the cold plates by
a constant temperature bath.

Once assembled, the enclosure test apparatus was placed in
vacuum chamber, as shown in Fig. 4, with feedthroughs available
for the coolant, electrical, and instrumentation connections. The
vacuum chamber used in this work uses a dual-pump system: a
mechanical roughing pump capable of providing reduced pressure
test conditions suitable for the convection tests and a diffusion
pump for producing a totally evacuated environment for radiation

Table 1 Enclosure dimensions

do �mm� di �mm� do /di

120.0 80.0 1.5
120.0 60.0 2.0
120.0 40.0 3.0
120.0 25.0 4.8
Fig. 3 Detail of 25 mm sphere mounted in enclosure
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heat transfer testing. The vacuum system also contains a high
accuracy vacuum gauge suitable for absolute readings in the range
0.001–1 atm.

Data acquisition and control of the experiment was performed
using a Keithley 2700 data acquisition system and a Windows-
based PC computer running LABVIEW v5.1 software.

Measurement Procedure
The heat transfer rate due to convection through the enclosure

Q can be determined based on an energy balance on the inner
boundary

Q = Qtot − Qrad − Q� �14�

where Qtot is the total heat transfer due to all modes, Qrad is the
net radiative heat transfer between the inner and outer surfaces,
and Q� are the accumulated conduction losses through the wires.
In order to predict Q, a means is required whereby the total heat
transfer rate can be measured, along with a method to quantify the
losses due to radiation and conduction.

Total Heat Transfer Rate. The simplest method to determine
the total heat transfer rate Qtot is through a direct measurement of
electrical energy dissipated by the heater during a steady-state
test. A fixed voltage would be applied to the heater and body
temperatures would be monitored until sufficient time had elapsed
such that the temperature change is less than some specified cri-
teria. Then, the total heat transfer rate would be determined by

Qtot = VI

where V and I are the heater voltage and current, respectively.

Fig. 4 Enclosure test apparatus in vacuum chamber
Hollands �16� reports that, in the case of natural convection in
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gases, approximately five times the time constant 5� is required to
achieve steady-state conditions, where the time constant is defined
as

� = mcpR �15�

Due to the relatively large values of the heat capacity mcp and the
average thermal resistance R for the proposed tests, especially
those to be performed in a reduced pressure environment, steady-
state testing becomes a prohibitively time-consuming option. In-
stead, the current study will implement the transient test method
of Hollands �16� that allows convective heat transfer measure-
ments to be performed in a fraction of the time required for
steady-state tests. This method is based on the assumption that,
due to the slow rate of change of body temperature, a “quasi-
steady” condition exists where the convective heat transfer is vir-
tually identical to the steady-state results at the same temperature.

The use of a transient test to measure steady-state convection in
the enclosure can be validated by a comparison of the time con-
stants for the inner body and the enclosed air layer for the worst
case condition, the smallest sphere, di=25 mm, at atmospheric
pressure. Using Eq. �15� and textbook values �19� for the thermo-
physical properties 	 and cp, the time constant for the sphere is
determined as a function of the film resistance at the inner bound-
ary

�i = �2770
kg

m3��8.18 
 10−6 m3��875
J

kg K
�Ri = 19.8 · Ri

�16�

The time constant for the enclosed air layer �b is determined using
the same method

�b = �1.1614
kg

m3��8.97 
 10−4 m3��1007
J

kg K
�Ro = 1.05 · Ro

�17�

where Ro is the film resistance at the outer boundary. Assuming
that the film resistances at the inner and outer surfaces are similar
Ri�Ro, the ratio of the time constants can be calculated

�i

�b
� 19 �18�

With a factor of 20 difference between the time constants for the
worst case conditions, it is therefore reasonable to assume that the
cooling rate of the inner body will control the heat transfer and
that a “quasi-steady” condition exists in the enclosed fluid region.

In the transient test method, the body is heated to some initial,
specified temperature while the temperature of the enclosure re-
mains constant throughout the test. When the prescribed tempera-
ture difference is reached, the power to the heater is turned off and
the transient response of the inner body is monitored. Measure-
ments continue until �T falls below some minimum prescribed
value. The total heat transfer rate at any time t and corresponding
temperature difference �T can be determined based on the tran-
sient data by

Qtot = − mcp
dTi�t�

dt
�19�

where the heat capacity of the inner body mcp is determined em-
pirically using a method described in the next section. The time
derivative in Eq. �19� is approximated for distinct time intervals tn
using a least-squares method to predict the slope of sets of 101
average inner body temperature versus time data points.

	dT

dt
	

tn

= slope�Ti vs. t� for 1 � j � 101 �20�

Then, Qtot can be calculated for time tn, corresponding to the time

value of the middle data point

Journal of Heat Transfer
tn = tj=51

as shown in Fig. 5. Corresponding values at time tn for the re-
maining parameters, Ti, To, p, and V · I, are determined using an
arithmetic average of nine values around the middle data point, as
shown below and in Fig. 6 for the example of the inner body
temperature.

Ti,n =
1

9 

j=47

9

Ti,j �21�

Using this transient test method and data reduction procedure, Qtot
is determined for a number of �T values between the start and end
conditions, where the number of points depends on the heat ca-
pacity of the body, the convective conditions and the time step
selected for the measurement.

Fig. 5 Calculation of time derivative of temperature, do /di
=1.5

Fig. 6 Calculation of average inner body temperature do /di

=1.5
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Heat Capacity and Radiative Losses. The simplest method
for determining the heat capacity of an isotropic body is to mea-
sure its mass and multiply by a tabulated value for specific heat
capacity value from a handbook. However, in the case of the
current study the inner spheres are not homogeneous but instead
contain an embedded cartridge heater, a section of the phenolic
mounting rod, and thermocouples. The radiation heat transfer
through the enclosure could also be modeled using available ana-
lytical techniques, but without precise values for the emissivity of
the inner and outer boundaries, it is difficult to produce accurate
results. Therefore, both the heat capacity and the radiative heat
transfer for each test case will be determined based on empirical
data.

In order to provide an effective measure of both quantities, a
two-stage test procedure is used. Starting at an initial condition
�T�0, a heating test to a maximum value of �T is performed to
determine the heat capacity, followed immediately by a cooling
test back to a final �T value to measure radiative losses. For high
vacuum conditions, such that Kn�100, it can be assumed that
gaseous convection and conduction are eliminated and heat trans-
fer occurs by radiation alone. The energy balance for the inner
body for any time t is

mcp
dTi

dt
= V · I − Qrad − QL �22�

In the heating test the constant value of electrical power V · I pro-
vided to the heater can be assumed to be large enough such that
the conduction losses are minimal, QL�0, and Qrad is assumed to
be a linear function of the factor ��Ti

4−To
4�. Then Eq. �22� be-

comes

dTi

dt
=

V · I

mcp
−

Crad

mcp
��Ti

4 − To
4� �23�

where Crad is assumed to be constant for each test body. Using a
least-squares method to determine the time gradient of the inner
body temperature, as described in the previous section, values of
dT /dt can be plotted versus the radiation parameter ��Ti

4−To
4�, as

shown in Fig. 7. Based on Eq. �23� it can be seen that the y
intercept predicted by the linear fit of the data in Fig. 7 can be
used to calculate the heat capacity of the body. The empirical

Fig. 7 Heating test data
predictions for the heat capacity of each of the inner spheres
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tested are presented in Table 2.
Once the maximum �T value had been achieved, the heater was

shut down, V · I=0, reducing Eq. �22� to

Qrad = − mcp
dTi

dt
− QL �24�

where QL is assumed to be zero for all but the heat conduction
through the mounting rod, modeled using a simple one-
dimensional relationship

Qrod =
�

krod��drod/2�2 �25�

The thermal conductivity of the phenolic rod material is krod
=0.4 W/mK, � is the enclosure gap spacing, and drod is the rod
diameter. The time gradient of the average inner body temperature
dTi /dt is determined using the least-squares approximation and
the corresponding heat capacity value from the heating test. Fig-
ure 8 presents the measured values of Qrad versus the radiation
parameter ��Ti

4−To
4� and least-square fits of these data according

to the relationship

Qrad = Crad��Ti
4 − To

4� �26�
Values for the radiation correlation coefficient for each body are
presented in Table 2.

Conduction Losses. There are four potential sources of con-
ductive heat loss from the inner body: the power wires, the volt-
age measurement leads, the thermocouples, and the connecting
rod. This analysis will consider losses by convection from the
wires only; it is assumed that losses due to radiation from the
wires have been accounted for by the correlation of the radiation
test data and conduction losses through the connecting rod will be

Table 2 Heat capacity and radiation coefficient values for in-
ner spherical bodies

di �mm� mcp �J/K� Crad
104 �m2�

80.0 653 5.59
60.0 279 4.79
40.0 82.9 3.17
25.0 20.3 1.93
Fig. 8 Cooling test data
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determined using Eq. �25�.
The heat loss from each individual wire connected to the inner

body can be modeled as an infinitely long fin �19�

Q� = �heffPwkwAw�Ti − Tb� �27�

where Pw and Aw are the perimeter and cross sectional area of the
conductor, kw is the thermal conductivity of the conductor mate-
rial, and Tb is the bulk fluid temperature. The effective heat trans-
fer coefficient value heff has been modified to include the conduc-
tive resistance of the insulation on the wire, as described by
Sparrow �21�. By assuming a series combination of a conduction
resistance through a circular annulus and the convective film re-
sistance at the insulation surface, the effective heat transfer coef-
ficient can be determined by

heff =
1

�dwLe�Rcond + Rconv�
=

1

dw� ln�dins/dw�
2kins

+
1

hdins



�28�

where dins and kins are the diameter and thermal conductivity of
the insulation and Le is an effective fin length. Convective heat
transfer from the insulation is modeled as an infinitely long, hori-
zontal circular cylinder �20�

h =
k

dins

2

ln�1 +
2

0.403Radins

1/4 

�29�

where the Rayleigh number is modified to include the gas pressure
as described previously

Radins
=

g��T̄w − Tb�dins
3 p2cp

R2Tb
2k
Z2 �30�

The bulk fluid temperature Tb is assumed to be the arithmetic
mean of the inner and outer boundary temperatures �Ti+To� /2
while the average wire temperature is determined from an integral
of the temperature profile of the infinitely long fin

T̄w =
1

Le
�

0

Le

T�x�dx,
T�x� − Tb

Ti − Tb
= e−�x �31�

where Le is the effective fin length, determined by solving the
temperature distribution equation for the x location where 95% of
the temperature drop has occurred

T�x = Le� − Tb

Ti − Tb
= e−�Le = 0.05 �32�

Solving for the effective fin length gives

Le = −
1

�
ln�0.05�, � =�heffPw

kwAw
�33�

Substituting and solving for the average wire temperature yields

T̄w = 0.317Ti + 0.683Tb �34�

In the case of the thermocouple wires, where two insulated wires
are wrapped together with an additional insulation layer, effective
wire and insulation diameters and thermal conductivity are used in
the preceding calculations, as described by Sparrow �21�

dw,eff = �2dw, dins,eff = ��1 + �2�/2, keff = kw,1 + kw,2

where �1 and �2 are the cross-sectional dimensions of the
insulation.

Calculation of the conduction losses through each of the wires
and reduction of Q� from the results leads to values of Q that are
less than those of the pure conduction model, Eq. �11�, when the
pressure has been sufficiently reduced that the data has reached

the diffusive limit and become independent of Ra. It is assumed
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that this overprediction of the wire loss is due to the approxima-
tions used in the model formulation, including the assumptions of
a horizontal circular cylinder geometry and infinite fin length. Due
to the complexity of the problem, it may be impossible to formu-
late a model to accurately predict all conduction losses from the
heated body. Therefore, an empirically derived coefficient C� is
introduced to correct the model predictions.

Assuming that the wire loss model correctly accounts for the
variations in temperature and gas pressure and provides a maxi-
mum value for the total heat loss by conduction, a coefficient
having a range of values 0�C��1 is used to adjust the model as
follows:

Q� = C�

i=1

N

Q�,i �35�

where Q�,i are the model predictions for heat loss from each of the
N wires. The value of C� for a particular test setting is determined
so as to minimize the % difference between the data and the
conduction model, Eq. �11�, when the pressure has been suffi-
ciently reduced that the data has reached the diffusive limit. Val-
ues of C� and the relative portion of the overall heat transfer
attributed to conduction losses through the wires are given in
Table 3 for each test case. The differences in C� values in Table 3
are due to variations in wire length, material and orientation as
well as body and heater size.

Test Method. With the measurement procedure and data reduc-
tion techniques defined, the test method is established as follows:

1. Assemble test body in enclosure, fit cold plates, and in-
stall completed assembly in chamber.

2. Seal vacuum chamber and start mechanical and diffusion
pumps to establish high vacuum conditions �Kn�100�.

3. Perform heat capacity and radiation heat transfer tests.
4. Analyze data to obtain mcp and Qrad correlation.
5. Perform convective heat transfer measurements, starting

at atmospheric conditions.
6. Reduce air pressure in chamber and repeat convection

measurements, such that at least two tests are performed
per decade of Radi

and the data overlaps.
7. Continue reducing pressure and repeating convection

tests until diffusive limit is achieved for at least two de-
cades of Rayleigh number.

8. Analyze data to correct for conductive losses.

Results

Measurements were performed for each of the four inner sphere
diameters given in Table 1 according to the test method described
in the previous section. The enclosure was maintained at a con-
stant temperature of 22°C, and the starting and ending values for
the temperature difference for the transient convection tests were
50, and 10°C, respectively. Figure 9 presents all data collected for
the do /di=2 tests, and demonstrates the overlap between data for
subsequent tests performed at different pressure levels. Data are
selected from each pressure range to provide a smooth transition
and a continuous set of data over the full range of Rayleigh num-
ber. The resulting final data sets for each of the four enclosure
geometries are plotted in terms of the dimensionless parameters

Table 3 Conduction losses model coefficients

di �mm� C� Q� /Q

80.0 0.45 1–3%
60.0 0.37 2–4%
40.0 0.15 1–3%
25.0 0.32 3–8%
Nudi
and Radi

in Fig. 10.
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A full uncertainty analysis was performed to evaluate the im-
pact of the accuracy of each of the instruments and sensors used in
the experiments, along with the experimental method and data
reduction techniques, on the reported values of Nusselt and Ray-
leigh numbers. The procedure used for the uncertainty analysis
was based on the method described by Moffat �22�. Accuracy of
the thermocouple readings �±0.2°C�, heater voltage and current
measurements, vacuum transducer measurements, dimensions,
thermophysical properties, and time readings were combined to
form an overall uncertainty on the Nusselt number of 2.1–2.3%,
while the uncertainty in the Rayleigh number varied from 1.4% to
3.4%. Error bars are included in Fig. 10 that represent the uncer-
tainty in the data associated with both the Rayleigh and Nusselt
numbers.

A number of observations can be made concerning the data and
its trends, as seen in Fig. 10. First, the goal of this work, to
conduct measurements over a wide range of Rayleigh number, has
been achieved with data being generated over at least four decades
of Rayleigh numbers in all cases. Second, the data are in excellent
agreement with the conductive limit and show independence of
Radi

for at least two decades of Rayleigh numbers. Finally, the
data indicate a smooth transition from convection to conduction-
dominated heat transfer that occurs within a single decade of the
Rayleigh number.

In Fig. 10 a model for the isolated, isothermal sphere �23� is
included, which is equivalent to the limit of an infinitely large
enclosure, do /di→�

Fig. 9 Raw convection test data
Fig. 10 Convection test results
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Nudi
= Sdi

� + F�Pr�Gdi
Radi

1/4 �36�

where the diffusive limit Sdi

� =2 and the body gravity function
Gdi

=0.879 for the sphere. The value for the Prandtl number func-
tion for air at STP is F�Pr�=0.513. As expected, the isolated
sphere model provides an upper bound to the data at the laminar
boundary layer flow, high Rayleigh number limit. From Fig. 10 it
can be seen that for do /di=4.8, the dimensions of the enclosure in
relation to that of the inner body are large enough such that the
system behaves similar to the isolated sphere. As do /di decreases,
the enclosure walls start to have a larger effect, leading to a re-
duction in the heat transferred for a given value of �T.

Figure 11 compares the experimental data of the present study
with the air data of Bishop et al. �1� for do /di=2. The Bishop data
were measured for larger values of Rayleigh number than were
possible in the current test apparatus, so a direct comparison of the
data cannot be performed. However, by extrapolating a best fit
line from the present data as shown by the dashed line in Fig. 11,
the good agreement between the measurements, and the data of
Bishop et al. �1� can be demonstrated.

Summary
An experimental procedure and apparatus for performing mea-

surements of natural convection between an isothermal sphere and
its surrounding enclosure have been described. The goal of the
research project, to provide data over a wide range of Rayleigh
numbers including the transition and diffusive limit, was achieved
through the use of a transient test procedure performed in a re-
duced pressure environment. The proposed transient test method
was shown to produce highly accurate data in a much shorter time
than the more traditional, steady-state methods. Four different in-
ner spherical bodies were tested and the data were shown to be in
excellent agreement with the exact solution for conduction be-
tween spherical shells. The data were also compared to existing
data from the literature, and were shown to be bounded by the
limiting case of natural convection from an isolated, isothermal
sphere.
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Nomenclature
A � surface area, m2

a ,b ,c � radiation correlation coefficients
C � coefficient
cp � specific heat capacity, J/kgK
d � diameter, m

F�Pr� � Prandtl number function
GL � body gravity function

g � gravitation acceleration, m/s2

h � convective heat transfer coefficient, W/m2K
k � thermal conductivity, W/mK

Kn � Knudsen number, �� /L
I � heater current, A

Le � effective fin length, m
L � general characteristic length, m
m � mass, kg

NuL � Nusselt number, �QL / �kAi�T�
P � perimeter, m
p � pressure, Pa

Pr � Prandtl number
Q � heat flow rate, W
R � thermal resistance, K/W
R � gas constant for air at STP; 287 J /kgK

RaL � Rayleigh number, �g��TL3 / ����
SL

� � conduction shape factor, �QL / �kAi�T�
t � time, s

T � temperature, °C

T̄ � average temperature, °C
�T � temperature difference, �Ti−To, °C

V � heater voltage V
Z � compressibility factor

Greek
� � thermal diffusivity, m2/s
� � thermal expansion coefficient, 1/K
� � gap thickness, ��do−di� /2, m
� � dimensionless temperature excess
� � mean free path, m
� � thermocouple wire dimensions, m

 � dynamic viscosity, N s/m2

� � kinematic viscosity, m2/s
	 � mass density, kg/m3

� � Stefan-Boltzmann constant, W/m2 K4

� � time constant, �mcpR, s
� � temperature excess
� � fin parameter, 1/m
� � radiation parameter, ���Ti

4−To
4�, W/m2

Subscripts
b � bulk fluid
i � inner body
o � outer body

cond � conduction
conv � convection

rad � radiation losses
eff � effective
tot � total
� � conduction losses

Journal of Heat Transfer
w � wire conductor
ins � wire insulation

Superscript
� � dimensionless quantity
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