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Ananalytical conduction shape factormodel is developed for the two-dimensional annular region formed between

concentric isothermal cylinders in which the inner and outer boundaries have similar or different shapes. Themodel

is based on the equivalent circular annulus with amodified independent parameter to account for local variations in

the gap thickness. Validation of the model is performed using existing numerical data and analytical expressions

from the literature for various geometries, includingpolygonal and rectangular cylinderswith a circular hole and the

circular cylinder with a polygonal hole. The root-mean-square difference between the data and themodel is less than

5% in all cases.

Nomenclature

A = cross-sectional area, m2

A? = dimensionless gap thickness, �
����
A
p

=Pi
A0 = modified dimensionless gap thickness
d = diameter, m
L = general characteristic length, m
N = number of polygon sides
n = combination parameter
P = perimeter, m
r = radius, m
s = side length, m
S = conduction shape factor (per unit length)
S?L = dimensionless shape factor, � SL=Pi
� = apothem, minimum radial dimension of a polygon, m
� = gap spacing, m

Subscripts

e = effective
i = inner body
o = outer body

Introduction

H EAT conduction within the two-dimensional annular region
formed between isothermal nonintersecting inner and outer

boundaries is reported in the literature for a variety of geometries.
Smith et al. [1] computed the conduction shape factor through
electrical resistance measurements for various hollow cylinders,
including concentric square cylinders, and square and rectangular
cylinders with a centrally located circular hole. Balcerzak and
Raynor [2] developed approximate shape factor relationships based
on a conformal mapping technique for a large number of geometries:
polygonal (3 � N � 10) and rectangular cylinders with a circular
hole, eccentric circular cylinders, and the circular cylinder with a

concentric elliptic hole. Lewis [3] extended the conformal mapping
method to include additional geometries: the circular cylinder and
one-dimensional slab with a polygonal hole. Dugan [4] used a
boundary residual technique to predict the conduction shape factor
for a square cylinder containing a concentric circular hole. Laura and
Susemihl [5] and Laura and Sarmiento [6] also used conformal
mapping to simulate the circle in a polygonal cylinder (3 � N � 12)
and the polygon (4 � N � 8) in a circular cylinder.

Two analytical models are presented in the literature for the
conduction shape factor for the hollow-cylinder problem. Simeza
and Yovanovich [7] developed an analytical method based on the
parallel flux-tube heat flow model for the polygonal cylinder with a
concentric circular hole. The resulting expression for the conduction
shape factor (per unit length) is
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where� is the apothem, defined as theminimum radial dimension of
the polygon, and ri is the radius of the inner circle. The model
provides an accurate fit of the available data for the hollow triangular,
square, and polygonal (N > 4) cylinders, and the accuracy of the
relationship improves as the size of the inner circular cylinder grows
in relation to the outer, such that the local gap spacing becomes more
nonuniform.

Hassani and Hollands [8] presented an analytical relationship for
the conduction shape factor in annular regions formed between
similar boundary shapes, such as the concentric squares, triangles,
rhombic cylinders, and rectangles:

S� 2�

ln �1� �2��=Pi�	
(2)

where � is gap spacing and Pi is the perimeter of the inner boundary.
This model is applicable only for geometries in which the inner and
outer boundaries have similar shapes, such that � is constant.

There is no analytical model presently available in the literature
that predicts the conduction shape factor for the two-dimensional
region formed between concentric arbitrarily shaped inner and outer
isothermal boundaries.

Model Development

The conduction shape factor for an isothermal three-dimensional
convex body was defined by Yovanovich [9] based on the area
integral of the dimensionless temperature gradient at the heated
surface:
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For the two-dimensional annulus, the conduction shape factor per
unit depth is calculated based on an integral about the perimeter of the
inner heated boundary and can be related to the total thermal
resistance between the boundaries, R, by [8]

S� 1

kR
� Q

k�T
(4)

The shape factor (per unit depth) is nondimensionalized based on a
arbitrary scale length L by the equation

S?L �
SL
Pi

(5)

where selecting the perimeter of the inner boundary as the scale
length simplifies this relationship between the dimensional and
dimensionless conduction shape factors to S?Pi � S.

Teertstra et al. [10] presented an approximation for the conduction
shape factor as a part of a natural convectionmodel for the horizontal
annulus. This model was developed based on analysis of the
equivalent concentric circular cylinder geometry, for which the exact
solution is

S?Pi �
2�

ln �do=di�
(6)

The inner and outer diameters of this equivalent circular annulus are
determined based on a preservation of the inner boundary perimeter
Pi and the enclosed cross-sectional area A, as follows:

Pi � �di ! di �
Pi
�

(7)
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Substituting these two relationships into Eq. (6) yields the general
form of the conduction shape factor model:

S?Pi �
2�

ln
������������������������������
4��A=P2

i � � 1
p (9)

The form of this expression suggests that the independent variablesA
andPi can be combined into a single parameter A?, which represents
the dimensionless average gap spacing for the annulus:

A? �
����
A
p

Pi
(10)

The model of Teertstra et al. [10] was validated using natural
convection data for a variety of annular geometries, and good
agreement between the model and data for low Rayleigh number,
conduction-dominated cases was noted when the boundaries had
similar shapes or the gap spacing was relatively large. However,
when the inner and outer boundaries approach each other, the relative
differences between the local gap spacing increase and the heat flow
through the shortest path begins to dominate, as shown in Fig. 1 for
the square cylinder with a concentric circular hole. Figure 1 also
shows the limiting case, in which the diameter of the inner cylinder,
di, equals the side length of the square cylinder, so, and the local gap
spacing is reduced to zero. Our physical understanding of the
problem predicts that at this limit, the conduction shape factor will
become infinitely large due to the thermal short circuit; however, the
independent parameter A? has a finite value at the limit
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�di
�

������������
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p
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 0:1474 (11)

Therefore, for the equivalent circular annulus model to correctly
predict S?Pi at the limit �! 0, a modified dimensionless gap spacing

parameter is introduced based on the previously defined independent
variable A? and the limit at zero gap spacing from Eq. (11):

A0 � ��A?�n � �lim
�!0
A?�n	1=n (12)

The modified independent parameter A0 is then used to calculate the
dimensionless conduction shape factor using the general expression

S?Pi �
2�

ln
�������������������������
4��A0�2 � 1

p (13)

The effect of reducing the �! 0 limit from the independent variable
is that as the gap spacing is reduced and the inner and outer
boundaries approach each other, the modified parameter A0

approaches zero and the conduction shape factor predicted by
Eq. (13) becomes infinitely large. In a manner similar to that used by
Churchill and Usagi [11] for the combination of asymptotic
solutions, a parameter n has been introduced in Eq. (12) to provide a
better fit of the data in the transition region. The integer value n� 3
has been selected, which provides good overall agreement based on
validationwith the available datawhile retaining the simplicity of the
asymptotic method.

Model Validation

Figure 2 shows all the geometries for which numerical data and
analytical expressions are available in the literature. The model will
be validated for each of the following cases: the polygonal cylinder
with a concentric circular hole, the circular cylinder with a polygonal
hole, and the rectangular cylinder with a centrally located circular
hole. The square cylinder with a circular hole, a special case of the
polygonal cylinders from the first row of Fig. 2, will be treated
separately due to the large number of studies that have focused on this
particular geometry. In each case, the geometry will be described in
terms of the dimensions shown in Fig. 2, the limiting value of A?

when �! 0 will be computed, and the model predictions will be
compared with the available data. All graphs are plotted using log–
log scales that provide straight-line fits for power expressions and
emphasize the wide range of values in the results.

Before the validation of annuli with different inner and outer
boundary shapes, the accuracy of the equivalent circular annulus
model for annuli with similar inner and outer boundary shapes is
demonstrated. This comparison includes the data of Smith et al. [1]
and Hassani and Hollands [8] for concentric squares, Hassani and

Fig. 1 Square cylinder with a circular hole.

Fig. 2 Schematic of annulus shapes.
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Hollands [8] and Moukalled and Acharya [12] for concentric
rhombic cylinders, and Hassani and Hollands [8] for concentric
triangles. As can be seen in Fig. 3, the model has reduced all the
geometries to a single, effective curve for S?Pi and the agreement

between themodel and the data is excellent, with an rms difference of
3.4% for all cases.

Square Cylinder with a Circular Hole

In this first case, data from Smith et al. [1], Balcerzak and Raynor
[2], Dugan [4], and Laura and Susemihl [5] and the analytical
expression of Simeza and Yovanovich [7] are compared with the
model for the square cylinder with a concentric circular hole. The
dimensionless gap spacing, based on the dimensions shown in Fig. 2,
is

A? � 1

�

������������������������
so
di

�
2

� �
4

s
(14)

The limiting value of the dimensionless gap spacing is calculated as
described in the previous section:

lim
�!0
A? �

������������
4 � �
p

2�
(15)

Figure 4 compares the model with the data and clearly demonstrates
both the asymptotic behavior of the system when the local gap
spacing �! 0 as well as the accuracy of the model, with an rms
difference of 4.7% for the data and 4.5% for the analytical model of
Simeza and Yovanovich [7].

Polygonal Cylinder with a Circular Hole

The numerical data of Laura and Susemihl [5] and Balcerzak and
Raynor [6] and the analytical model of Simeza and Yovanovich [7]
are compared with the equivalent circular annulus model for three
different polygonal cylinders (N � 3, 5, and 10), each containing a
centrally located circular hole. The dimensions are defined as shown
in Fig. 2 using the inner circle radius ri and the apothem of the
polygon�, defined as theminimum radial distance from the center to
the edge. Given the following relationship for the area of a polygon,

A� N�2 tan�=N (16)

where N equals the number of sides of the polygon, the
dimensionless gap spacing evaluates to
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The limiting value of A? when ri �� is
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From Fig. 5 it can be shown that the model does a good job of
predicting the trends of the solution, providing a good fit to many of
the experimental data points and the analytical model of Simeza and
Yovanovich [7]. Agreement between the data and the model is best
for the N � 10 polygon; the rms difference for the N � 10 and 5
cases is 3%. In the case of the triangular cylinder, the difference
between the data and the model increases to 8.8% due to the
significant differences between the local gap thicknesses when N �
3 and the approximate nature of a model based on equivalent circles.

Circular Cylinder with a Polygonal Hole

The model is next validated with data of Laura and Sarmiento [6]
for the circular cylinder with a concentric polygonal hole, as
presented in Fig. 6. Three different geometries are comparedwith the
model predictions: square (N � 4), hexagonal (N � 6), and
octagonal (N � 8) polygons. The area of the polygon is determined
from Eq. (17), the inner boundary perimeter for the polygon is

Pi � 2N� tan
�

N
(19)

and the dimensionless gap spacing evaluates to
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Fig. 3 Model validation for concentric annulus geometries.
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A? �
��������������������������������������������������
��ro=��2 � N tan��=N�

p
2N tan��=N� (20)

At the limit when the vertices of the polygon approach the circular
boundary, the dimensionless gap spacing becomes

lim
�!0
A? �

���������������������������������������������
� � �N=2� sin�2�=N�

p
2N sin��=N� (21)

The data available in the literature are limited to large values of
dimensionless gap spacing only, such that when they are plotted in
terms of A?, all the points fall on the same curve and there is no clear
distinction between the three different geometries. The rms
difference between the model and the data is 5.5% for all cases.
Additional data forA? values near the lower limit would be helpful in
completing the validation of the model for this type of annulus.

Rectangular Cylinder with a Circular Hole

The final model validation involves a rectangular cylinder with a
cross section of s1 � s2 with a centrally located circular hole.
Numerical data of Smith et al. [1] and Balcerzak and Raynor [2] are
compared with the model predictions for a wide range of aspect
ratios, varying from an almost-square cylinder with s2=s1 � 1:2 to 5,
which approaches the behavior of the semi-infinite slab. The
dimensionless gap spacing in this case is determined by

A? � 1
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����������������������������
s2
s1

�
s1
di
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� �
4

s
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where, at the limit of �! 0, A? reduces to
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r
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When s2=s1 � 1:5, the model is in good agreement with the data of
Smith et al. [1] as shown in Fig. 7, with an rms different of 4% for all
values of A?. However, for s2=s1 � 2, the data of Balcerzak and
Raynor [2] indicate that the conduction shape factor is dependent on
aspect ratio. Because this functional dependence is not included in
the effective circular annulus model, an alternate formulation is
proposed based on the analytic solution for the infinite one-
dimensional slab with a circular hole at its centerline [9]:

S?Pi �
2�

ln ��4=���s1=di�	
(24)

where the ratio of the slab thickness s1 over the cylinder diameterdi is
related to the existing modified independent parameter A0 by solving
the following equation for s1=di:
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Substituting the modified independent parameter A0 for A? as in the
previous cases yields

s1
di
�

������������������������������
�2�A0�2 � �=4

s2=s1

s
(26)

Figure 7 compares the data of Balcerzak and Raynor [2] for s2=s1 �
2–5 with the model from Eqs. (24) and (25) and shows good
agreement between the two, with an rms difference of less than 1%
for all cases. As in the previous case, additional data for smaller A?

values would be helpful to complete the validation for this geometry.

Conclusions

A model has been developed to predict the dimensionless
conduction shape factor in the annular region formed between
isothermal inner and outer boundaries having similar or different
shapes. Based on the equivalent circular annulus, the method uses a
modified independent parameter to account for the thermal short
circuit that occurs when the inner and outer boundaries approach
each other and the local gap thickness approaches zero. The model
has been validated using numerical data from the literature for a
variety of geometries, including various combinations of concentric
polygonal, rectangular, and circular cylinders. The rms difference
between the data and the model was less than 5% in most cases, with
the largest difference of 9% rms occurring in the case of the triangular
cylinder with a concentric circular hole.
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