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Fig. 5 Top: Weight of cooldown propellant plus addi-
tional stage weight (excluding engine weight) vs operating
time for 3000-Mw engine, with the thrust-producing
fraction, alpha, as the parameter.
of the engine is shown.
Bottom: Average specific impulse vs operating time with
alpha, the thrust-producing fraction of the cooldown
propellant, as a parameter (exit temperature during cool-
down is assumed to be 2000°R).

caleulated using a tank mass fraction (ratio of usable pro-
pellant to stage weight) estimate of 0.8.! "For reference,
the estimate of 34,000 lb for the engine. weight! is shown.
For & = 1800 sec and « of 0.1, the engine weight equals the
non-thrust-producing coolant and stage weight, which sug-
gests, if this consideration is taken alone, a tradeoff between
carrying additional engines in lieu of cooldown weights rather
than restarting the engine. :

Use of a fraction of the cooldown hydrogen as a propellant
leads to a degradation of specific impulse for any given
maneuver that can be calculated:

Ip= Wo X Ly + a Waa Ip) /(Wo + a W)

where I, = average specific impulse, sec; I, == design
specific impulse = 80 sec; /., == cooldown specific impulse
= 533 sec; Wy == propellant used at 800 sec; and W, =
cooldown propellant. It was assumed that I,p scaled as the
square root of chamber temperature, although it is recognized
that other factors such as chamber pressure and nozzle ex-
pansion ratio enter. Figure 5 also shows I,, vs operating
time. For 0 < @ < 1, and &, = 1800 sec, /., degradation is
from 2% to 134 sec.

While it is clear that the sensitivity of the mission ap-
plication to variations in specific impulse, or the so-called
“exchange factors” calculated from the Mars mission in Ref. 1,

The estimated weight -
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cannot be applied to other missions inasmuch as they repre-
sent partial derivatives of a particular function evaluated at
a specific value of the function, they can nevertheless be used
to obtain an estimate of the effects for similar missions.
Exchange factors calculated in Ref. 1 indicate that a change
of 15 sec in I,p leads to a change in initial total weight of the
vehicle of 3.5%, which is about 70,000 1b for this mission.

Conclusions

A restart requirement for a nuclear engine mission applica-
tion can lead to weight penalties comparable to the initial
engine weight, and through 7,, degradation, to equivalent
weight penalties exceeding the engine weight; this depends
upon the mission and upon how successful one is in using
the cooldown fraction to produce thrust.

Since cooldown thrust is well-defined in time and magni-
tude, its usefulness is limited. Indeed, for some precise
maneuvers a non-thrust-producing cooldown mechanism
would be required to prevent perturbations to the trajectory.
Finally, the radiation fields' produced by the cooled-down
reactor would exist outside the shadow shield for considerable
periods of time, and would limit extravehicular activities and
could influence scientific experiments.

Reactor restart requirements exist for ground test develop-
ment programs to maximize the amount of data per reactor.
Even here, it should be pointed out that such a requirement
can introduce problems that may never be faced in a non-
restartable mission application, e.g., the separation of thermal
recycle effects upon the operation of the reactor from other
effects.
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Nomenclature

contact radius

area

modulus of elasticity

force

Bessel function

thermal conductivities of metal and gas, respectively
Knudsen number

mean free path

molecular weight

K
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P = pressure

g, @ = heat flux and heat rate, respectively

r = coordinate axis

R = thermal resistance

R, = molar gas constant

S = stress

T = temperature

u = separation between sphere and plane in vicinity of con-
tact

z = coordinate axis

a = accommodation coefficient

- = specific heat ratio for gas, ¢,/c,

¢ = ratio of contact to sphere radius

p = sphere radius

7 = pure number

v = Poisson’s ratio

a = Stefan-Boltzmann constant

w = displacement in z direction

Subscripts

a = apparent

c = conduction

fm = free molecule

g = gas

D = plane

r = radiation

s = sphere, shear

@ = continuum

1, 2 = planes 1 and 2, respectively

Problem

THERMAL control of a spacecraft involves maintaining
the vehicle, or sections of it, and components at proper
operating temperatures.

Requirements may be very severe, some types of recon-
naissance equipment requiring temperature regulation within
approximately 2°F and thermal gradient control within a
fraction of a degree. This note deals with the thermal contact
resistance due to the presence of ball bearings between the
solar cell shield and the satellite flywheel of the Orbiting Solar
Observatory satellite,! which would function in a circular,
300-naut-mile orbit. The modes of heat transfer between
interfaces of the various components are conduction through
the metal parts, conduction through the rarefied gas in the
separation zone, and radiation between surfaces.

The heat-transfer problem to be investigated is that of
smooth solid metallic spheres of radius p separating two
smooth, rigid planes at uniform and constant temperatures 7T,
and T (Fig. 1a). The spheres are surrounded by a rarefied
gas corresponding to the atmosphere for the satellite’s orbit.
It is assumed that the temperature difference (T; — T,) is
small, the problem is axisymmetric, and that steady-state
conditions prevail.

Under a load F, the elastic sphere and the rigid plane will
be in physical contact over a radius a. The total displace-
ment in the direction of loading is?

a*(2 — r*/a%/2p
a*[(2 — r?/a?) sin~la/r + (r*/a* — 1)t/?7] s

r<a

w(r) =
LY
1)
8
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Fig. 1 a) Physical model, b) model used in deformation
analysis, and c) model used in thermal analysis.

Assuming that the sphere and plane have the same elastic
properties, and that Poisson’s ratio is approximately 0.3, the
Hertz contact radius can be determined from classical elasticity
theory to be @ = 1.11[Fp/E]!3, which can be written in di-
mensionless form as

e = 1.62[P,/E]V/3 _ 2

If it is assumed that the distance between the plane and a
point on the surface of the sphere (Fig. 1b) can be represented
with sufficient accuracy by z = r2/2p, then the separation u,
beyond the contact zone, can be determined from Eq. (1) for

r>atobe

u/p =
{r’/2a2 - [ = r*/a?) sin—la/r + (r*/a? — 1)”’]} a? 3

T P

Since only elastic deformations of the sphere are being con-
sidered, it would be convenient to have an expression relating
the maximum permissible ratio of the contact radius to
sphere radius, eme = a/p, to the physical properties of the
sphere. The point with the maximum shearing stress is on the
z axis at a depth equal to about a/2. This point must be
considered as the weakest point in metals. The maximum
shearing stress at this location (for » = 0.3) is about 319% of
the maximum compressive stress at the center of contact,

S, = 0.31(1.5F /7a?) (€]
Using Eqgs. (2) and (4), the desired relationship is
emax’ = 84(S,/E)? (3)

where 8, is the maximum shear stress of the material.

Conduction through the Sphere

The mathematical model proposed for determining the re-
sistance to heat flow through the sphere (Fig. lc), is based
upon Egs. (1, 2, and 5), which state that for elastically de-
formed spheres, w(r) € p and @ « p. The problem is solved
considering that the sphere is replaced by a conductor of in-
finite extent bounded by two parallel planes z = =p, with
two circular isothermal contact spots applied to these planes,
so that their centers lie in the z axis. The solution must fulfill

the following conditions:
02T /ort + (1/r)QT/dr) + 22T /Rz¢ = 0
—p<z< +p (6)

ZI_’ _Jo z=%p r>a @
oz  |Q/2mka(a? — ro)vt z==p r<a

The last boundary condition describes the distribution of the
heat sources necessary to the circular surface in order to main-
tain its temperature uniform. The solution that satisfies Eq.

(6) is
T = [ [@mem + plmemliaimiidn  ®
where ¢(m) and ¢(m) are arbitrary functions of m. Without
loss of generality, T may be assumed to be zero when z = 0,
and therefore ¢(m) = —¢p(m). Thus, Eq. (8) becomes
T = [17 26(m) sinh(nz)Jumr)dm ©
The other two boundary conditions can be satisfied by3

j; " sin(ma)Jo(mr)dm = { (()az — )=/ r Z s 0

Hence, if we take .
¢(m) = (Q/4rka)[sin(ma)/cosh(mp)]/m ay
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both conditions will be satisfied and the solution is
Q = sinh(mz)
r= 2rka j:)

cosh(mp)
From this, one can obtain an approximation to the thermal
resistance between the isothermal contact spots:

sin(ma)Jo(mr) ‘inﬂ (12)

Q Q = 2e"2me . dm
T; - T: = % - 1% 0 m Jo(mr) sm(ma) ;

(13)

To obtain a better approximation, the integrand in Eq. (13)
can be expanded in powers of r and a. If terms of the order
(a/p)? and higher are neglected, the result is

R.= (T, — T»)/Q = 1/2ka — In2/xkp (14)

which is the total resistance between the planes. The thermal
resistance of the deformed sphere on & unit area basis can be
expressed in terms of ¢ as

R. = 0.885(1 — 0.433¢)/ke (15) -

When the contact radius is small relative to the sphere radius
e < 1), which is true for elastically deformed spheres, the
thermal contact resistance is due entirely to the constriction
of the heat flow lines,* and the total resistance becomes B. =

0.885/ke.

Conduction through the Gas

In the continuum limit (K»n — 0), we may apply Fourier’s
ieat conduction equation

o = K(T. — T5)/u (16)

vhere g, is the heat conducted per unit time from unit surface
rea of the sphere to the plane or vice versa, and u is the
-eparation. The gas thermal resistance between parallel
lanes in the continuum limit is defined as

R, = u/K a7

In the free molecule regime where the mean free path in the
s is large enough so that the number of collisions between
olecules is small in comparison with the number of collisions
»tween the molecules and the walls (Kn >» 1), for small
‘mperature differences,’

~altD [ R\ _
o g LY (%M,) PI.-T) (8)
‘\ere V

a = aia/on + ar — awae (19)

ere a; and o, are the values of the accommodation coef-

ient for the two surfaces.

The gas thermal resistance in the free molecule regime is
nendent upon the gas properties, the accommodation co-
.cient, and the gas pressure:

Rim = {(Ro/2rMT,)*Pa(y + 1)/2(y — D}t (20)

. heat flux in the regime between the free molecule (Kn >
and the continuum regime (Kn — 0) can be determined
m Sherman’s® ‘‘universal” transition curve

9/t = 1/Q + g=/91) 1) (Tg/T,)V? can be expected to range between 0.7 and 0.9.
“he gas thermal resistance in the transition regime can now The Knudsen number can now be related to the gas and j
vritten as metal thermal conductivities as well as the accommodation o
coefficient , i
R, = Ro(l + go/qsm) (22) N I PR\ " l
an be shown that in the limit as P — P, q/m > ¢~ and Kn = 3 [1460 Ic_-——i:K—T_':) (30) :
- R,. Also in the limit as P = 0, ¢/n < ¢o and R — '
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We can determine the average thermal resistance of the
gas in the separation zone, assumed to be composed of many
annuli having different separations, by determining the
average continuum gas resistance over an area defined by
r/a = n, where n > 1. The average continuum resistance, as
a first approximation, can be evaluated from

_ 1 r=na [y
Re = 7 (na)? fr_a (E) 27r dr (23)

where u the separation is given by Eq. (3). Letting v =
r/a, the expression for the average gas resistance takes the
form

5 _ 28 o fv? (2 =) sin—t 1
RQ_I;'nzfl {2 [ T y+

_(f_—l_)‘/’:l} vdv (24)

T

Forv > 1, and since the integrand is zeroat 7 = 1,

5 _ €= 51/n) ox
- Re="p (25)

We can now write the average gas resistance between the

sphere and plane or vice versa over the entire gas pressure
range, from the free molecule to continuum regime, as

R, = 62(1 + qao/QIm)("lz - 51/71)/7'1K (26)

Radiation Transfer between Sphere and Plane

For small temperature differences, the radiation heat flow
between the isothermal plane and the sphere can be written in
a linearized form,’

Q= APFPI 40'T"‘3(T. - Tr) (27)

where A, is the projected area of the sphere on the plane,
Tuvg is the average absolute temperature between sphere and
plane, and F,, is the radiation exchange factor between the

‘plane and sphere (or vice versa) which depends upon the

surface conditions of the plane and sphere, the geometry of
contact, and the interfaces that exist on the sides of the
sphere. It is further assumed that one plane sees very little of
the second plane because the separation between spheres is
small. The thermal resistance for the radiation mode can
now be written as

R,- = 1/.‘1pr- 40 Tuv'3 (28)

Summary and Conclusions

When the thermal resistances of the three modes (conduc-
tion through the sphere, conduction through the gas) and
radiation between sphere and plane are of the same order of
magnitude, the over-all thermal resistance between isothermal
planes can be determined from

R =1/(1/R. + 1/2R, + 1/2R) (29)

The Knudsen number, for which the gas resistance is an
order of magnitude larger than the metal resistance, can be
determined from Egs. (15) and (26). The ratio g./g/» can
be approximated by Kn(3/a)(T,/Tg)*/%. For small tempera-
ture differences, Tz, at which K is the heat conductivity, is
very close to the mid-temperature of T, and T,. The factor

e i By et et o e s e« oo

Io/Qsm) = RBim.
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Fig. 2 Limits on Kn for « and l_\:/k.

Figure 2 shows the relationship between Kn, @, and the
ratio K/k with (Tz/T,) as an additional parameter. For all
values of Kn to the right of the curves, the gas resistance rela-
tive to the metal resistance can be neglected.
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Viscosity Correlation for Para-Hydrogen
in the Gaseous and Liquid States -

Barry M. RoseNBaty™ aNp GEORGE THODOS'
Northwestern University, Evanston, Il

Nomenclature
h = Planck’s const, 6.6240 x 10— erg-sec/molecule
m = mass/molecule, g .
P, P, = pressure and critical pressure, respectively, atm
Pr = reduced pressure P/P,
P, = pressure at triple point
R = gas const, 82.053 cm? atm/g-mole °K
T, T. = temperature and critical temperature, respectively, °K
Tr = reduced temperature 7'/7T.
T, = triple point temperature, °K
v, = critical volume, ¢m3/g-mole
e = critical compressibility factor Po./RT,
€ = maximum energy of attraction for Lennard-Jones
potential, ergs/molecule
AT = quantum mechanical parameter, h /s (me)V/?
B, #* = viscosity and gas viscosity at I atm, respectively, ~cp
Mo wr = critical viscosity, cp, and reduced viscosity 1/ ttey
respectively
s, p. = density and critical density, respectively, g/cm3
PR = reduced density o/ p¢
T = collision diameter, cm
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Fig. 1 Viscosity of gaseous p-hydrogen at atmospheric
pressure and cryogenic temperatures.

Introduction

AT eryogenic temperatures, liquefied normal hydrogen
(n-H:) transforms to the para-form (p-Hi) with the
evolution of heat which is dissipated through the vaporiza-
tion of liquid hydrogen. Therefore, for rocket use, the
ortho-form (o-H.) present in normal hydrogen is catalytically
converted to the para-form before liquefaction, and knowledge
of the physical properties of p-H, is important to designers.
The viscosity behavior of p-H, is of particular interest with
regard to pumping requirements. This note reports a re-
duced state viscosity correlation based on recent measure-
ments for p-H. reported by Diller.! Coremans et al.?
using an oscillating disk viscometer, obtained measurements
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Fig. 2 Constant temperature relationships between
p=u* and pp for the gaseous and liquid states of para-
hydrogen.




