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values of radius ratio R;/R, and the optical thickness
R; — R, are given in Table 2. These results appear in
excellent agreement with Monte Carlo results of Perlmutter
and Howell [3]. In fact in view of our results for parallel
plates, we can assert that results reported in Table 2 are
more accurate than results of Ref. [3].

We note that for this case, Heaslet and Baldwin [12] give
an approximate relation,

1

~ 1+ 3R, log Ry/R, (36)

q

The results corresponding to this expression are given in
Table 3, and appear to compare somewhat less favorably
with the results given in Table 2.
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NOMENCLATURE
contact spot radius;

»

A, contour area radius;

b,  heat flux tube radius;

B, heat channel radius;

k,  thermal conductivity, k = 2kk,/(k, + k,);
N, npumber of contact spots;

R, overall thermal contact resistance, [°C/W].

t This work was done in the Heat Transfer Laboratory,
Department of Mechanical Engineering, Massachusetts
Institute of Technology, and was sponsored by the National
Aeronautics and Space Administration under Contract
No. Nas 7-100.

‘Greek characters

B,  maldistribution factor (1 < B < 1-4);

y,  ratio A/B;

€, ratio a/b;

¥,  constriction factor defined by equations (2) and (3).
Subscripts

1,2, metals1and2;
0,  microscopic;
¢ macroscopic ;

Superscript
T, factor based upon uniform temperature.

INTRODUCTION
IN A RECENT article [1] the authors showed qualitatively



1518

that the heat-transfer anomalies associated with stainless
steel/aluminium interfaces depend upon the roughness and
waviness of the contacting surfaces. They further showed
that the mathematical models based upon (a) nominally, flat
rough surfaces [2] or (b) smooth spherical caps [3] were not
adequate in themsclves to predict the overall resistance.
They concluded that their test data showed clearly that a
model must be developed which includes the effects of both
surface roughness and waviness. This communication pre-
sents the outlines of an overall constriction resistance
theory developed by the author [4] and shows how it
compares with the theories of Holm [5] and Kragelskii [6].

Contact between rough, wavy surfaces

Worked metallic surfaces, whether turned, ground, or
sandblasted, exhibit a random distribution of asperity
heights about some mean surface passing through the
asperities. The distribution of the asperities over the apparent
area usually is not random, but exhibits a lay. The lay or
predominant direction of ihe asperities is called the surface
waviness, It will depend upon the mechanical process:
turning will produce a circular pattern, while grinding or
milling will produce a linear pattern.

Let us now consider the physical interaction of two
spherical caps possessing substantial roughness. Initially
the contact will be made at the few highest asperities located
at the highest part of the spherical caps. As the load increases,
these initial contact spots (assumed circular), also called
microcontacts, increase in size, and newer and smaller spots
begin to form. Upon increasing the load further, the first
spots grow even larger, the second group of spots also
increase in size, and still newer and smaller spots appear.
The process is repeated with each increase of the load.

We see from this simple description that the contact
between rough, wavy surfaces will consist of a large number
of discrete microcontacts which differ in size, frequency
of occurrence and probably shape. The largest microcon-
tacts are sparse, while the smallest are many, and also the
largest can be an order of magnitude larger in size than the
smallest. Furthermore, the contact spots are confined to a
portion of the apparent area (projected area of solids), which
is called the contour area, shown in Fig. 1. The contour area
is the projected area determined by the outer limits of the
microcontacts. In the region of the interface beyond the
contour area, there is no physical contact between the two
surfaces. The contour area lying wholly within the apparent
area can occupy a fraction or the entire portion of the
apparent area depending upon the surface characteristics,
the material properties, and the load on the interface.

Overall constriction resistance

In the absence of an interstitial fluid and negligible
radiation heat transfer across the gaps, any heat flow across
the interface will be confined to the microcontacts which
define the contour area. The overall constriction resistance
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F1G. 1. Spherical contact model.

is postulated to be the sum of the roughness resistance
(pinching of the heat flow lines due to the contact spots) and
the waviness resistance (constriction of the heat flow lines
due to the contour area). From symmetry about the contact
plane we can express the overall constriction resistance as
A A
T
%y 2
B
=1

R= ()

where the first term represents the cumulative microscopic
or contact spot resistance, and the second term is the macro-
scopic or contour area resistance.

The microscopic resistance is based upon the following
assumptions:

1. There are N circular microcontacts of radii q; dis-
tributed rather uniformly over a plane which is perpendicular
to the heat flux vector at large distances from the plane.

2. All the microcontacts are at the same uniform tem-
perature.

3. The temperature perturbation due to the pinching of
the flow lines as heat enters and leaves the microcontacts
occurs in a very thin volume on either side of the contact
plane.

4. There is associated with each microcontact a circular
cylindrical heat flux tube defined by the outer limits of the
heat which flows through the microcontact.

In particular, assumptions 2 and 4 lead to the microscopic
constriction factor I, and a useful and accurate expression
for it is [4, 7]

4
w{=1-;;—'=1—1-286 @

which is valid for each microcontact. A typical range of
values of ¢ lies between 0 and 0-30.

The maldistribution factor B, associated with each
microcontact is a measure of its ability to conduct heat
in the presence of a microcontact or an adiabatic wall. It
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has been shown experimentally [4, 8, 9] that this factor can
be important when there is a great deal of crowding of
microcontacts. Although an analytical expression for 8, has
at present not been developed, it is sufficient to say that
values of B, lic between 1 and 1+4, and it seems to be indepen-
dent of the contact spot size.

The macroscopic term of equation (1) is based upon the
following assumptions:

1. All the microcontacts of radii g, are distributed within
a circular contour area of radius 4.

2. The radius A is at least an order of magnitude larger
than the average distance between microcontacts.

3. The contour area is concentric with the circular
apparent area of radius B.

4. The macroscopic constriction resistance due to the
contour area is based upon a very thin isothermal disc of
radius 4 supplying (or receiving) heat to a circular cylinder
or radius B.

These assumptions permit one to determine the macrosco-
pic constriction factor T which can be written as [9].

Wi=0-9 3

for the entire range of the parameter y.

Various aspects of equation (1) have been clearly demon-
strated by means of electrolytic analog experiments [4, 8].
These experiments showed that equation (1) is valid for a
very large range of the pertinent geometric parameters
(a;, N, A). It was also noted that the maldistribution factor
B, is practically unity for very small contact spots (¢ < 0-1)
and for distributions which appear uniform to the eye [9].

When all the contact spots are assumed to be of equal
size (a; = a; = ... = ay) and uniformly distributed (8; = 1)
over the contour area, equation (1) takes a simpler form

i Y7
= %Na | 24’

@

Very good correlation between equation (4) and electrolytic
analog test data [10] has been obtained for a large range of

values of the parameters a, 4, ¢, 3, N.
In the limit when ¢ - 0 and y — 0, equation (4) becomes

1 1
R=5kNa* %a ®
which is the expression developed independently by Holm
[5] and Kragelskii [6]. Equation (5) is restricted to a contact
which consists of many very small (¢ < 0-01) circular micro-
contacts (all the same size) uniformly distributed over a very
small contour area (y < 0-01). A contact which satisfies
these conditions is quite uncommon and would occur only
when the contacting surfaces were very rough and very wavy,
and the contact load very light.
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CONCLUDING REMARKS

Equation (1) is a general expression for the overall
constriction resistance when all the heat flows through only
the microcontacts which lie in a plane comprising a fraction
of the total apparent contact area. This equation has been
verified by means of electrolytic analog experiments for a
very large range of important geometric parameters for
which agreement between theory and experiment was
excellent.

The microscopic resistance term of equation (1) was
recently used [9] to predict the thermal contact resistance
between nominally, flat rough surfaces in vacuo. Agreement
between theory and test was found to be quite good for a
fairly wide range of surface roughness and applied load.

The macroscopic resistance term of equation (1) had
been used by Clausing [3] in the study of the thermal
resistance between contacting smooth spherical caps in
vacuo. He found good agreement between the theory and
test data as long as the surfaces were very smooth and
applied loads less than a certain limit. The differences which
Clausing observed can be attributed to the fact that all
surfaces possess some roughness which becomes important
under certain conditions of loading, and, therefore, cannot
be ignored.

The prediction of the overall thermal constriction
resistance as given by equation (1) has not been fully tested
for real contacting solids possessing substantial surface
roughness and waviness because, at present, the deforma-
tion of such surfaces is only partially understood. Thus one
cannot predict the geometric parameters which enter into
equation (1) from a knowledge of the geometric and physical
characteristics of the contacting solids.
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NOMENCLATURE
A, dimensionless argument;
a, thermal diffusivity;
C, specific heat;
d,  density;
E, errorin time integral ;
L, thickness;
p, transformed time;
g, parameter in transformed equation;
t, time;
TI, time integral;
U, transformed temperature;
x,  distance.
Greek symbols

a,  root of transcendental equation;
{, dimensioniess ratio of conductances, 4,L,/4,L,;
2}

,  temperature;
A, thermal conductivity;
o, flux;
p,  dimensionless ratio of heat capacity per unit area,
d?CZLZ/dlClLl M

o, dimensionless ratio [1,d,C,/4,d,C,]};

Subscripts
n,  root index;
x,  differentiation with respect to distance;
t, differentiation with respect to time;
1, 2, layer number.

1. INTRODUCTION
THE THERMAL diffusivity of ceramic and organic insulating
materials is most readily obtained from transient linear heat
flow through an infinite slab. The relative case of fabricating
the sample in the form of a slab makes this geometry

attractive. Plummer, Campbell and Comstock {1] developed
a method based on a constant flux into a thick slab of
material which was treated as a semi-infinite solid. This
method was further refined by Harmathy [2] who also
developed a pulse heating scheme. Steere [3] used the
constant flux method with samples of plastic assembled from
multilayers of thin films. In all cases the finite samples were
considered to be infinitely thick during the time when
measurements were taken. Also, in each case the heat
capacity of the heater was shown to be a small fraction of
the heat capacity of the sample and was therefore not
included in the analysis.

When the constant flux input method is used with a low
density, low specific heat and low conductivity insulator such
as foamed polyurethane, difficulties arise. The conductivities
of many solid and foamed insulators are approximately
proportional to their densities; hence, their diffusivities are
similar. But the heat capacity per unit volume of the sample
can vary widely since it depends upon density and specific
heat. Thus, for low density organic insulators the heat
capacity of the heater may represent an appreciable fraction
of the heat capacity of the sample. In.such cases it is necessary
to treat the heater as a separate layer with its own thermal
properties and to determine the diffusivity of the sample from
an analysis of a double layer infinite slab model.

2. THEORY
The temperature distribution, &x, ), within an infinite
slab of thickness, L, is given by the solution of the one
dimensional equation of linear heat flow with specified
boundary conditions.

ab (x,t) = 8{x,t)for0 < x < L. 1)



