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THERMAL CONTACT CONDUCTANCE 
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Abstract-This paper considers the resistance to the flow of heat between two thick solid bodies in contact 
in a vacuum. Existing analyses of single idealized contacts are summarized and compared, and then applied, 
together with results of recent electrolytic analog tests, to predict the conductance of multiple contacts. 

“appropriately” or “inappropriately” distributed at the interface. Reconsideration of the theory of inter- 
action between randomly rough surfaces shows how the parameters required to predict heat transfer can 
be determined in principle by simple manipulation of typical profiles of the mating surface, together with 
an approximation from deformation theory. It is also shown that this process depends more crucially 
than had been realized upon the distribution of the few high peaks of the surfaces, where the assumption of 
Gaussian distribution of heights is suspect. In place of that assumption, the use of describing functions is 
suggested. 

The few experimental data relevant to these theories are examined and compared with predictions of 
theory. 

NOMENCLATURE 

area ; 
area of apparent contact ; 
area of actual contact ; 
radius of an elemental heat 
channel ; 
radius of a contact spot ; 
displacement of contact spot; 
distribution of peaks, defined 
Appendix B(3) ; 
group radius ; 
microhardness ; 
contact conductance ; 
thermal conductivity; 
total length of a trace; 

in 

lengths of traces in contact spots ; 
number of contacts in a given area ; 
number of contacts per unit area; 
pressure ; 
distribution of heights; 
distribution of slopes; 
rate of flow of heat through a given 
area ; 
radial coordinate ; 
number of interactions between 
two profiles in a given length ; 

temperature ; 
the mean of absolute slope of a 
profile ; 
step function ; defined in Appendix 

C; 
coordinate axis (taken along a 
profile); 
profile height measured from the 
mean line ; 
distance between mean lines of 
two profiles engaged in contact ; 
coordinate axis; 
eigenvalue ; 

small distance (Appendix B( 1)) ; 
Y), Dirac delta function ; 

mean distance between two con- 
tacting surfaces ; 
standard deviation of profile 
heights ; 
contact resistance factor. 
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I. INTRODUCTION 

THIS paper is concerned with the temperature 
distribution near an interface between two 
solid bodies in contact when heat flows normally 
from one body to the other. Interest in accurate 
understanding of this has increased recently, 
due to the need to know as accurately as possible 
the temperature in fuel elements of nuclear 
reactors and other equipment in which high 
heat fluxes flow from one body to another. 
Much of the experimental and theoretical work 
in this field has been done in the last fifteen 
years, though mathematical groundwork was 
laid in the 19th century. This paper presents a 
theoretical analysis, arising largely out of recent 
work at Massachusetts Institute of Technology, 
which is compared with recent experimental 
results. 

Two bodies which are in contact at nominally 
flat surfaces will actually touch only at a few 
discrete spots. Hence the exact temperature 
distribution is complicated and three- 
dimensional. An approximation, adequate for 
many purposes, is to define and determine a 
hypothetical temperature drop AT, = ( Tl - T,), 
as shown in Fig. 1. At a distance from the inter- 
face which is large compared with the typical 
spacing between conta”ctcy the temperature in 
each body is then taken to be: 

T1 (or T,) - 
heat flux x distance from interface 

conductivity 

Provided the relative positions of the bodies do 
not change while the heat flux is varied, it is 
found that AT, is proportional to the heat flux 
(Q/A), and the constant of proportionality, 
defined by h, = (Q/A)/AT, is known as the 
thermal interfacial contact conductance, abbre- 
viated herein to contact conductance. 

Thisdiscussion, in terms offlow ofheat through 
large plane interfaces, can reasonably be ex- 
tended, with obvious verbal changes, to apply 
to curved surfaces such as concentric cylinders 
with radial heat flow, provided the radius of 
curvature is large compared with the typical 
spacing between contacts. 

i 

T 

FIG. 1. Elemental flow channel; definition of AT,. 

The aim of the work is then to predict h, 
That is dependent upon the characteristics of the 
surfaces, the mechanical pressure between them, 
and whether there is any conducting fluid 
(gas or liquid) in the interstices of the interface. 

Theoretical studies have generally been based 
on considering the flow of heat through one 
contact spot and adjacent solid, generally 
idealized as shown in Fig. 1. This idealized flow 
has been analyzed mathematically, as discussed 
in Section 2 below, but in any actual case there 
are many contacts of different sizes distributed 
across the interface. Even if we assume for the 
moment that the distribution of contacts is 
known, the pattern of flow of heat through a 
general distribution of contacts is extremely 
complicated. It is shown in Section 3 below that 
a reasonably accurate answer can be determined 
readily, provided the number and size of the 
contacts are known and provided they are 
“appropriately” distributed, in a sense dis- 
cussed in Section 3. Also an approximate 
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allowance can be made in some cases for de- 
viation of the distribution from the “appro- 
priate” one. Zn practice, the dist~bu~on of the 
contacts is not generally known. Instead some 
information is available concerning the sur- 
faces, in the form of detailed cross-sections, 
or surface roughness readings, or perhaps merely 
a knowledge of the method of manufacture” 
In Section 4 we consider how analysis of the 
profiles or other data can give information about 
number, size and distribution of contact spots. 
In Section S we use deformation theory, to 
relate the pressure between the bodies to the 
size and distribution of contact areas, and con- 
sider how the bodies deform under load, if for 
example they were not originally flat. 

In Section 6 the theoretical work is synthesised 
to relate h, to the characteristics of the surfaces 
and the pressure between them, and the results 
are compared with results of experimental 
measurements of h, 

2, SINGLE CONTACTS 

Useful theoretical studies of the flow of heat 
between solid bodies have been based on con- 
sidering the flow of heat through one micro- 
scopic contact region and adjacent solid, ideal- 
ized in the form shown in Fig. 1. This problem, 
of flow of heat through abutting cylinders, was 
studied by Cetinkale and Fishenden [l] who 
showed that, even if the cylinders had different 
conductivity and heat is also conducted through 
the interstitial gap, there exists an isothermal 
plane at z = 0 (suitably subdividing the inter- 
stitial gap). The problem involving two cylinders 
can thus be reduced to the simpler problem of 
one cylinder, with in the present c;tse, tempera- 
ture specified over part of the boundary and 
heat flux specified over the remainder. Although 
simpler, this problem has nevertheless defied 
exact analytic solution, due to the mixed bound- 
ary conditions, though an exact numerical 
solution has recently been reported by Clausing 
[2]. Some early work on the analogous electrical 
problem contained approximations which were 
only close for very small values of (c/b). Solutions 

c 

for larger (c/b) were obtained independently by 
Roess [3] and by Mikic f4], who replaced the 
temperature boundary c5ndition at z = 0 by a 
dist~bution of heat flux : 

proportional to 
1 

(c2 - 9)) 
forr <c 

zero fore <r -=zb, 

This dist~bu~on was chosen so as to make 
T nearly constant at z = 0, r < c. The revised 
problem could be solved exactly. This has 
apparently not been described outside the report 
literature, so it is summarized in Appendix A, 
where it is shown to lead to 

h,=uijx-$ 

where 

and 

Ic/ is given by equation (A.12) or Fig. 2. 
The results obtained by Roess and by Mikic, 
though expressed in different algebraic form, 
agree closely for 0 K (c/Q < 0.4. 

Clausing [2] reports a numerical calculation 
of the heat flow pattern using the true boundary 
conditions of zero flow at r = b and at z = 0, 
r > c and constant temperature at z = 0, r -z c. 
His result and those of Roess and Mikic are in 
close agreement for 0 < (c/b) c O-4 and only 
differ by a few percent for (c/b) = 0.6. 

Clausing”s is the only calculation which aims 
at high accuracy for large (c/b), so the graph of 
$ has been continued beyond (c/b) = 0.4 by 
using Table 1.1 of [2] as far as that table goes, 
i.e. to (c/Q = 0.833. Contacts with still larger 
values of (c/b) will have small resistance, so 
the precise value of $ for larger (c/b) is of little 
practical importance. 

As indicated in Fig. 2, various approx~atio~s 
can be made for tl, and the choice between them 
will depend on the range of (c/b) involved and 
the accuracy needed. 
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FIG. 2. Contact resistance function $. 

3. MULTIPLE CONTACTS 

FIG. 3. General configuration and heat flow for multiple 
contacts at plane interface. 

In the previous section the contact conduct- 
ance was derived for a single circular contact 
spot placed centrally in a cylindrical region. 
The aim of this section is to extend that work 
towards more practical cases by considering m 
contacts of areas &, A,*, A,, (of equivalent 
radii cl, c2, . . c,) distributed over an area of 
apparent contact A, between abutting cylinders. 
It is still assumed that the interface is nearly 
plane, and that the heat enters and leaves the 
cylinders over end surfaces at great distance 
from the interface. 

Heat flows 
symmetric 

3.1 Equality of temperatures at contacts 
On these assumptions the local configuration Body 2 

is as shown in Fig. 3, and it can be shown that all 
contacts must be at the same temperature, 
provided in each body the conductivity is 
independent of direction, position and tem- L 

+ 
P2 

perature. The proof can be based on the more FIG. 4. TWO bodies having mirror symmetry about plane 
general symmetrical case shown in Fig. 4, where interface. 
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there is mirror symmetry in the sense that if 
P,(x,, yi, zl) is on the surface of body 1, then 

P,(x,, Y11 -zJ is on the surface of body 2, 
and in addition, for any typical specified inflow 
of heat into body 1 at point P, there is a corre- 
sponding outflow from body 2 at P,. For this 
case we need a solution of: 

with : 

V’T = 0 in each body 

kg = specified values at points on boundary, 

and at the interface z = 0: 

k, z = (TI - T2) h, = k, 2 outside contact 

spots 

k “T1-k 3 
1 - 

oz 2 dz’ 
T1 = Tz inside contact 

spots 

where I?,. is a void conductance, not necessarily 
constant. 

This problem has a unique solution, apart 
from an additive constant, so the problem is 
virtually solved if we can construct one solution, 
by any means. 

A solution can be constructed by solving for 
body 1: 

with 

V2(k,T) = 0 l-4 

W, T) 
- = specified values at P,, etc. 

ani 

and 

spots i 
inside r 

atz=O 

k,T = 0 contact 
spots J 

and solving for body 2 similar equations with 
suffices 1, 2 interchanged, the direction of the 

normal outward instead ofinward and a negative 
sign before h,,. 

The two sets of equations are identical in 
terms of (kT) apart from sign changes which 
may be assigned to T and z. Hence the two 
solutions are also identical except for these 
sign changes. The solutions therefore have 
negative mirror symmetry in the sense that the 
value of (kITI) at (x,, yO, zO) is equal to minus 
the value of (k2T2) at (x0, y,, -zO). It follows 
that the various boundary conditions at z = 0 
are also all met, and by taking TI in body 1 and 
T, in body 2 we have a solution for the complete 
problem shown in Fig. 4. Since that problem has 
a unique solution, this must be the solution 
(apart from additive constant). Hence the 
contacts are all at the same temperature for the 
case shown in Fig. 4, and for the special case 
shown in Fig. 3. 

Provided h, = 0, the condition requiring 
conductivity to be independent of tem~rature 
can be relaxed by use of the substitution 
T’ = (l/k,)[kdT ([5], Section 1.6). Symmetry 
will then be in terms of (k,T’). 

Full analysis of heat flow through multiple 
contact spots is still very complex, but contact 
conductance is relatively easy to estimate if for 
each contact spot the flow can be reasonably 
approximated by a straight cylindrical flow 
channel as shown in Fig. 1 and discussed in 
section 2. 

For each such channel the results of section 2 
and Appendix A can be applied, hence from 
equation (A14): 

For these channels to form part of a multiple 
array of channels in parallel, AT, must be the 
same in all channels. This implies a relationship 
between the size of contact spots and the flow 
through them, since it requires that all contacts 
should have the same value of (2k AT,) which 
is {Q/(c/$)). Hence the total heat flow Q over 
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area A, must be subdivided into Q1 through 
contact 1, Q2 through contact 2, etc. 
where 

hence 

Q1 = Q2 = etc. 

ClltcIl c2/+2 

neglecting variation in Jri 
Alternatively, the total flow area A, can be 
regarded as subdivided into areas A,r , Arr2,. . . 
each supplying the heat flow to corresponding 
contacts, where 

= A, 2 neglecting variation in Il/? 
J 

(3) 

If the area A, can be subdivided into these areas 
A,< in such a way that for all i the area Aai lies 
around the ith contact, then the flow at each 
contact spot can be reasonably approximated 
by Fig. 1. The contacts are then said to be 
“appropriately” distributed. 

This is not a precise definition, but it is 
~ticipated that contact conduct~ce is not 
greatly affected by slight deviation from “appro- 
priate” distribution. A distribution which is 
sufticiently “inappropriate” to affect the con- 
ductance appreciably would appear “inappro- 
priate” to the eye. 

Since AT, is the same for all channels, and for 
the multiple contact region as a whole, h, for 
the multiple contact is the same as for any of 
the individual channels, namely : 

= 2k 2 neglecting variation in ll/? J 

Furthermore, this ratio Cc,IA, can be deter- 
mined readily from protilometer traces for the 
mating surfaces, provided the surface rough- 
nesses are random (Appendix B(i)). 

3.3. Contacts not “‘appropriately” distributed 
If the contact spots are not “appropriately” 

distributed the division of heat flow and the 
contact conductance are greatly complicated. 
Intuitively it would seem that the conductance 
will fall. Since the conductance for the same 
contacts in “appropriate” distribution is readily 
known, we have attempted to work from that as 
a starting point. It would be desirable to devise 
a measure of the maIdist~bution which could 
be determined from knowledge of the layout of 
the contacts (or better still, from the character- 
istics of the mating surfaces), and then apply it 
to determine the decrease in conductance due to 
maldistribution. Some progress can be reported 
in this direction. 

Multiple contacts. An approximation origin- 
ally suggested by Holm [6] is that if two semi 
infinite bodies are in contact at m spots of 
radius c, grouped into a cluster with an envelope 
of radius g, then the resistance is the sum of that 
due to m independent contacts in parallel, 
each of radius c, plus that due to a single contact 
of radius g. This has been discussed for example 
by Greenwood [7]. It suggests an adaptation 
for multiple contacts within a cylinder, more 
conveniently worded in terms of tem~rature 
drop, that if there are m contacts of radius c, 
grouped into an evenly spaced cluster within 
radius g, in a cylinder of radius b (> g) then the 
interface temperature drop due to heat flow Q 
is equal to the sum of the temperature drop in a 
single contact of radius g in a cylinder of radius 
b with apparent heat flux Q/xb’ plus the tem- 
perature drop in a single contact of radius c 
in a cylinder of radius (b/Jm) with apparent 
heat flux Q/zb2. As Greenwood points out, these 
approximations depend on the partly arbitrary 
choice for the radius g. He calls this the Holm 
radius and discusses its value, finding by cal- 
culation that for contacts between semi infinite 
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bodies a general rule of thumb is to take 7rg2 
equal to the area of an envelope lying outside 
each peripheral spot by a distance equal to the 
centre to centre separation from its nearest 
neighbour. For contacts between cylinders, 
experiments using the electrolytic analog at 
Cambridge University [8] and M.I.T. [9] 
suggest broadly that a similar definition for g 
is appropriate for contacts between cylinders. 

Single, eccentric contact. Other experiments 
have been reported in which the electrolytic 
analog was used to study the conductance 
through a single circular contact spot in a 
cylindrical channel, when the contact is dis- 
placed from the centreline of the channel 
[8,10-121. The aim is to form a basis for assessing 
the effect of maldistribution of contacts, by 
regarding maldistributed contacts as lying off 
the centrelines of their corresponding areas A,? 
The method may prove to be limited in appli- 
cation to small displacements from “appropri- 
ate” distribution. 

Considering the single eccentric contact spot 
as such, arguments from image theory suggest 
that as a small contact approaches the boundary 
the contact resistance would increase to approxi- 
mately ,/2 times its original value, and this is 
borne out by experiment. Also, although most 
results of such tests have been expressed in 
terms of the fractional increase in resistance due 
to displacement, it is shown in [8] that, as with 
multiple contacts, the results could more con- 
veniently be correlated in terms of an addition 
to resistance (or interfacial temperature drop) 
due to the displacement. For a contact displaced 
by distance d from the centre line of a cylinder 
of radius b, the increase in resistance is approxi- 
mately 3(d2/bk) so the conductance is given by : 

1 nb2 d2 

h,=zF3bk 

or, in dimensionless form 

k 
-_=3!*+3 
bh, 2 c 

This is purely empirical, and the convenience 
lies in the surprising fact that the added resist- 
ance is independent of the contact radius c. 
It appears to apply for 0 < (c/b) < 05 and 
0 < d < (0.85b - c) within the scatter in the 
experimental results, which arises from the 
difficulty of measuring accurately the small 
changes in resistance. 

4. ANALYSIS OF PROFILES 

In Section 3 it was shown that there is a 
relationship $h,/k = 2&/A, between the contact 
conductance in vacuum and the sum of radii 
of contact spots if these can be approximated to 
circles and are “appropriately” distributed. 
In section 5 it will be shown that there is a 
relationship AJA, = pJH between the area 
ratio and the ratio of apparent pressure to 
microhardness, on certain assumptions. The 
aim of this section is to link them by relating 
2ZcJA, to A,/A,. We consider only surfaces 
which are nominally flat and have random 
roughness, i.e. surfaces in which the amplitude 
of the random roughness greatly exceeds the 
total amplitude of any lay or bowing across the 
entire surface. Initially it will be assumed that 
each surface is characterized by a protilometer 
trace. Later it will be suggested that describing 
functions can be defined to characterize a 
surface instead of using its complete profile. 

4.1 Relation of profile parameters to contact and 
total areas 

For such random nominally flat surface, all 
parts of the profilometer traces (Fig. 5) obtained 

Y 

FIG. 5. Typical surface profile (vertical scale exaggerated). 

in all directions across the surface will show the 
same pattern, with the same statistical varia- 

tions. If two such surfaces are placed in contact, 
and imaghred to be sectioned by some means, 
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FKL 6. Profiles of contacting surfaces (vertical scale ex- 
aggerated 1. 

then all parts of the combined cross-section 
(Fig. 6) will show the same pattern, with the 
same statistical variations. In a typical length 
of the combined cross-section, of length L, 
suppose there are s contacts, of length Eel, lC2.. . 
l,, and let X1, represent the sum of these lengths. 
It is shown in Appendix B( 1) that : 

Cl,. 21, 
the mean value of L IS -i- 

0 

overlap for a length I, of the trace, the surfaces 
would in fact deform and produce a region of 
actual contact of length i, along the trace. 
Arguments exist for suggesting that the ratio 

(a) less than one, due to elastic deformation 
of underlying layers of the material ; 

(b) greater than one, due to plastic flow of 
material from the peak towards the neigh- 
boring depressions. 

The usual assumption is that I$, = 1, and this 
is assumed here. Jf two profiles are matched in 
this way, a relationship can be obtained between 
Cl,/L and s/L for the particular sections of 
trace, as the distance between them is varied. 
This relationship completes the chain between 
h, and pU as fol!ows: 

the mean value of i is 2 “i’ (7) i L! 

where the means are averaged over the whole 
ensemble of possible cross-sections across the 
surface, and the symbols have the meanings 
given in earlier sections. It is also shown in 
Appendix B(2) that the distribution of contact 
lengths IfIr I,, . . is (indirectly) related to the 
scatter of sizes of contact spots, cl, c2.. . but 
that it is extremely difficult to relate the distri- 
bution of lengths of intervening gaps to the 
spatial distribution of the contact spots in the 
area A,. 

where the first and the last equalities are derived 
in sections 3 and 5, and the second and third 
equalities are derived in Appendix B(1). The 
separation between the surfaces does not appear 
in that chain. but it is discussed in Section 4.4 
and it can be derived from the profiles if required, 
for instance to determine conductance across 
fluid in the voids at the interface. 

and 

4.2. Deter~i~t~on of profile parameters 
If profilometer traces are available for both 

surfaces, of sufficient length to represent the 
surfaces and their statistical variations, then 
the interaction of the two surfaces can be 
represented by bringing those two traces in 
contact, as shown in Fig. 6. It is customary to 
assume that, where the undeformed profiles 

The actual matching of profiles is a very 
laborious graphical process. but somc results 
are available, mainly, however. in the range 
10-2 < r-E& < 10-l which corresponds to 
higher pressures than were used for most of the 
heat-transfer tests on the surfaces in question. 
Those heat-transfer tests typically correspond 
to C&/L in the range 10e3 to lo-‘. and s/L in 
the range 1 to 10 contacts per inch of cross- 
section. Since a trace typically corresponds to 
0.5 in, of actual surface, s/L cannot be deter- 
mined accurately from one profile matching 
operation. The results will in fact depend 
(even more crucially than had been realized) 
on the distribution of heights of the highest 
peaks on the two surfaces, and this has apparently 
not been closely studied. It is sometimes assumed 
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that heights of a surface form a Gaussian 
distribution, but that distribution is often 
implicitly or explicitly assumed to be truncated 
at three or four times the standard deviation. 
Greenwood and Williamson [13] report finding 
that the distribution is nearly Gaussian for two 
standard deviations, but that is not enough for 
the present purpose. It may be very dependent 
on factors in the method of manufacture which 
have not been determined. The assumption of 
Gaussian distribution cannot be regarded as 
any more than a general guide for the distribu- 
tion of these peaks. 

4.3 Reduction of statistical scatter 
This suggests that it will be difficult to obtain 

data from profile matching to give the relatign- 
ship required between s/L and X1,/L in the 
range corresponding to the experiments. How- 
ever, study of the probability of overlap between 
two Gaussian populations of standard deviation 
o1 if their means differ by 4.2 g1 [ = 3J(2) g,] 
indicates that although the probability of over- 
lap is 10V3, the majority of the overlap arises 
from those parts of the individual populations 
lying 262.5 c1 from the mean of their popu- 
lations, and the probability of such deviation 
from mean is lo-’ or so. As stated above, we 
cannot assume that the surface heights are in 
fact on a Gaussian distribution, but the overlap 
of Gaussians suggests that the peaks involved 
in surface interactions may not be too rare along 
a profile of manageable length. This suggests 
that the information necessary to relate s/L 
and ClJL in the required range may be present 
in the profiles, but the extraction of that infor- 
mation must be done more completely, giving 
significant reduction in the statistical scatter 
in the results, without further increasing the 
labor involved. 

Recognizing at an earlier stage the need to 
reduce statistical scatter, Fenech [14] obtained 
ten readings from a single pair of profiles at 
the same separation by moving the profiles 
“sideways” (i.e. parallel to each other) to ten 
separate positions. This multiplied the labor 

tenfold, but it suggests a mathematical method 
which in effect takes that process a stage further 
so as to study all possible relative positions of the 
profiles when displaced “sideways” at the same 
separation. The mathematical method gives a 
substantial reduction in scatter without corre- 
sponding increase in labor. It is difficult to 
determine the precise reduction in scatter, but 
if the available length of profile includes one 
hundred peaks (a typical value) then the avera- 
ging is presumably equivalent to averaging the 
results of several hundred individual profile 
matching operations. But the mean of N, 
observations from a random population has 
standard deviation J(l/N,) of the standard 
deviation of the original population, so we may 
here expect a reduction of a factor of ten or so 
in the scatter. This is roughly the improvement 
required. The mathematical method is described 
in Appendix B.3 and involves obtaining two 
describing functions, p(y) and f@) for each 
surface, from which the required X1,/L and s/L 
can be obtained by integration which effectively 
averages the values of these quantities obtained 
for all relative “sideways” positions of the 
traces. Once the describing functions have been 
obtained for a surface, this method will determine 
its interaction with any other surface for which 
the describing functions are also known. This 
may lead in due course to a means of characteri- 
zing surfaces in terms of more accessible para- 
meters, such as r.m.s. and method ofmanufacture. 

4.4 Mean gap between surfaces 
In theoretical studies of contact conductance 

with a fluid in the interstices, and in some studies 
of conductance in vacua, the mean gap (6,,,,) 
between surfaces appears as a significant factor. 
It is not required for the present study in uacuo 
but it may be noted that a,,,, seldom differs 
significantly from the gap Y between mean 
planes. Unless the applied pressure is extreme, 
the difference (6,,,, - Y) is of order YAJA,,, 
which is often negligible. 
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4.5 Assumed Gaussian distribution 
As an alternative to the matching of actual 

profiles, various theories have been developed 
to relate s/L and Cl& on specified assumptions 
about the distributions of the heights and slopes 
of the surfaces. Appendix C establishes the 
relationship, assuming the distribution of heights 
is Gaussian and the distribution of slopes is 
independent of the height. The resulting relation- 
ship is similar to that obtained by matching 
profiles in the range 10V2 < Cf,,JL c: IO-‘, but 
more information is needed to determine this 
applicability to the range low3 < X$/L < 10m2. 

It was seen in the previous section that in 
order to predict contact conductance, we need 
a relationship between the pressure applied 
at the interface and the actual contact area A, 
or the ratio A,/A,. For normally rough surfaces 
un&r typica1 pressures, this ratio is very small, 
so the mean pressure over the actual contact 
area is much higher than the nominal applied 
pressure, and the question arises whether the 
material behavior is elastic or plastic. Some 
analyses have used Hertzian (elastic) theory, 
but this is not directly applicable if plastic 
flow occurs. 
If the surfaces are imagined to be moved 

normally towards each other, then successive 
contacts are made, deformed elastically, and 
then may flow plastically as the nominal 
interference (between undeformed protIles) in- 
creases. Two independent studies, by Mikic [4] 
and by Greenwood and Williamson [ 131 suggest 
that even at moderate nominal pressures only 
very few of the contacts have s~cientfy light 
interference for their behavior to remain elastic. 
Both studies assnme that the asperities can be 
represented by spherical surfaces in contact, 
and that the heights of such asperities on the 
surfaces form a Gaussian distribution. Mikic 
employs Hertzian (elastic) analysis, to deter- 
mine the stresses as a function of the inter- 
ference, and deduces the interference at which 
elastic stresses are exceeded, so behavior be- 

comes plastic. Applying this to typical surfaces 
of practical interest with r.m.s. a few times 10V4 
in., and mean slope of profile 0.1 (as defined by 
equation (C5)) indicates that less than l per 
cent of the area in contact is in the elastic state. 
This conclusion is broadly supported by Green- 
wood and Williamson, who defined a plasticity 
index, p.i., and determine the fraction of contact 
area which remains elastic, as a function of p.i. 
They show that fraction fell from some 90 per 
cent to 50 per cent as p.i. increased from O-9 to 
1.3. No means of extrapolation were given, and 
their work was at low pressures (15 lb/in.“), 
but since they report that their results were only 
weakly dependent on pressure, the general 
trend of their results suggests that, for the experi- 
ments to be reported here (for which p.i. = 2.5 
or more) very little of the area in contact will 
remain elastic. 

The matter is also affected by the history of 
previous foading, but for simplicity we take 
it that the contacts are all plastic, and we also 
assume that at each contact, the pressure is 
equal to the maximum which can be sustained 
by the softer of the two materials when 
plastically deformed. This can be related to 
the pressure under the indenter in a hardness 
indentation test, and some workers have used 
different values for this for different sizes of 
contact, because the pressure developed under 
an indenter depends on the size and shape of 
indentation However, the approximate nature 
of the remainder of the theory suggests that this 
refinement can be discarded, and we adopt the 
simple assumption introduced by Holm [15] 
that the mean pressure under contacts is H, 
obtained from indentation tests of size com- 
parable to the contacts. We will therefore use 
the expression : 

P, 4 
li=A, (9) 

with H = 350,000 lb/in2 for stainless steel, 
and 135,@?0 lb/in.2 for aluminum. 

In making this simple assumption, we are, 
in effect, considering the initial contact of the 
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two surfaces, ignoring the possible effect of 
previous contacts, and also ignoring possible 
subsequent effects due to creep, thermally 
induced distortition, etc. 

6. RESULTS 

6.1 Profile matching 
A few results are available for the laborious 

process of obtaining the relationship between 
C&/L. and s/L by profile matching. fn [14] 
they were obtained graphically and in [16] 
they were obtained by analog computer. Ex- 
tracting and plotting the data from these 
publications in the form of a relations~p be- 
tween E&/L leads to the two lines shown on 
Fig 7. 

FIG. 7. Profile matching data. 

Very few results are available for measured 
values of h, in vacuum for surfaces for which 
profile matching has been done. The chief 
example is in [16]. However, as explained in 
Section 4 above, these profile matching data 
were taken for ranges of the parameters which, 
when treated by the theory of Section 4, corre- 
spond to high interfacial pressures, with pJH 
in the range 0~01 to 0.1. They hardly overlap 

at all with the experimental measurements of 
heat transfer, as shown in Fig, 8. In that graph 
the heat-transfer resuhs are plotted as he/k 
against pJI3 and the profile matching results 
are plotted to the same scales as s/L against 

1 

FIG. 8. Comparisons of regions where heat transfer and 
profile matching data are availabk. 

C&/L, in view of the theory, equation (8), that 
h,/k = s/L and p,JH = X1,/L ($ x 1). The results 
are inconclusive, due to the different ranges 
covered, and due to the inherent diffl~~ty in 
obtaining accurate values of s/L in the required 
range, of a few interactions per inch of trace. 

No results are available for a pair of surfaces 
being subjected both to heat-transfer test in 
vacuum and to profile analysis using the de- 
scrigmg functions p andf defined in Section 4, 
Hence no comparison can be made between 
experiment and that theory. 

6.2 Gaussian surfaces 
Some results are available [4, 16, 171 for 

measured values of h, in vacuum for surfaces 
for which the equivalent Gaussian variance cr 
is known, and for which the mean modulus of 
the slope (ItanT) has been obtained from 
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profiles. Assuming that the surface heights --- 
form a Gaussian distribution and that [tan 01 
is independent of height, the theory of Appendix 
C combined with equation (8) would predict 
conductance as shown by the line QIZ Fig. 9. That 
graph is plotted as 

!!L”-c_ 
k (W[l 

against 5 
N 

_ Theory based on gaussian 
distribution of heights: 

oam 0004 0.0, 0-i 

e 
x 

FIG. 9. Contact conductance vs. pressure for nominally flat 
surfaces in a vacuum. 

because the theory of Appendix 
directly a relationship between 

C predicts 

s Q 
_- 

L (-=-Q-/t 
and 5. 

L 

The experimental points are seen to follow the 
predicted trend, but to Fall in a band lying 
between 100 per cent and 50 per cent of the 
theoretical value. This agreement is fair, in 
view of the uncertainty about the actual distri- 
bution of the few high peaks which are princi- 
pally involved in the interaction, and in view 
of the neglect of possible maldistribution of 
contacts, which would reduce the conductance. 

7. CONCLUSIONS 

Reconsideration of the interaction between 
nominally flat, randomly rough surfaces leads 
to the theory that : 

; II/ = 2 2 = 5 which relates to 
(1 

CI A, p,, .._c - - - 
i A, H 

where : 
the first equality depends on “appropriate” 
distribution of contact spots ; the second and 
third depend on having representative sections 
of profites ; the fourth depends on a simplified 
theory of plastic defo~at~o~ ; the linking rela- 
tionship between s/L and SC/L is discussed 
below. 

The relationship between s/L and X1,/L is 
important, and has not yet been sufficiently 
explored in the relevant range. It can be ob- 
tained either from graphical profiie matc~ng 
or less laboriously from ‘describing functions”’ 
for the surfaces or theoretically if the surfaces 
are assumed to be Gaussian, with distribution of 
slope independent of height. It depends crucially 
on the distribution of the highest peaks on the 
surfaces. This reflects the fact that the heat 
transfer depends more crucially than had been 
realised on that distribution of highest peaks. 

Graphical profile matching has been reported 
for a few specimens, some of which were 
subs~uently subjected to heat-transfer tests. 
IIowever, the data on profile matching eorre- 
spond to higher interfacial pressures than were 
used in the heat-transfer experiments, so the 
comparison is inconclusive (Fig, 8). 

The describing functions are aimed at de- 
scribing a surface in a manner which is concise, 
and yet contains the information needed to 
predict its interaction with another surface 
similarly described. They may lead to closer 
understanding of the factors involved. 

The assumption that the distribution of 
surface heights is Gaussian leads to the relation- 
ship shown in Fig. 12, which is compared with 
experimental results in Fig. 9. The experimental 
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results lie between the theoretical curve, approxi- 
mated by the line: 

h. Q) 

and a line lower by a factor 2. Until further 
information is available, this can be taken to 
indicate the range within which the contact 
conductance is expected to lie. It can be deter- 
mined from the,r.m.s. surface roughness and the 
mean slope for each of the surfaces, derived 
from profilometer traces. 
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It is shown in [l] and more generally in 
section 3.1 above that for the idealized single 
contact shown in Fig. 1 the temperature is 
uniform across the contact spot. The flow can 
therefore be anaiysed by considering only one 
of the two bodies, provided a boundary con- 
dition of uniform temperature is imposed 
across the contact spot. Considering body 1 
we seek a solution of: 
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v27’ = 0 (Al) 

which satisfies the following boundary con- 
ditions : 

T = To = constant 0 < Y < c 
1 

k %() atz = 0 (A2) 

1 i?z 
C<Y<h 

k!? 2 

1 aZ -+ xb2 
Z-+00 

k%(J 
1 ay 

r=b (A4) 

and has no singularity at Y = 0. 
The last condition, together with (A3) restricts 

the solution to the form : 

T= & z + f {C, e-a+Jo(a,r)} + Co 
1 n=1 

(A5) 

where the eigen values an are determined from 



292 M. G. COOPER. B. B. MIKIC and M. M. YOVANOVICH 

the following conditions imposed by (A4) 

J,@“b) = 0 (A6) 

and the values of C, and C, should be found 
from (A2). However, (A2) is a mixed boundary 
condition, causing mathematical difficulties. If 
instead we had a boundary condition entirely 
in terms of heat flux, direct analytic solution is 
possible. We therefore use a boundary con- 
dition over area 0 < I < c, z = 0 in the form of 
a temperature gradient distribution which will 
lead to a nearly constant temperature in that 
area. When c/b is very small, that temperature 
gradient is known to be Q/27rklcJ(c2 - r’), so 
in place of (A2) we take 

kT= Q 
l az 2nc(c2 - r2)f 

O<r<c 1 
k !Lo 
l az ! 

at z = 0. 

c<r<b 

tA7) 

Assuming this is an acceptable approximation 
for moderate values of (c/b), we may determine 
the C,, of (A5) by using (A6), (A7), the orthogonal 
properties of Bessel functions and the integral 
relation 

c 

s rJo@) sin (ac) 

(c2 - r2)* 
dr = - (‘48) 

CI 
0 

which lead to 

Q b b 

nk,b2 s rJ,(a,r) dr + C,CX, 
s 

rJi(a,,r) dr 

0 0 

Q ’ s rJohd dr 

= Z&i (c2 - r2)* 

hence 
0 

e 
_ a,z sin (CL,C) Jo&v) 

(a,b)2 J&=,4 . 
n=1 

For z = 0, the mean value of T is Co, by virtue 
of (A6). For z = 0, r < c, T should be uniform, 
in accordance with boundary condition (A2), 
but in fact it is not quite uniform as boundary 
condition (A7) was substituted for (A2). For 
small (c/b) T is nearly uniform here, and we 
take its value to be the mean, i.e. 

c 

TO = -$ (Tbzo 2nrdr 
s 
0 

= co + $ W/b) (All) 

where 

In view of (A6), this is a function of (c/b), and it 
is plotted as such in Fig. 2 The value of t@(O) 
is 1. 

Comparing (AlO) and {Ail) we see that the 
contribution of this temperature distribution 
to the hypothetical temperature drop AT, is 

AT, = 

Hence 

Ax=& f 
0 

Q sin (oI,c) 
C,p,, p J$(qb) = - - 

2nk,c a,, 
(A9) 

where 

Substituting for C, from (A9) into (A5) gives : 

W3) 

6414) 
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and 

h _ @ _ 2kc 
e 

AT, nb2$(c/b) 
(A15) 

APPENDIX B(1) 

Three Geometrical Propositions 

Consider an area A, (Fig. 10) in which 
“inner regions” & Ar2,. . . A,.,,, are defined. 
A line is drawn across A, and it intersects s 

‘2 

FIG. 10. Apparent area A, with inner regions A,,. A,,, A,, 

of the regions Ariv namely Alp, Alq,. . . A,, and 
the lengths of this line lying within A,, Alp, 
A rq, . . * A,, are respectively L, lep, leq, . . . I,,.. 
Define 

A, = A,, + A,, + . . . A,,,, 

El, = I,, + I,, + . . . 1,, 

then the propositions are : 

(1) For all such lines, the average value of 
UC/L is A,/A, 

(2) If further the inner regions A,i can each 
be approximately represented by a circle 
of radius Cg then 

the average value of s/L is 

2 
Cl + c2 + . . . c, 

4 ’ 

(3) If further the ci do not vary widely, so that 
the mean of ci is nearly equal to the r.m.s. of 
Ci, then the average value of s/L is approximately 

Proof 

(1) Consider a family of lines shown in Fig. 10, 
parallel to the original line, all spaced at interval 
6, which is small compared with the dimensions 
of A, and all Arti 

The total length of all these lines within A, 
is approximately Add, and the total length of 
all these lines lying within any A,i is approxi- 
mately A&3. By summing for all i, the total 
length of all these lines lying within all A,i 
is approximately A,/& In all of these approxi- 
mations, and others below, the fractional error 
tends to zero as 6 tends to zero. 

Hence, for all these lines, the average length 
of line lying within the A,i per unit length of line 
lying within A, is : 

i.e. for an average line 

3 _ 4 - -. 
L A, 

(2) If a typical inner region A,i can be repre- 
sented by a circle of radius Ci and if 6 is small 
compared with ci, then the number of lines 
intersecting Ari is approximately 2(c,/6) hence 
the total number of intersections of all Ari 
by lines is 2(c1 + c2 + . . . c,,,) 6. 

Hence, for all these lines, the average number 
of intersections per unit length of the line 
lying within A, is : 

lim 2(c, + c2 + . . . c&3 

a=0 I 4~ I 
2 I 

Cl + c2 + . . . c, = 1 
-I A, J 
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i.e. for an average line The probability that the line also produces a 

s 
2 

r 

Cl + c2 + c, 
contact length lying between 1 and I + dl in 

-_= 
L A, 1. 

that circle is 

Id1 
(3) If mean ci is approximately equal to r.m.s. 
ci. then 

;NP(c)dc __ 
2c(4c2 - 12)o.s 

NP(c) dc 1 dl 
= 2~(49 _ 12)o.s (0 < 1 < 2c) 

so the probability of a random line across the 
circle of radius R producing a contact length 
lying between 1 and 1 + dl is: 

2m 
=- 

A, 

Hence this gives the distribution of contact 
lengths along a profile which is an (inaccurately) 

APPENDIX B(2) observed quantity. To find P(c) from it would 
1. Distribution of Sizes of Contact Spots probably be feasible using some iterative pro- 

It would be of interest to know the distribution cedure on a computer. Alternatively, by approxi- 

of sizes of contact spots at an interface, and it mating the function 

may be asked whether this can be deduced from 1 dl 
the distribution of contact lengths 1, along a 
typical length of matched profiles. If all contact 

2c(4c2 - P)o.5 

spots were circles of the same radius c, then to a straight line, P(c) can be deduced approxi- 

not all contact lengths for lines cutting the mately from the observed distribution of contact 

circles would bc of the same length. The average lengths. No satisfactory straight line approxi- 

length would be (7r/2) c and the distribution can mation is possible, though one might be used as 

be shown to be such that the probability of a a starting point for computer solution. 

contact length lying between 1 and I + dl is: The problem is therefore not simple, and the 

1 dl 
accuracy of any result will be limited by the 

2c(4c2 - /2)“‘5 
for 0 < 1 < 2c statistical scatter arising from obtaining the 

distribution of contact lengths from some given 
zero for 2c < 1. finite length of matched profiles. 

If there are N contacts, lying in a circle of 
radius R and they are not all of the same size, 2. Spatial Distribution of Contact Spots 
but have probability distribution P(c), so that 
NP(c) dc is the number of contacts having It would also be of interest to determine 

radius between c and c + dc, then the probability whether contacts are distributed “appropriately” 

that a random line across the area of radius R across the region, or whether some are grouped 

will cut a contact of radius between c and closely together. If there are n equal contacts 

c + dc is per unit area, uniformly distributed, then the 
area surrounding each contact is l/n and each 

f NP (c) dc. contact will be at a distance of order 21 Jn from 
its neighbors. But the average length of gap 

CE4, 

[s 

P(c) dc 

(4c2 - 12)“” 1 Nl dl ~_ 
2R ’ 

c=1/2 
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along a pair of matched profiles is nearly equal 
to the pitch of the contacts, which is L/S, which 
is ~~~ro~~t~~~ 

Hence, to detect crowding of contacts we need 
to study the d~str~bntion of gap lengths frr 
s cien~ de&if to ~e~e~~~e W&&XX there 
are many gaps oF length < ~~~~ which is 

A J( > n--L 
Ail 

times ihe mean gap lenge. This involves dose 
study of the %@ of a d~s~~~~~o~, far from its 
mean. Such a study requires much ~nfo~at~~~ 
if it is to be at all accurate. Therefore, it seems 
impracticable to obtain information a’trout 

horizontally with vertical distance Y between 
the datnm planes (Fig. S), the quantities normahy 
~~t~~ed from profile rnat~~~ by meas~~ng 
atong the profifes are: 

El, 
L and i 

res~e~t~~~~~ &G lotal con&& length and the 
number of ~o~t~~t~ divided in each case by the 
length of the trace. ff the profiles are d~sp~~~ed 
horizontally while keeping Y the same, these 
quantities will vary statistica.lly, and it is 
desirable to obtairr the mean of such variations, 

These means cam be obtamed if two de- 
scribing f~~t~~~s &$ and f(y) are known for 
each surface, defined as functions of J’, the 
distance from a datum plane (conveniently the 
mean plane) so that : 

p(y)dy = 
length ~3 trace lying ~tween heights p, 3~ + dy 

total length of trace 

number of peaks with tip height between y, y + dy 
fW4~ - - tatal length of trace 

“-7 

m s p(t)dt = 
length of trace lying above height v 

total. 1ecgt.h of trace 
.,“._“A 

Y 

provided in the case of Y(J) that y exceeds the height of the highest ““vaIley’” y,. 

gr~nFjng of caxltacts from study of profifes of 
smfa~es which are nearly random If the prof%s 
show evidence of strong waviness dne to 
machining marks, then maldistribution of con- 
tacts may be deduced from that alone. 

If the profiles are imagined to be placed 

The f~~~o~s ps f and y am only required 
for those vah~es of p for which ~~fer~~~~on with 
the opposing surface is possible (ty~~~a~l~ 
y1 > 1.50,). 

If the profile is available in graphical or 
andog form then the integrals are similar to 
the quantities ~~~o~~y obt~~ by &e tecfl- 
niqnes of ~~~~ or analog profile ma~h~g. 
Those techniques can be used here, though 
here the process is simpler as it does not involve 
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recognition of contacts, so it lends itself more 
readily to automatic processing, perhaps using 
optical projection. 

If the profile is available in digital form, it 
may be simpler to obtain the functions p and f 
directly. 

Given these describing functions pl(yl),fi(yl) 
for surface 1, and pz(yz), fi(_vz) for surface 2, 
then the following relationships apply, as proved 
in section B(3), 2 below: 

mean value of $ 

mean value oft 

where, on the left of these equations the mean 
has considered all possible relative horizontal 
positions of the two profiles at separation Y, 
and on the right hand the double integral can 
be evaluated by digital computer. If the program 
is arranged to integrate along lines y1 + y, = 
constant, then it can produce successively 
answers for successively increasing values of Y 

The first equation is exact. The second equa- 
tion contains a factor C1 which has the value O-7 
if the tips of the peaks are assumed to be 
spherical. 

Modification may be needed if 

(~5~ + yZmaX) > Y or (yImax + YD) > Y. 

Other quantities can also be detrained in 
terms of these describing functions p and f 

The mean value of the modulus of the 
reciprocal of the slope of the profile at height y 
is : 

mean p&j ( i &Yl 
=?y@ 

if y > _yV 

where this mean is a simple arithmetic average 

for all of the points on the profile where distance 
from the mean plane is y_ 

2, broom U~~~l~~~~~~~~~ Stated in 43).1 

Consider those parts of profile 1 which 
lie at distance < y, + dy,, > y, from the mean 
plane In length L of trace the total length of such 
parts of profile is 

Consider the profile of surface 2 as traversing 
horizontally past these parts of surface 1. 
The fraction of the traverse during which these 
parts of surface 1 are in contact with surface 2 is 

pt= co 

yJ~_-y,) PJ”vJdy2* 

Integrating for all yl, the mean length in contact 
during the traverse is 

tYl+YzPy 

Consider those peaks of profile 1 which lie 
at distance < yi + dy, > y, from the mean 
piane. In length L of trace the total number of 
such peaks is 

l;f,cVJ dy,. 

Consider the profile of surface 2 as traversing 
horizontally past these peaks of surface 1. 
The fraction of the traverse during which these 
peaks of surface I are in contact with surface 2 is 

3?4==J 

s 
~z(Yz) dy,, 

yz=‘( -Yd 

Integrating for all yr, the mean number of peaks 
of surface 1 which are in contact with surface 2 
during the traverse is 
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which is 

L (yI it)> y ficVJ PA) dY, dY, 

where “peak” here refers strictly to the topmost 
point of the asperity. 

Neither this quantity nor the symmetrical 
quantity 

L(Y1+!,>Y 
PAYIMYZ) dy, dy, 

is the quantity ‘3” required, the typical number 
of contacts in length L. If Fig. 11 represents a 
typical interaction between one peak on surface 

/ 

/ 

FIG. 11. Typical interaction between peaks if s&faces are 
moved relatively. 

1 and one peak on surface 2 as surface 2 is 
traversed horizontally, then the first integral 
is related to X, (summed for all interactions of 
all asperities) and the second integral is similarly 
related to X,. the quantity required is that 
similarly related to X,. In all cases X, exceeds 
X, and exceeds X,, but X, is less than the sum 
(X, + X,). If the peaks are equal spheres, 
approximated to parabolas, then it is readily 
shown that 

X, = X, = (X,)/J2 or X, = Xl;2X2 

We therefore take it as an approximation that 

S 
-_= 
L Cl ss u-ICYI) P2012) 

(Yl+Yz)‘Y 

+ PI(YIV~(Y~))~~~ dy, 

with C, = approx. l/J2 or 0.7. 

In unit length of a profile there are y(y) 
sections above height y (if y > y,). The profile 
therefore crosses the band between y and 
y + dy y(y) times in each direction. So that 
band contains 2y(y) elements of the profile. 

For such an element, of length l,, 

For all elements in the band, 

1 

( > 

(%/dY) 
mean - = 

slope number of elements 

(%)/dY =--- 
2!f(Y) 

P(Y) 
=m 

where in the averaging process, each element 
(i.e. each crossing of the line at height y) has 
been counted once. 

APPENDIX C 

The number of contacts per unit area can 
be related to the area ratio through a function 
of geometrical parameters of contacting surfaces 
on certain assumptions. 

For each of the surfaces forming an interface 
contact it will be assumed that there exist an 
ensemble of the surface profiles from which 
one can deduce statistical properties of the 
surface, i.e. it will be assumed that there exist 
some probability measures related to the be- 
havior of all the obtained profiles. The above 
assumption implies the existence of an “all 
representative” profile y(x), see Fig. 12(a), 
or the surface heights p(y) as well as a probability 
function for a profile slope p’(j). It will be 
further assumed that random process y(x) is 
stationary and that the distribution of heights is 
Gaussian, i.e. 

p(y)-.L _2$ 
oJ(2)rc exp ( > 

(Cl) 

where y is measured from the mean line of the 
profile and g represents the standard deviation 

D 
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of the surface heights specified by 
L +SX 

1 
c2, limL y2dx= Y%(Y) dy. 

L'CC s s 
0 -0D 

Considering now the profile in Fig 12(a), 
we want to find the expected number of peaks 
per unit length of the profile above a certain 
level Y. 

where S(y - Y), known as the unit impulse or 
Dirac delta, vanishes everywhere except at 

y = Y and satisfies the relation : 

+[S(y - Y)dy = 1. 
--oo 

Hence 

Y[~(Y) &y - Y) dy = f(y). (C2) 

Also, if for x1 < x < x2 y(x) assumes the value 
of Y once and only once, then 

$y’16(y - Y)dx= 1. 

(a) Surface pmfile Consequently, the number of peaks crossed 

t 
per unit length of the profile is given as 

dy-Y) 

I-In nnn xl_ 
(b) Representation of step function 

(c) Counting functional 

FIG. 12 Number of crossings at y = Y for typical surface 
profile. 

The above problem can be solved by using 
the method of counting functionals suggested 
by Middleton [18]. 

Let u(s) be the step function having the 
following properties: u(s) = 1 for s > 0 and 
u(s) = 0 for s < 0. Then z&(x) - Y) has the 
shape given in Fig 12(b). Differentiating ~0, - Y) 
one can obtain the counting functional (see 
Fig. 12(c)) as 

&y - Y)] = y’qy - Y); y’ = 2 

L 

S 1 
-=,‘“Eo Iy’IiS(y- Y)dx 
L s 

or by virtue of equation (C2) and assuming that 
the distribution of the profile heights is inde- 
pendent of the distribution of the profile slopes 

tm tm 
s 1 

x=2 IS 
I Y’ I S(Y - Y) P(Y) P’(Y’) dy dy’ 

--io -cc 

P(Y) +m = - 
2 s 

1 y’ 1 p’(y’) dy’. (C3) 

-m 

Together with equation (Cl), equation (C3) 
yields : 

2aslL exp ( - Y ‘/2a2) 

F[= J2n (C4) 

where 

(C5) 

The fraction of the length of profile in contact, 
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X1,/L can be obtained. From the definition of 

P(Y): 
cc 

CL 
-= tiy)dy L s 

((3) 

Y 

which can be obtained from tables, since p(j~) is 
given by (Cl). 

By using equations (C4) and (C6) one can 
eliminate Y and thus relate the number of 
crossings to the length in contact, as: 

s 20 CL --= 
L]tan[ PT. 0 

(C7) 

This relationship is shown graphically in Fig 13, 
in a log-log form on which a straight line 
approximation is also shown for the working 
range. 

FIG. 13. Number of contacts per unit length, s/L related to 
fraction of length in contact, Z&/L. 

For the special case of contacts in a vacuum, 
it is shown in section 4.2, equation (8), that this 
relationship can be interpreted as a relationship 

between (t+bhJk) and (p,,/H). Taking Ic/ to have 
the value corresponding to (c/b) = @,/A,)“” = 
(P,JH)“~ th e 0 owing approximate relation- f 11 
ship results : 

h CJ -z- = I.45 $$ 
0.985 

kvf 0 (W 

This is compared with experimental results in 
Fig. 9. 

For two rough surfaces in contact, with the 
mean planes at a distance Y apart (again it is 
assumed that the distribution of both surfaces 
are random, stationary and Gaussian) we 
realize that at any point where y, + y, > Y, the 
contact between the surfaces will occur and 
hence one may apply all the preceding re- 
lations by interpreting y(x) in Fig 12(a) as 
y(x) = yi(x) + yz(x) and Y as the distance 
between the mean planes of the surfaces in 
contact. 

Standard deviation for yi(x) + yz(x) distri- 
bution can be expressed as 

0 = (0: + cr$)“? 

If both slopes are normally distributed then, 

Itan/ = r 1 y’ 1 p’(y’) dy’ = d(i) (6: + ti;)“‘5 

-m 

= (1~8, + Tizii7q)O.J 

where til and c?~ are the respective standard 
deviation of the slopes. 

As a special case, if both absolute values of 
slopes (y;(x)/ are constant (vee-shaped profiles) 
it can be shown that 

L 

m = lim ; 1 y;(x) + y;(x) 1 dx = )q 
L-+.X s 

0 

where )[ is the larger of the two slopes. 
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R&urn&On examine darts cet article la resistance au flux de chaleur entre deux corps pleins tpais en 
contact darts le vide. L’analyse existante des contacts simples ideali& est r&sum&e et comparee, puis 
appliqued, en m&me temps que des resultats d’essais recents d’analogie tlectrolytique, afin de p&dire la 
conductance de contacts multiples, distribute a l’interface d’une facon “appropriee” ou “inappropriee”. 
La reconsideration de la theorie de l’interaction entre des surfaces avec une rugosite distribuee au hasard 
montre comment les parametres necessaires pour p&dire le transport de chaleur peuvent &tre determines 
en principe par une manipulation simple de profils typiques de la surface associte, en m&me temps qu’une 
approximation a partir de la theorie de la deformation. On montre aussi que ce processus depend, plus 
crucialement que celui qui avait Cte rbalise, de la distribution des quelques grands pits des surfaces, oh 
l’hypothese d’une distribution gaussienne des hauteurs est suspecte. A la place de cette hypothese, l’usage 
de fonctions descriptives est suggere. 

Les quelques r&hats experimentaux se rapportant a ces theories sont examines et compares avec les 
previsions theoriques. 

Zusammenfassung-Die Arbeit befasst sich mit dem Widerstand, den zwei dicke feste Korper, die sich im 
Vakuum beriihren, einem Wiirmestrom entgegensetzen. Die bestehenden Analysen tiber einzelne idealisi- 
erte Kontakte wurden zusammengestellt und dann-zusammen mit Ergebnissen kiirzlich durchgeftihrter 
Analogieversuche im elektrolytischen Trog- zur Bestimmung der Leitfahigkeit einer Vielzahl von Kontakten 
mit “ordentlicher” oder “unordentlicher” Verteilung tiber die Kontaktflache herangezogen. Unter 
Verwendung der Theorie der Zwischenwirkung zwischen willktirlich rauhen Oberfl&chen wird gezeigt, 
wie die zur Berechnung des Wlrmetransportes erforderlichen Parameter durch prinzipiell einfache 
Behandlung mit typischen Profilen der beriihrenden Oberflache zusammen mit einer Niiherung fur die 
Deformationstheorie bestimmt werden konnen. Es wird such gezeigt, dass dieser Prozess weit starker 
als angenommen auf der Verteilung der wenigen grossen Spitzen an den Oberflachen beruht, woftir die 
Annahme einer Gauss’schen Verteilung der Spitzen zweifelhaft ist. Anstelle jener Annahmen werden 
beschreibende Funktionen vorgeschlagen. 

Die wenigen experimentellen Werte ftir diese Theorien wurden geprtift und mit theoretischen Ergebnissen 
verglichen. 

AHnoTapu?-B AaHHO& CTaTbe paCCMaTpHBaeTCH COIIpOTRBJIeHRe TeIIJIOBOrO IIOTOKa MeHcRy 

AByMH TOJICTbIMHTBep~bIMHTeJIaMLI,HaXO~RIL(RMMCR B KOHTaHTe,B BaKyyMe. AJIR OIIpeaeJIe- 

HHH TeIIJIOIIpOBO~HOCTH MHOrO'JHCJleHHbIX KOHTBKTOB, paCItOJIOH(eHHblX Ha rpaHAqe pa3neJIa 

B OnpeAeJIeHHOM IIOpfiaKe H IIpOII3BOJIbH0, MCIIOJIb3yKlTCH He,IQaBHO IIOJIyYeHHbIe WCIIepH- 

MeHTaJIbHbIe AaHHbIe II0 FNIeKTpOJIHTWeCKOMy aHaJIOry, a TaKwe pe3ynbTaTbI aHanI43a 

eRI%HWIHbIX. IlAeaJIbHbIX KOHTBKTOB. TeopvrH B3aHMORetiCTBUFl XaOTHqHO paCnOJIOmeHHbIX 

ruepoxoBaTbIx noBepxHocTei2 noKa3bIBaeT, KaK, 3HaR HeO6xOHHMkJe napaMeTpbI, MOWHO 

OIIpe~enllTb TeIIJIOO6MeH C IIOMOUbIO IIpOCTOfi MaHHIIyJIXIJHK 06bWHbIx IIpO@UIefi IIOBepX- 

HOCTH,~T~K?K~ c IIOMO~bH) annpoKcnMa~am ~3 Teopnll ~e$OpMaIJHH.TaKxte nOKa3aH0,YTO 

3TOTIIpOI(eCCCy~eCTBeHHO 3aBIlCIIT OTpaCIIpeAeJIeHLlR HeCKOJIbKLIX 6Onbmax IIKKOB IIOBepX- 

HOCTet,HOrRa~OIIyIJeH,'Ie rayCCa AJIH 3TI4X BbICOT 0 paCIIpe~eJIeHHI4 EaBJIeHHH COMHMTeJIbHO. 

BMecTo aTor AonyweHLin npeanaraeTcH wznonb30BaTb $y~Kqw pacnpegeneHsfH. 

klCCJIe~yIOTCSl 3KCIIepI4MeHTaJIbHbIe AaHHbIe I4 CpaBHRBaIOTCH C paWeTaMM TeOpMH. 


