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Abstract

The present analytical study describes a method for ob-
taining conduction shape factors for systems bounded by two
{sothermal surfaces. Several important cylindrical and rota-
tional systems are examined, and for each system expressions
for the shape factors are obtained for the three principal co-
ordinate directions. A knowledge of the metric or Lamé's co-
efficients of a system leads directly to the determination of
the corresponding shape factors. The results of the analysis
are applied to several special conduction problems to 1llus-
trate the ease of generating shape factors for complex thermal

systems.

Nomenclature

focal length of an elliptic cross section
semimajor axis

semiminor axis

= constant of integration, Eq. (14)

= constant of integration, Eq. (15)
diameter

= metric or Lamé's coefficients, Eq. (2)

= thermal conductivity
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266 M. M. YOVANOVICH

kg = thermal conductivity at some reference temperature

L = length of the system

q = heat flux

Q = heat flow rate

R = thermal resistance, Eq. (22)

s = arc length, Eq. (2)

S = surface normal to heat flux vector

T = temperature

uj,up,u3 = orthogonal curvilinear coordinates

r,y,z = circular cylinder coordinates

r,0,y = gpherical coordinates

n,8,y = oblate or prolate spheroidal coordinates

n,8,z = elliptic cylindrical coordinates

a = thermal coefficient for thermal conductivity,
Eq. (21)

B = limits on the variable 6

Y = 1limits on the variable ¢

] = transformed temperature, Eq. (9)

Introduction

There 1s at present no general formula available for pre-
dicting stationary conduction shape factors that are needed by
today's aerospace and mechanical engineers to analyze complex
thermal systems consisting of many components that interface
with each other. If the components have simple shapes and
heat conduction takes place between isothermal surfaces, then
the simple, well-known, conduction shape factors for plates,
hollow spheres, and infinitely long hollow cylinders can be
used. If, however, the components have complex shapes, as is
usually the case, and there is heat conduction between iso-
thermal surfaces, then the thermal analyses become very diffi-
cult, and the engineer often must conduct costly thermal tests
to determine the shape factors. The other costly alternative
is to obtain an approximate solution to the problem by means
of a numerical analysis using either a finite-difference
approach or a finite element technique. The numerical anal-
yses must be used whenever the thermal problem is posed in the
inappropriate coordinate system. For example, if the conduc-
tion shape factor for the infinitely long hollow cylinder were
required and the analysis were based upon the Cartesian co-
ordinates, then a costly computer program would be required to
produce an approximate answer. Obviously, the correct ap-
proach is to recognize which coordinate system is appropriate
for the geometry under consideration, and then to make a heat
balance on the corresponding elemental volume, thus yielding
the governing differential equation. Isothermal boundary con-
ditions can then be used to obtain the temperature distribu-
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tion within the component. The local heat flux can be calcu-
lated from the temperature distribution, and the total heat
flow rate through the component can then be determined by in-
tegration of the product of the local heat flux and corres-
ponding heat flow area over one of the boundaries. The ther-
mal resistance of the component is obtained from the defini-
tion of thermal resistance: total temperature drop across
the component divided by the total heat flow rate. Each time
one encounters a thermal component having a different geome-
try, the procedure just described must be followed.

The aim of this paper is to develop a general formula for
predicting the thermal resistance (conductance shape factor)
of thermal components whose physical and geometric character-
istics are fully specified. Shape factors for several useful
cylindrical and rotational systems will be examined in detail,
and 1t will be shown how these results can be used to resolve
some rather complex thermal problems. The results will be
applicable to coordinate systems whose solutions are simply
separable. The boundary conditions are the simple isothermal

type.

Formulation of the Problem in General Coordinates

Consider the steady flow of heat Q from an isothermal
surface S; at temperature T; through a homogeneous medium of
thermal conductivity k to a second isothermal surface S, at
temperature T, (T > To). The stationary temperature field
will depend upon the geometry of the isothermal boundary sur-
faces. When these isothermal surfaces can be made coincident
with a coordinate surface by a judicious choice of coordi-
nates, then the temperature field will be one-dimensional in

Uz
Uz

dsy
ds,

U

Fig. 1 Orthogonal curvilinear parallelopiped.
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that coordinate system. In other words, heat conduction
occurs across two surfaces of an orthogonal curvilinear par-
allelopiped (Fig. 1), whereas the remaining four coordinate
surfaces are adiabatic.

Let the general coordinates uj, uj, ujg be so chosen that
T = T(uy) and, therefore, 3T/8u2 =" 93T/3ugz = 0. Under these
conditions, the heat flux vector will have one component in
the ul—direction:

q, = ~k(dT/ds) = (-k (dT/VEI)/dul) 1)

where vg; 1s the metric or Lamé's coefficient in the uj-

direction. The metric coefficients are defined by the general
line element ds expressed in terms of the differentials of
arc-lengths on the coordinate lines~»“:

2 2 2 2
(ds)” = g, (du))™ + g, (duy))” + g4(duy) (2)
The product terms such as du, du (1 # j) do not appear be-
cause of the orthogonality property of the chosen coordinate

system. These metric coefficients can also be generated by
means of the following formula-~:

. 2 2 2 ~
gy = (ax/aui) + (3y/3ui) + (Bz/aui) i=1,2,3

provided that the Cartesian coordinates x, y, z can be ex-—
pressed in terms of the new coordinates uj, ujp, uj by the

equations
X = x(ul,uz,u3), y = y(ul,uz,u3), z = z(ul,uz,u3)

The elemental coordinate surface located at uj and ortho-
gonal to the uy direction is therefore

dS1 = d52 d33 = /gz 84 du2 du3 (3)

and the heat flow per unit time through this surface into the
volume element is, according to Fourier,

Q = -k ds; (dT/ds)) = -k(/g/gl) (dT/du,) du, du, (4)

where g = g1 87 83- The heat flow rate out of the volume el-
ement will, therefore, be :

Q1 + (dQl/dsl) dsl = Ql + (dQl/dul) du1 (5)
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The net rate of heat conduction out of the volume ele-
ment in the u; direction 1is, accordingly,

(d/du)) [k(/g/g;) (dT/du))] duj du, dug (6)

For steady-state conditions with no heat sources within the
element, Laplace's equation in general coordinates is obtain-
ed by dividing Eq. (6) by the elemental volume /g duj dup dujg
and equating to zero:

(1//g) (d/du)) [k(/g/g)) (dT/du))] =0 )

Equation (7) 1s the governing differential equation and 1is
nonlinear when k is not a constant.

The uniform temperature boundary conditions are

u, = a T=T
1 1
(8)

U = b T T2
Equation (7) can, however, be reduced to a linear differential
equation by introducing a new temperature 6 related to the
temperature T by the Kirchhoff transformation,

_ T
0 = (l/ko{j: k dT 9)

where k_ denotes the value of the thermal conductivity at some
convenient reference temperature, say T = 0. It follows from
Eq. (9) that

de/dul = (k/ko) (dT/dul) (10)
and, therefore, Eq. (7) reduces to

(d/du)) [(Vg/g)) (d8/du;)] = 0 (11)

. after multiplying through by /E/ko. The boundary conditions,

according to Eq. (9), now become
- -6 = T
u a 6 6, : (l/ko)J; k dT

1
(12)
T
) (1/ko)j; 2 k dT

]

uy = b 6 =80

The solution of Eq. (11) 1is

g = ch;ul (gl//g) du, +C, 13)
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where C; and C, are constants of integration. It can readily

be shown that
b
c, = -0, - ez}{fa (g)//8) du (14)
and
a
c, =0, - leo (g,/78) du (15)

The temperature distribution is obtained by substitution
of Eqs. (14) and (15) into Eq. (13), yielding

U1
6, - 6 (g,/Yg) du
1 = j; 1 1 ,ac<u <b (16)

17 % [P /78 du; 1

The local heat flux in the u; direction [Eq. (1)] becomes, by
means of Eqs. (9) and (16),

-k k (6, - 8,)
o df o 1 2 (17)

9 T = du, . b
/gl 1 R g3fa (gl/'@ duy

The heat flow rate through the elemental surface dS1 is,
therefore,

k G -6,
du, du (18)

fb (g,/78) du; 23

q;

The total heat flow rate through the thermal system can be
obtained by integration of Eq. (18) between the appropriate
limits. Therefore,

du du
Q = k (e -8 ) b (19)
f (g,/78 78) du

An examination of Eq. (9) shows that

T
-] 1 - -
k (6, - 6,) —L,z k dT = k_ (T, T,) (20)

where k_ is the average value of the thermal conductivity and
is given by
k [1+ (a/2) (T, + T,)] (21)
o 1 2

if k = ko(l + aT).
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The definition of thermal resistance of a system (total
temperature drop across the system divided by the total heat
flow rate) yields the following general expression for the
conduction shape factor:

9910Q
S = (R k ) b (22)
f (gl /g) duy

The right-hand side of Eq. (22) has the dimensions of
length and is therefore purely geometric. There are several
very important and useful coordinate systems that can be used
to solve many seemingly complex conduction problems. Since
each coordinate system has three principal directions, there
are three sets of shape factors corresponding to each of
these directions. The conduction shape factors for several
coordinate systems are given in the following section. This
section by no means represents the total number of coordinate
systems which are amenable to this type of analysis. It
does, however, contain the most frequently used coordinate
systems,

General Expressions for Conduction Shape Factors

1. Circular Cylinder Coordinates: (r,y,z), Fig. 2

(s)? = (@r)? + £2 @n? + @z2)?
g =1’ gw=r2’ gz=l’ /g_=

d

P(r,w?z)

Fig. 2 Circular cylinder coordinates.
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a) r Direction. Let u; = rj therefore, u, = ¢, uz = z,
and g,/v/g = 1/r. If .

a<r«<b
0<y<B ] = 2m
0<gz<L max
then
_ #n (b/a)
R ka B BL 23

b) ¢ Direction. Let uj = {3 therefore, u, = 2z, uy = 1,
and gl//E = r. Limits of integration were given previously:

(24)

_ B
R ka “ L 2n (b/a)

c) z Direction. Let u; = z; therefore, upy =71, ug= [/
and gy//g = 1/r. Limits of integration were given prevfo

2L
Rk =——F"—5" (25)
a 8 (bZ_aZ)L

2. Spherical Coordinates: (r,8,¢), Fig. 3

s)? = ()2 + £2 (do)? + r? sin’o ()’
2
8. = 1, gy = r2, g¢ = r2 sin“e, Vg = r2 sind
pi
A
P(r,8,y)
r
6
0 — y=
AN
v < |
______ \AV

Fig. 3 Spherical coordinates.

usly:
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a) r Direction. Let u, = r; therefore, u, = 8, ug = P,
and g,//8 = 1/(x% sing). 1If

a <r<b»>

Bl <8< 82 Bmin = 0 and 8max =T
0 <y <y Ynax = 2m
then
Rk, = [(1/a)-(1/b)]1/y (cosB; - cosB,) (26)

b) 6 Direction. Let uj = 6; therefore, up; = ¢, uy =r,
and g;//g = 1/(sin6). Limits of integration were given
previously:

Rn[tan(Bz/Z)] - Qn[tan(Bl/Z)]

Rk = ) (27)

c) ¢ Direction. Let u, = y; therefore, u, =r, ug = 0,
and g;//g = sin6. Limits of "integration were given previous-
ly:

R k_=v/(b- a)l2nltan(8,/2)] - nltan(8;/2)]}  (28)

3. Elliptic Cylinder Coordinates: (n,y,z), Fig. 4

o

2]a

Fig. 4 Elliptic cylinder coordinates.
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(ds)2 = az(coshzn - coszw)[(dn)2 + (dw)z] + (dz)2

g, = g¢ a“(cosh™n - cos™Y), g, 1,

Vg = az(coshzn - coszw)

a) n Direction. Let u; = n; therefore, u; = ¢, u3z = z,
and g;//g = 1. If

i1 <n <y Tain © 0, Tmax - °
0 <¥v<8 8max = 2n
0 <z< L
then
Rk = (n2 - nl)/Lﬁ (29)
where
b, + ¢ b, + ¢
1 1 1 2 2
ny =3 [5—21, n, =5 0 [T
1 2 bl ¢y 2 2 b2 c2
and

/.2 2;\/2_2
a :\/bl -c = b2 <,

b) y Direction. Let u; = §; therefore, u, =z, uy =n,
and gl//E = 1, Limits of integration were given previously:

Rk =B8/L (n, -n;) (30)

c) z Direction. Let uj = z; therefore, uy, =1, uy =y,

and
B 1
Vg az(cosh2 n - cos2 v)

Limits of integration were given previously:

_ L
R ka = ) 8 fnz ) ) (31)
a J (cosh™n - cos“¢) dndy
"1

[e]

4.
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Bicylinder Coordinates:

(n, Y, z) ) Fiﬁ- 5

2
(ds)? = . 5 [an? + @n?] + @)’
(coshn - cosy)
2
a
g =8, = s 8 =1,
n v (coshn - cosw)2 z
2
/g = 2 5
(coshn - cosy)
|
” M
77
i
0[4 / ™
%"l S |
— 2
a)
vk
7,4 0

b)

Fig. 5 Bicylinder coordinates.

275
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a) n Direction. Let uy = n; therefore, uy = ¥, uz = z,
and gl//E = 1. If

nl>n>n2 "min = 7 °* Mmax " te
0 <y <B B = 27
max
0 <z< L
then
Rk = (n,=-n,)/ LB (32)
a 1 2
where
w, 2
IS R A
lnll—sinh & -1
_ w2 2
|n2| = sinh (;;) -1

b) ¢ Direction. Let u, = y; therefore, up = z, uz = n,
and gl//§ =1, Limits of in%egration were given previously:

R ka = :B/L (nl._ 13 (33)

c) z Direction. Let u; = z; therefore, uy =n, ug =y,

and
El _ fcoshn - cosq»)2
/g a’

Limits of integration were given previously:

L

Rk = Z
a 2[ ["3. dndy
a”J, ”2_

(coshn - costp)2

| 22 _ 2 _ 2
where a \/wl rl —\/wz r2

5. Oblate Spheroidal Coordinates: (n,0,y), Fig. 6

(34)

(ds)2 = az(coshzn - sinze)'[(dn)2 + (de)z]
+ a2 coshzn sin26 (dtp)2

g, = 8 = az(coshzn - sinze)
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2
g¢ = a2 cosh2n<sin 6

Vg = 33 (coshzn - sinze) coshn sin®

a) n Direction., Let up = n; therefore, upy = 8, ug = Y,

and

If

then

where

and

B _ 1

/g a coshn sinb

" <n<ny Motn = °* Mmax =
Bl <0< 82 Bmin =Y Phax m
0 <y <y¥y Ymax = 27
-1 -1
- tan (sinhnz) - tan (sinhnl) 35)
Rk, = ay [cosB, - cosB,]
2 2 _f[2_ 2
anfol - 2ol - o
-1 _ -1
n = tanh (cllbl), n, = tanh (c2/b2)
Y4
A v
P 6 = const.
6=0
m = const.
7 =0
6:="/2
O\ —,
g X R QK
oV ginT G
S UREN . -
N B,
z& lg\.ﬁ‘}(;\ - 0 ({%)&
6:=m

Fig. 6 Oblate spheroidal coordinates.
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4 b) 6 Direction. Let uy = 63 therefore, uy = ¢, uz = n, ZJL
an
8y 1 k)‘l’

-;/—é- ~ a coshn sind
6=0
7,:

Limits of integration were given previously:
tn[tan(B,/2)] - tn[tan(B,/2)]

R ka = ay (sinhn2 - sinhnl) (36)

c) ¢ Direction. Let u; = ¥3 therefore, up = n, uz = 8, 0 = const.

and [
i - coshn sind
/g a (coshzn - sinze) 7 -'-O‘\. g =12
=T/
Limits of integration were given previously: 0 il 4
2a
- v/ &)
a j f 2 (cosh n - sin 6) dedn ¥
n coshn sin®

6. Prolate Spheroidal Coordinates: (n,0,y), Fig. 7

@s)? = a2(sinh?n + sin2e) [(dn)? + (d0)7] o
=T

+ a2 sinhzn sin26 (dq))2
Fig. 7 Prolate spheroidal coordinates.

g, = &g = az(sinhzn + sinze)

= a2 sinhzn sin26

3g¢ 2
2
/g = a~ (sinh“n + sin”®) sinhn sin® where =\/bi i =\/b§ _ c;
a) n Direction. Let u; = n; therefore, up; = 6, ug =y, 1 b1 + 1 1 b2 + ¢y
and and KTl i ey » My = ¢
81 _ 1 1”41 27 %2
Jo " a sinhn siné
& b) 6 Direction. Let uj = 8; therefore, uy =y, uz =n,
= = o and
If np<n <My nin 0, Nmax " g
B, <6 <B B, =0, B = bt S S
01 <y < 2 min -9 max /g a sinhn sin®
v <y Ymax 5"
then Limits of integration were given previously:
en[tanh(n,/2)] - #n[tanh(n,/2)] ln[tn*(B /2)1 - lln[tan(B /2)1]
Rk = 2 L (38) . Rk - (39)
a a y(cosB1 - cosBz) :oshn2 - coshnl)
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where t = (b - a) is the thickness of the wall. This ex-
pression has been used to predict the thermal resistance
through a portion of the wall of the hollow microspheres used
as superinsulation™?

c) ¢ Direction. Let u) = ¥; therefore, uy =n, uz = 6,

and

0

i sinhn sinf
Yg a (sinhzn + sinze)

2. Elliptic Cylinder Coordinates

Limits of integration were given previously:
In Fig. 9, we see a schematic representing the steady

= n (40) heat flow from an isothermal strip (n = 0) of width 2a
f 2[ 2 (sinh n + sin 6) dédn through a medium of conductivity k to a second isothermal
sinhn siné surface n = n,. The surface y = 0, a < x < b, is perfectly

insulated. In this problem, the heat flows in the n direc-

tion only, and the thermal resistance is given by Eq. (29):

R = 1 . [b + ¢

This part of the paper will be devoted to the applica- ok " Y — ¢
ti f Eq. (22 d it 1t h in th i

on o 4. (22) an S resurts, as shown In e previous where B = m and L is the length of the system, assumed to be

very long. Equation (42) was used by Yovanovich and

section, to several conduction problems.
Coutanceau~ to obtain a closed-form solution for the thermal

Application of Results to Special Conduction Problems

] (42)

1. Spherical Coordinates

Consider the resistance to steady heat flow in the wall
of a hollow sphere of radii a, b, thermal conductivity k
(Fig. 8). The isothermal boundaries are 6 = B8 and 6 =
(r - B), a<r <b, The surfacesr = a and r = b are perfect-
ly insulated. In this problem, the temperature field is axi-
symmetric, depending only upon the coordinate 6, and there-
fore the resistance is given by Eq. (27):

1 1
R = n (41)
2nke [tan2 (3/2)]

a)
T rp=@

24

T. k k
2 Fig. 10 Conduction across
k a circular
cylinder. .
ANNNNNNN \\\N\\\\ sy
O 1 r c)

b)

Fig. 11 Bicylindrical problem.
Fig. 8 Spherical problem. Fig. 9 Elliptical problem. 8 cylin atp
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resistance of the system shown in Fig. 10. Equation (42)
also can be used to predict the thermal resistance, to less
than 1% error, between an isothermal strip of width 2a and a
semicircular surface radius b, provided that a/b < 0.7.
Yovanovich7’ recently applied these results to two interest-
ing thermal contact resistance problems.

3. Bicylinder Coordinates

This coordinate system can be used to determine the ther-
mal resistance between eccentric isothermal cylinders (Fig.
11). The one cylinder can be wholly within the second (Fig.
11a) or wholly outside (Fig. 11b). It may be used to predict
the resistance of the medium surrounding a buried isothermal
pipe loosing heat to an isothermal level surface (Fig. 1llc).
In all three cases, if the cylinders are assumed to be very
long of length L, the heat flows only in the n direction, and
the resistances are given by Eq. (32):

1 SINAY —1,/2;2
R = kL [sinh (;—) - 1 + sinh (r )y: -1 ] (43)
1 2
! v \/EZ_
and R = KL ln[r + (r) 1] (44)

where the negative sign in Eq. (43) is used for Fig. lla, and
the plus sign 1s used for Fig. 1lb. Equation (44) 1is the
thermal resistance for the buried pipe problem.

1f, for example, there is heat conduction in the y dir-
ection as shown in Fig. 12, the exact closed-form expression
for the resistance can be written down directly,

r2 - r2 - 52 r2 - rz + s2
- -1 2 1 _ -1 "2 1
R =17 {cosh ———7?7;5;—~—— cosh ———?{::;;—-——} (45)

without having to resort to a complex and costly computer pro-
gram.

4, Oblate Spheroidal Coordinates

Consider the thermal resistance to steady heat conduction
from an isothermal circular disk (n = 0) of radius a through
a medium of conductivity k to an isothermal surface described
by an oblate spheroid (n > 0). The remainder of the surface
z = 0 lying between a < r < b is perfectly insulated (Fig. 13).
In this problem, the heat flows axisymmetrically, in the n
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n ﬂ_
Cc
T2 s T k
ANNN NN NN NN >
Fig. 12 Bicylindrical 2a b
problem. l’*ﬂ

Fig. 13 Oblate spheroidal
problem.

direction only, and so the resistance is given by Eq. (35):

-1 - -
tan = (sinhn) = 53——-tan 1[sinh1tanh 1 %]] (46)

1
2wka mka

As n becomes very large, c/b + 1, and Eq. (46) reduces to

R = 1/4ka (47)

the well-known expression9 for the thermal constriction re-
sistance caused by an isolated isothermal disk situated on an
insulated half-space. Yovanovich et al.1 also used this co-
ordinate system and Eq. (46) to show that 98.4% of the con-
striction resistance occurs in a volume r/a = 40, and prac-
tically all or 99.5% occurs in a volume r/a = 80.

This coordinate system obviously can give directly the
thermal resistance of the medium placed between and in per-
fect contact with two isothermal oblate spheroidal surfaces

. ny and n, (Fig. 14). Using Eq. (35), putting y = 2m, B; = O,

and B, ="m, we have

T 4, ¢C
R = —————— (tan 1 [sinh(tanh 1 ——)]

b

_ L c
- tan 1 [sinh(tanh l‘*Lﬂ (48)
1
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‘_\\\\\ \
0]
’l
.%"

b2

2a

Fig. 14 Oblate spheroidal problem.

For pure conduction from an isothermal oblate spheroid n
into an infinite medium, the resistance, according to Eq.
(48), 1is

c
R = L {% - tannl [sinh (t:anh_1 —l)] (49)
b

2 2
4rk /bl - ¢y

This coordinate system also can be used to predict the ther-
mal resistance between an isothermal oblate spheroid (nl) or
an isothermal circular disk of radius a (nl = 0) and an
isothermal spherical surface (Fig. 15), with less than 1%
error, provided that n, > 2.4,

5. Prolate Spheroidal Coordinates

The thermal resistance between two isothermal prolate
spheroids where the temperature field depends only upon the
n direction (Fig. 16) is given by Eq. (36):

b, + ¢
NP Y ) SRR A Sl 3y
4rk ’

1 ln[ta
7 _ 2 b4
1 1

+ b+C

¥ ln[tanh % in ——2———2)] (50)
b2 - c2
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a) b)

Fig. 15 Oblate-sphere and disk-sphere problem.

z‘l .
DAY O g
»
Ty
\
Y
i b, |b
e —{C| [+—
o Fig. 17 Prolate spheroidal
2a ol > coordinates.
\ OSSN N NNNNY AOANANANNNY
N\ n
C, k\\
C2 L k
Fig. 16 Prolate spheroidal
problem. ; Y

Fig. 18 Prolate spheroidal
problem.
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where Y = 2T, Bl = 0, and B, = 7. The thermal resistance for
pure conduction from an isothermal prolate spheroid into an
infinite medium is, according to Eq. (50),
b, +c, .-\
R = N S— ln[tanh (% n -l;———ék)] (51)
b, - ¢
4k b2 - c2 1 1
Vo1 1
Equation (51) can be used to predict the resistance of the
thermal problem shown in Fig. 17. Here By = w/2, By = T, and
= o, and the resistance is

rlz ’
b, + ¢ -1
R = 1 n [tanh(% n -2;————£)] (52)
b, - ¢
27k b2 _ C2 1 1
™/P1 T 51

For large bllcl, the prolate spheroid can be used to approxi-
mate the shape of a circular rod. Since no solution for the
thermal resistance of a long cylinder of finite length L and
nonvanishing diameters d is known, one can use, to a first
approximation, Eq. (52). Letting 2by =L, 2¢y = dq, it 1s
evident that, for d/L < 0.1, the following equation is valid:

b2 - e b 11 - (/2) (ey/bp?] (53)

Introducing this in Eq. (52) gives the resistance of an iso-
thermal cylinder, n << 1 (Fig. 18), as

R = (1/2nkL) &n(4L/d) (54)

These are but a few selected examples of the use of Eq.
(22) and its results as presented in the section entitled
"General Expressions for Conduction Shape Factors." Two co-
ordinate systems that have not been discussed will now be
presented to show the generality of Eq. (22). Yovanovich
showed that the thermal constriction resistance due to an
isothermal elliptic contact area supplying heat to a half-
space (Fig. 19) is given by

R = w/4kq (55)

where y = 2K/w, and K is the complete integral of the first
kind of modulus (1 - b2/a2), where a and b are the semimajor
and semiminor axes of the contact area. For a/b > 2,

¢ = (2/m) &n(4a/b), with an error of less than 1%.

PREDICTING CONDUCTION SHAPE FACTORS 287

b

AN

N
o
AN

W
T~ @

T2y T

4 ¢ o
RN A RARRRIRNIAARNARAN AR Y Vx

- o
4 B b

2a

SN

Fig. 20 Coplanar isothermal

Fig. 19 Elliptical disk
strips.

problem.

Yovanovich showed that this very complex thermal problem, 1if
posed in any coordinate system other than the appropriate
one, could not be solved easily.

The last special coordinate system to be discussed here
is the system based upon the transformation

x+1y=a sn(u+ iv) (56)

and is appropriate to the thermal problem shown in Fig. 20
and specified by the following equations:

21/0x%) + 21/3yH) = 0 (57)
T = Tl’ a<x< b, =0
T = TZ’ -b < x < -a, =0 (58)
—g%=o, 0< |x| <a, |x| >b, y=0

Also, T should tend to zero ag\/xz + y2 » o, The solution of
Eq. (57), subject to the mixed boundary conditions, Eqs.

(58), can be written in the form
T= [7a0) ™V stn(x) a (59)
fo) A

where the function A(A) must satisfy the triple integral
equations along y = 0:
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ﬁw A()) sin(Ax) dx =0, 0<x<a

© dx
L AQ) sin(x) 35 = T}, a<x<b (60)
J.7 A0) staGx) dax =0, x > b

Obviously, the problem is very complex, and it would be ex-
tremely difficult to determine the thermal resistance. If,
however, the metric coefficients are available, then Eq. (22)
can be used to determine the resistance directly without hav-
ing to ialve for the temperature distribution. Moon and

Spencer~“ give the following expressions for the metric coef-
ficients:
_ _ 2 2,2 _
gu—gv—(a Q"/A"), g, =1 (61)
where A=1- dn2u sn2v (62)
and Q2 = (1 - sn2u dnzv)(dnzv - K2 snzu) (63)

and « = a/b. The orthogonal coordinates14 are u, v, z, where
p = K on the isothermal strip a < x < b, u = K on the other
isothermal strip -b < x < -a, and K is the complete elliptic
integral of the first kind of modulus a/b. The heat flow
lines v = const are orthogonal to the isotherms, and v ranges
from O wheny = 0, -a < x < a, to K wheny =0, x > b, and

x < =b, Here K' is the complete_elliptic integral of the
first kind of modulus 1 - (a/b)“. For the problem shown in
Fig. 20, the heat conduction is in the p direction only,
i.e., T = T(u) only. Therefore, g;//8 = 1, and Eq. (22),

QL=L K ) = K
o NL=g ARL = 2
T | T2
2 .T|7 r)
a T}
O SUURRXEEYY / \\\\\\\\=
b q "
) b b)
a)

Fig. 21 Coplanar strip problem.

.Eq. (65). Kutateladze
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with the appropriate limits of integration, yields
4K (a/b) (64)

L KWL - (a/b)?)

where L is the length of the system. This coordinate system
also is appropriate for the thermal problems shown in Fig. 21.
The thermal resistances are, respectively,

R =

R =

21 kU1 - @/m?)
and, for Fig. 21b, the_tesistance 1is twice the value given by
gives the following expression for
the resistance of the problem shown in Fig. 2la:

0.42
R = . (66)
kL [(b/a) - 11%-%

Equation (66) is compared with the exact expression [Eq. (65)]
in Table 1.

Table 1 Comparison of exact solution and Eq. (66)

( + a/b kLR: Eq. (65) kLR: Eq. (66) % error

<N

x 9 ¥4 310

0.1 o.313\ 0.2341 0.2479 5.9

0.2 o 363! 0.2918 0.30113 3.2 1y vy

: 0.3 5 1069 0,3383 0.34272 1.3 .99
St 0.4 0343 0.3794 0.3811 0.44 <« &)
7 37 0.5 .3907 0,4177 0.4200 0.56 7.5V
o 87 0.6 0.u38Y 0.4556 0.4629 1.6 <60
5t © 0.7 o uyygY 0.4968 0.5147 3.6 Yo
5,56 0.8 05793 0.5487 0.5858 6.7 272
;A1 0.9 0.6993 0.6356 0.7117 12.0 3.2€

It can be seen that the approximate solution of
Kutateladze based upon machine calculation is in error by
more than 1% for a/b < 0.3 and for a/b > 0.5. The error is
largest for small and large values of a/b. The use of the
appropriate coordinate system made the problem amenable to
the use of the general expression for the conduction form
factor given by Eq. (22).

Conclusion

A general expression for predicting conduction shape
factors was developed for cylindrical and rotational systems

[
_% Ir{é ‘((«‘\-\. 6 /7 8

(" 1 C a {\_{\\\‘\\1 S\p 0
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that are simply separable. The analysis assumed that the
thermal problem can always be posed as a one-dimensional
thermal problem if the appropriate coordinate system is
chosen. The general expression was used to generate several
expressions for conduction shape factors based upon some im-
portant coordinate systems and to show how the conduction
shape factors are related to the geometry of the thermal sys-
tem. Knowing only the metric or Lamé's coefficients of a
system, one can easily determine its conduction shape factor.
Several examples of important thermal problems were used to
{llustrate the use of the conduction shape factors given in
the section entitled "General Expressions for Conduction

Shape Factors."
References

lMagnus, W. and Oberhettinger, F., Formulas and Theorems for
the Functions of Mathematical Physics, Chelsea, New York,
1949, pp. 144-153.

2Morse, P. M. and Feshbach, H., Methods of Theoretical
Physics, Part I, McGraw-Hi11l, New York, 1953, pp. 24, 32,
115-117, 499-515.

3Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in
Solids, 2nd ed., Oxford Press, London, 1947, pp. 11, 15.

4Cunnington, G. R., personal communication, July, 1971.
5Tien, C. L., personal communication, July, 1971.

6Yovanovich, M. M. and Coutanceau, J., "Sur la Détermination
de la Résistance Thermique Transversale d'un Cylindre de Rév-
olution Homogene lsotrope avec des Conditions aux Limites
Mixtes," Comptes Rendus de 1'Academie Sciences, Paris, Vol.
268, March 1969, pp. 821-823.

7Yovanovich, M. M., "Thermal Conductance of a Row of Cylin-
ders Contacting Two Planes,' AIAA Progress in Astronautics
and Aeronautics: Fundamentals of Spacecraft Thermal Design,
Vol. 29, edited by John W. Lucas, MIT Press, Cambridge, Mass.,
1972, pp. 307-317.

8Yovanovich, M. M., "Thermal Contact Conductance of Turned
Surfaces," AIAA Progress in Astronautics and Aeronautics: Fun—

damentals of Spacecraft Thermal Design, Vol. 29, edited by
John W. Lucas, MIT Press, Cambridge, Mass., 1972, pp. 289-305.

PREDICTING CONDUCTION SHAPE FACTORS 291

9

Gray, A. and MacRobert, T. M., A Treatise on Bessel Functions
and Their Application to Physics, Dover, New York, 1966,

p. 142.

loYovanovich, M. M., Cordier, H., and Coutanceau, J., "Sur la
Resistance due a un Contact Unique de Section Circulaire",
Comptes Rendus de 1'Academie Sciences, Paris, Vol. 268, Jan.
6, 1969, pp. l-4.

llYovanovich, M. M., "Thermal Constriction Resistance between
Contacting Metallic Paraboloids: Application to Instrument
Bearings,' AIAA Progress in Astronautics and Aeronautics:
Heat Transfer and Spacecraft Thermal Control, Vol. 24, edited
by John W. Lucas, MIT Press, Cambridge, Mass., 1971, pp. 337-
358.

1
2Moon, P. and Spencer, D. E., Field Theory Handbook,
Springer-Verlag, Berlin, 1961, pp. 54, 71, 883.

13 .

Sneddon, I. N., Mixed Boundary Value Problems in Potential
Theory, North-Holland Publishing Co., Amsterdam, 1966, pp.
264-267.

14
Abramowitz, M. and Stegun, I. A., Handbook of Mathematical
Functions, Dover, New York, 1965.

15
Kutateladze, S. S., Fundamentals of Heat Transfer, Edward
Arnold Ltd., London, 1963, p. 93.




