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1 Imtroduction

Recent years have seen a rapid intensification of research related
to the measurement, prediction, and understanding of heat transfer
by free convection. For external free convection, measurements and
predictions have focussed on problems where the flow is two-di-
mensional (e.g., vertical plates and cylinders, tilted plates, horizontal

_ circular cylinders) or axisymmetric (e.g., spheres). References {1-10]2

list some of the important contributions to these problems from the
analysis side.

The solutions in references [1-10} are obtained from simplified
equations of motion which contain the boundary-layer approxima-
tions and which ignore curvature effects (the equations are written
in local Cartesian coordinates). Also, no account has been taken of
turbulent heat transfer from part or all of the surface.

Langmuir [11] recognized the importance of accounting for cur-
vature effects and a few solutions, including at least some of these
effects, have been obtained [12-16]. Reference [16] also makes al-
lowance for turbulent heat transfer. It was shown in [16] that, for
two-dimensional bodies, there is often no range in Rayleigh number
for which solutions, ignoring curvature effects and turbulence, are in
agreement with experiment. In this paper we extend this study to

1 Numbers in brackets designate References at end of paper.
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some axisymmetric bodies (spheroids). The organization of the pre-
sentation is as follows. . :

First, measurements are reported for isothermal spheroids of var-
jous eccentricities immersed in quiescent air. Previous measurements
have been apparently restricted to spheres [17-21(a)}.

Second, these measurements are compared with three analyses; the
first of these neglects curvature and turbulence effects, the second
corrects for curvature effects but neglects turbulence, the third ac-
counts for both. The method of prediction is that proposed by Raithby
and Hollands [16, 22]. By comparing experiment and these results of
analyses it is possible: (a) to make a statement about the range of
Rayleigh number over which adequate predictions of an guverage
Nusselt number can be expected from analyses based on local Car-
tesian coordinates, and (b) to evaluate the success of the Raithby-
Hollands method for accounting for turbulence and curvature ef-
fects. )

Third, based on the analytical results, correlation equations are
then obtained from which the average heat transfer from spheroids
of moderate eccentricity can be calculated.

A separate note in this issue of the journal [22(a)] extends the
analysis to the case of prolate spheroids with high eccentricity; these
resemble vertical needles, tapered from the center toward both
ends.

2 Experiment

Measurements of heat transfer by free convection from oblate and
prolate spheroids of moderate eccentricity (C/B = 0.5), and from one
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Table 1 Constants f4 and />

Prolate Soheroid ! Oblate Spheroid
/8 N 2%, %/,
1.000 2.000 1.683 0.878 ; 2.000 1.683 0.878
0.900 1.935 1.653 0.896 | 1.868 1.601 0.906
0.800 1.873 1.524 0.913 1.739 1.518 0.935
0.700 1.814 1.596 0.93) 1.615 1.435 0.966
0.600 1.759 1.370 0.948 1.494 1.352 0.997
0.500 1.709 1.345 0.964 1.380 1.269 1.030
0.400 z 1.665 1.52% 0.980 1.276 1.187 1.062
0.300 : 1.627 1.506 0.993 1.177 1.108 1.091
0.200 ' 1.598 1.431 1.005 1.094 1.033 1.114
0.100 E 1.578 1.481 1.012 1.030 0.969 1.128
0.050 ‘ 1.573 1..79 1.014 1.009 0.945 1.129
0.010 i 1.571 1.178 1.015 1.001 - -
0.005 1.571 1.378 1.015 1.000 - -
0,001 ! = nf2 1,478 1.015 . 1.000 .- --
i i

oblate spheroid of large eccentricity (C/B = 0.1) to air are reported.
Notation, cross-sectional drawings, and pertinent data on these
spheroids are presented in Fig. 1.

The_ objective of the experiments was to measure average Nusselt

+

Table 2 Vatues of 13 (equation (5)) and n (equation (6))

Ob:)?-:e Pro fa]:g vb l.:ce ?to?ll:g
{c/B) Spheroid Soheroid Spheroid Spheroid
1.00 0.73 0.73 6 ]
.80 0.79 0.73 5 5
0.50 0.87 0.72 5 8
0.50 . 0.93 0.71 4 6
0.40 0.99 0.71 3 ]
0.20 1.20 0.71 2.5 3
0.10 1.44 0.71 2.5 -
0.05 1.73 0.71 - -
0.01 .- c.71 - -

were achieved by manufacturing the spheroids from a high thermal
conductivity material (Aluminum 6061-T6) and by keeping a low
internal resistance to heat flow. The contours of the spheroids were
accurately machined and their surfaces finely polished.

Two thermocouple junctions were imbedded at different locations
in each spheroid and the leads buried in shallow grooves in the surface
which conducted the wires to the rear stagnation region. A small
heater (5 mm in diameter for the C/B = 0.5 spheroids and 3 mm for
the C/B = 0.1 spheroid) was also imbedded through the rear stagna-
tion region. A high thermal conductivity cement was used to fill the
grooves and the space around the heater. Current was fed to the heater

numbers over a large Rayleigh-number range. This range was achieved
by locating the spheroids in a pressure vessel (a cylinder 38.5 cm in
diameter and 150 cm long) and performing the measurements at
various pressure levels (as. for example, in {23, 24]) between 0.028 and
2.35 bar. The wall of the pressure vessel was maintained at a uniform
temperature by water cooling. Its temperature, required for radiation
corrections, and the air temperature far removed from the spher-
oid-location, were both measured using shielded thermocouples. The
air pressure was measured using a U-tube manometer to an overall
accuracy of £0.0005 bar. Measurements showed that there was no
appreciable thermal stratification of the air during the experiments.

Large spheroids were desired in order to obtain a significant tur-
bulent heat transfer. but their size was limited by the additional re-
quirement that enclosure effects {25} be unimportant; the compromise
dimensions appear in Fig. 1. Isothermal-surface boundary conditions

e N 0N €N Cla t U €2

through two very fine bare wires (as small as 0.25 mn dia); sonteof ——

the experiments were repeated using lead wires of different diameter
and material. The mass of each spheroid was accurately determined
by weighing; the mass of the heater, thermocouple wires, and cement
amounted, in the worst case, to 0.4 percent of the total spheroid mass.
Prior to testing, the appropriate spheroid was suspended in the center
of the pressure cylinder from 0.3 mm nylon leads, and its axis of
symmetry precisely aligned with the vertical direction. The cold
junctions of the spheroid thermocouples were radiation shieided and
located on the center line of the pressure vessel, one on each side of,
and 50 ¢m removed from, the spheroid; the voltage output of these
was a direct measure of the spheroid-to-air temperature differ-
ence.

The heat transfer from the spheroid was determined by measuring
its transient temperature decay from an initially heated state. Nor-

A, = surface area of spheroid, equation (B.6)

B = dimension of spheroid along its major
axis

C = dimension of spheroid along its minor
axis

C, = “‘universal” function of Pr for laminar
flow C¢ = 0.50/[1 + (0.49/Pr)?/16]4/9

C,=4C,/3

C, = “universal” function of Pr for turbulent
flow. C; = [0.14 Pro#s4, 0,15, where [4,
BJ* = minimum of 4 and B

fu f2» = definite integrals defined in Appendix
B. Numerical values are given in Table 1

f+: defined by equation (5)

k: thermal conductivity

¢: see Table B.1

m: see Table B.1

n: exponent in correlation equation, numer-
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ical values appear in Table 2

Nug = average Nusselt number for spheroid
based on the length B (measured, or pre-
dicted from analysis which includes

_thick-layer and turbulence effects)

(Nug),: = predicted average Nusselt number
based on laminar, thin-layer analysis

_(Appendix B)

(Nug), = predicted average Nusseit number
based on laminar analysis, where correc-
tions for thick-layer effects have been
made (Appendix B)

(Nug)eond = Nusselt number in the conduc-
tion limit {(equation (3))

(Nug); = average Nusselt number from
analysis in which turbulent heat transfer
is presumed everywhere on the surface,
and Rag is very large

Pr = Prandtl number calculated at temper-
ature (Ts + Tw)/2

Rag = Rayleigh number based on AT and
B

S = one-half the perimeter of body in flow
direction

T, = temperature of spheroid

T. = temperature of ambient air far from
spheroid ’

AT =T, - T

{n, 8, ¥) = spheroidal coordinates (see Ap-
pendix B)

2 Where symbols have been used only once, thgy
are defined immediately after their appearance In
the text, and are not repeated here.
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maily, the surface temperature was elevated to 44°C above ambient
and it was allowed to cool to 36°C before measurements were re-
corded. The rate of change of its temperature with time was deter-
mined by accurately measuring the time for the temperature differ-
ence to decrease by 0.6°C. The voltage output of the thermocouple
determining the temperature difference was measured using a Leads
and Northrup K-5 potentiometer (£0.005 percent of reading or £0.1
uV,ie., £0.006°C). After making this measurement, the pressure, air
temperature and wall temperature in the cylinder were noted. The
Rayleigh number was calculated using the mean temperature dif-
ference over the measurement period, and evaluating all air properties
at the average film temperature; all properties were calculated from
equations by Hilsenrath [26]. The total rate of heat loss was deter-
mined from the measurements and a knowledge of the spheroid mass
and specific heat. To calculate the heat transfer by free convection,
upon which the Nusselt number is based, required corrections for
radiation and conduction via the lead wires.

The heat transfer by radiation was determined using the measured
temperatures, the surface area of the spheroid, and its emissivity. The
total normal emissivity of a sample of the aluminum, with a similar
surface finish, was measured on a Gier-Dunkle DB100 Reflectometer
and this was converted to the hemispherical emissivity shown in Fig.
1 (see Eckert and Drake [27]). The heat loss by conduction along the
nylon support wires, the thermocouple lead wires, and the heater lead
wires was calculated by the method outlined in Appendix A. All of the
lead losses were normally small, but at low pressures the heat transfer
along the heater leads climbed to 16 percent of the heat loss by free
convection. The calculated total heat loss via the leads and by ra-
diation were subtracted from the total heat loss, and the Nusseit
number calculated.

Five such measurements were repeated in rapid succession and an
average Nusselt number and Rayleigh number were formed. A total

4

© - MEASUREMENTS OF MATHERS ET AL { AIR)
L x - MEASUREMENTS OF ELENBAZS ( AR}
9 - CORRELATION OF KYTE ET AL (AIR)
b - CORRELATION OF AMATO 8 TIEN (WATER) /¥

PROLATE
SPEROID ;

7 PRESENT MEASUREMENTS:
¢« Pr=071

’ PRESENT ANALYSIS, Pr=071
77 (Nugly,, LAMINAR, THIN LAYER
/. ——(Nugly. LAMINAR , THICK LAYER
/' —(Nug). PREDICTION ACCOUNTING

FOR THICK LAYER AND
TURBULENCE

. —
S -
LOG,,(Nug)

I

2 : L

2 5 )
L0G,g (Rag)

) 7] 4

Fig. 2 Data, results of analysis, and correlation equations for prolate spheroid
{lower) and sphere {(upper)

Other curves are the result of the present analysis.

The data for the two oblate spheroids are plotted in Fig. 3. There
is again little scatter in the measurements and no systematic differ-
ences between results obtained using different heater leads. The solid
curves are the results of the analysis, which is now described.

of 78 of 85 recorded sets of data are reported. The unreporied seisare
those in which experimental conditions varied during the course of
taking the measurements, or the total heat loss via the leads exceed
13 percent of the heat loss by free convection.

Experimental Results. For all the test conditions used, the
Prandtl number was about 0.71 (actually 0.709 < Pr < 0.711). For the
prolate spheroid with C/B = 0.5, the Nug versus Rag results are
plotted in the lower part of Fig. 2. The data show very little scatter
and measurements for different heater-lead wires are entirely con-
sistent. The solid curve drawn through the data is an analytical result
which will be described later.

The upper part of Fig. 2 shows some experimental results by El-
enbaas (18] and Mathers, et al. [19] for spheres (C/B = 1.0) and cor-
relation equations based on the experimental resuits of Kyte, et al.
[17], Tsubouchi and Sato [20], Yuge [21], and Amato and Tien [21a].

- ]
C/B =03 [Z{-E X2 C/8~ 05
OBLATE SPHEROID O8LATE SPHEROID PROLATE SPHEROID
(SIDE VIEW) (SIDE  VIEW) {SIDE VIEW)
€ {mm} . 39-2 8-00 40-0
8 (mm}) 78-8 80-0 771
MASS (xg) o 38 0-0734 ; 0174
EMISSIVITY . 0056 0-056 0-056
SPECIFIC HEAT | Q26 0-96 i 0-96
(harkg €) | i

Fig. 1 Top and side views of spheroids, showing dimensions and other data
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3 Analysis

The foregoing measurements are now compared with analysis,
keeping in mind the concerns expressed in the Introduction over the
effects of curvature and turbulence on the average heat transfer. The
first section in the following presents a simple analysis which neglects
curvature and turbulence effects; the second corrects this result for
curvature effects, and the third accounts for both curvature and

* MEASUREMENTS, OBLATE SPHEROIDS
Pr=071

PRESENT ANALYSIS, Pr=07I
--= {Nug)y. LAMINAR, THIN LAYER
—=(Nug) ;, LAMINAR, THICK LAYER
20— -30
T —— (Nug) . PREDICTION ACCOUNTING
7 FOR THICK LAYER AND
T TURBULENCE
- <
r 7
—~ T 7T o~
30 ¥ ; - [+e]
S t T2
o o- 20~
o . OBLATE ‘ wg
S I SPHEROID I o
a . - -
3 B=0t -
- OBLATE -
C SPHEROID  ~
00k -0
—
1 " :

LOGIC(%ROB)

Fig. 3 Present data for two oblate spheroids, and the resuits of analysis
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turbulence. Building up the analysis in this step-by-step way permits
a direct insight into the relative importance of these effects.
Laminar, Thin-Layer Results. The term “thin-layer” [16] is
associated with laminar boundary-layer analyses in which local
Cartesian coordinates are used in expressing the conservation con-
straints. Thus, the general solutions for bodies of arbitrary contour
[9, 10], and many of the other solutions to free convection problems,
fall into this category. The results presented here are obtained by a

direct application of the thin-layer solution of Raithby and Hollands -

[22]. Although this solution is approximate, it has been shown to be
in good agreement with other thin-layer analyses for vertical plates
and horizontal elliptic cylinders {16] and spheres [22] with uniform
temperature boundary conditions. The form of the solution is correct,
it is accurate to about 1 percent for isothermal surfaces for Pr 2 0.5,
and the evaluation of the solution is very easy.

An abbreviated account of the application of this solution to the
spheroid problem is given in Appendix B. The final result for the
average Nusselt number is

AB  QUaf,3/4 m 1/4
Nu a2 12 = .
(Nug)e: X . C, (B Raa) oY}

where f1 and f» are definite integrals whose values are given in Table
1, where C, is a “universal” function of Prandtl number (see No-
menclature), and m = B for prolate spheroids and m = C for oblate
spheroids. The subscript ¢¢ on the Nusselt number is a reminder that
this is the laminar, thin-laver prediction.

Equation (1) is plotted in Figs. 2 and 3. The agreement is closest
for spheres, followed by the prolate spheroid, the C/B = 0.5 and C/B
= (.1 oblate spheroids, respectively. For the C/B = 0.1 oblate spheroid,

.-wr—v.v:-‘

oblate spheroids. This is pamcularly true of the C/B = 0.1 spheroid
where the rear surface is very nearly horizontal.

Allowance for Turbulent Heat Transfer. The procedure for
accounting for turbulent heat transfer is described very briefly in
Appendix B. The details are recorded elsewhere [16, 22).

The predictions, accounting for both turbulence and thick-layer
effects, are depicted by the solid lines in Figs. 2 and 3. The curves are
labeled Nug. The area between the (Nug), results and these final
predictions is cross-hatchied to permit an immediate appreciation of
the Rayleigh number range where turbulence is important, and the
magnitude of this effect on the total heat transfer. ,

A comparison with the present data in these two figures indicates
that these “final” predictions of the Nusselt number are in excellent
agreement with the data. Most agree to within 5 percent (68 out of a
total of 78 data points); the maximum difference is about 15 percent.

While the agreement between analysis and measurement is highly
satisfactory, it is necessary to point out that the validation of the
analysis at high Rayleigh numbers is incomplete. Measurements at
higher Rayleigh numbers would be needed to complete the compar-
ison. Also the reader is reminded that the analysis for heat transfer
from the lower surface of the oblate spheroid is invalid in the limit as
C/B — 0, but this may not be a serious deficiency for predictions of
Nug since the heat transfer is dominated by turbulence on the top
surface.

Data are available for spheres over a large range of Rayleigh num-
ber. Fig. 2 shows that the predictions for this geometry are also in
excellent agreement with the measurements and correlations of Kyte,
et al. [17], Elenbass [18], Mathers, et al. [19], Tsubouchi, et al. [20],
and Yuge [21] (all for air), and in somewhat poorer agreement with
the Amato-Tien [21(a)] correlation for water (partly because the

the data point nearest to the thin-1ayer predicticii is about 32 percent
high, with discrepancies at other Rayleigh numbers becoming (rap-
idly) larger. It is quite clear that the thin-layer analysis is considerably
in error for all the geometries tested.

Correction for Thick-Layer Effects. As already suggested,
writing the underlying equations in local Cartesian coordinates ne-
glects important curvature or “thick-layer” effects when the boundary
layers are not “thin.” A detailed discussion of this, and a method of
making a first-order correction to the thin-layer results to account
for it, has been given previously [16). Briefly described, the method
consists of dividing the spheroid surface into a large number of seg-
ments and using the thin-layer solution to estimate the conduction
thickness at each location. From the local surface shape (curvature),
the local resistance to heat transfer from each segment can be esti-
mated, and therefore one can correct the heat flux. The local heat flux
is estimated in this way for each segment of the surface and the results
numerically integrated to vield the total heat transfer (and, therefore,
the average Nusselt number). The curves labeled (Nug), in Figs. 2
and 3 have been obtained in this way, and the region between this
curve and the thin-layer result has been cross-hatched to emphasize
the magnitude of the correction. The correction is very significant over
a large Rayleigh number range, diminishing only at high Rayleigh
numbers where the boundary layers are thin.

It should be kept clearly in mind that:

(g) no account has yet been made for turbulence; and

(b) the Nusselt numbers, corrected for thick-layer effects, have
been obtained by numerical integration so that these can no longer
be directly evaluated from a closed-form solution.

Comparing measurements and these (Nug), predictions, one finds
excellent agreement for spheres and the prolate spheroid in Fig. 2, at
least over the Rayleigh number range for which data are available.
In Fig. 3, there is good agreement between these predictions and the
data at lower Rayleigh numbers for the C/B = 0.5 oblate spheroid, but
this gradually worsens at higher Ray. For the C/B = 0.1 oblate
spheroid, the correction has improved the agreement but the data lie
consistently above the prediction.

The main reason for the disagreement which remains is postulated
to be the existence of turbulent heat transfer. This seems consistent
with the above observations. for the areas first affected by turbulence
(for an increasing Rayleigh number) would be the rear portions of the
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Prandil number 1§ ditferent, and partly because theirequationrdoes——————

not fit their data well at the highest Rayleigh numbers). The agree-
ment of the analysis with the present and earlier measurements for
such a wide range of geometries lends strong support to the present
method of analysis, and, therefore, to the other predictions for which
experimental data are not yet available.

Graphs of Nug for spheroids of other eccentricities are given in Figs.
4 (prolate) and 5 (oblate). From Fig. 4 it is seen that almost the same ’
asymptotic relation between Nug and Rag is approached for all ec- .
centricities at high Rayleigh numbers. At the other extreme, the
conduction limit, the NGp value is sensitive to C/B, particularly for
the larger eccentricities. If the curves were replotted with (C/B) Rag
as the independent variable [22(a)], all the curves for small C/B would
be brought together at small Rayleigh numbers.

For oblate spheroids (Fig. 5), using (C/B) Rap as the independent
variable brings the high eccentricity curves together at low Rayleigh

L Pr=071
— RESULTS OF ANALYSIS INCLUDING
THICK LAYER & TURBULENCE EFFECTS

20

BROLATE SPHEROIDS

L L - e

5 2 2 T8 T8 10 2 4 .

Fig. 4 Predictions for prolate spheroids
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Fig. 5 Predictlons for oblate spheroids

Log

numbers, but distinctly different asymptotes are obtained for high
Rayleigh numbers. If the independent variable were changed to Rag,
the turbulent-heat transfer asymptotes would not be greatly different
for different eccentricities: however, the curves would cross one an-
other at intermediate Rayleigh numbers and a confusing graph would
emerge.

4v1—1(C/B)? -1

iNug)cord = P " (C/B) In tanh(n/2) (for prolate)
(3a)
— 4vT=1(C/B)? 1
(Nug)cond = i /BE (272) — tan-(einb 70) (for oblate)
(3b)
where f is given in Table 1 and, by definition,
7 = 0.51n}[1 + (C/B))/[1 - (C/B)}} (4)

Evaluation of (Nug),. Now an equation is sought which is valid
at asymptotically high Rag when the heat transfer is turbulent at
(essentially) all locations on the surface. The corresponding Nusselt
number is designated (Nug),. The analysis suggests that this is pro-
portional to Rag!/3 for any C/B value. To keep the same independent
variables as in the laminar equations, the following equation was used

(Nug): = f3Ce (% Raa) 13 (5)

Values of f3, obtained by rerunning the analysis at a high Rag with
the laminar heat transfer “turned off,” are tabulated in Table 2.

Final Correlation Equations. The foregoing equations for
laminar and turbulent heat transfer respectively were combined ac-
cording to the Churchill-Usagi {28] formula to give the following
equation for Nug

(Nug)® = (Nug)," + (Nug)," (6a) -

where n is a constant chosen to give best agreement between equation
(6) and direct calculations of Nug. The final equation, therefore,
becomes

P S1{44 344 3

4 Correlation Equations for Moderate Eccentricities

The “*final” results of the analysis, plotted in the figures, have been
obtained by carrving out the numerical integrations indicated in
Appendix B. While this is neither a laborious task (the nonoptimized
computer program in Fortran had about 120 statements), nor an ex-
pensive one {(in terms of computing time), it would be more convenient
if the results could be expressed in the form of equations. Equations
have been obtained which are accurate for a wide range of eccentri-
cities for both oblate and prolate spheroids; these are described in this
section. It should be kept clearly in mind that the equations represent
an empirical fit to the results of the analysis.

The equation should be constructed such that it has the correct
asymptotes for small and large Rag, yet also fits the analytical results
accurately at intermediate values. Since it is not immediately obvious
what form this equation should take, the complexity of the problem
was reduced by seeking first asymptotic equations which would be
valid for laminar and turbulent heat transfer, respectively. These
equations were then combined to give the desired result.

Evaluation of (Nug),. First, for the laminar problem, the eval-
uation of the equations in Appendix B was carried out with the tur-
bulent heat transfer “turned off” (i.e., laminar heat transfer at all
locations on the surface). The output was values of laminar Nusselt
number, (Nug),, for various C/B and Rag; some of these Nusselt
numbers have already been plotted in Figs. 2 and 3. For all eccentri-
cities for oblate spheroids and for prolate spheroids for C/B Z 0.2, it
was found that these results were very closely fit by an equation of the
form

(Nug)e = (NUg)cona + (Nug)es: (2)

where (Nug)cond is the value of Nug in the conduction limit and
(Nug),. is the Nusselt number from the laminar, thin-layer analysis,
lequation (1)]. The error in approximating {Nug), by this equation
is normally less than 1 percent. A maximum error of 2 percent occurs
for the prolate spheroid for C/B = 0.2 (and 10 percent if the equation
were to he used for (/B = 0.1).

Equations for (Nug)cond can be obtained directly from the analysis
in Appendix B (equation (B-12)). For the prolate and oblate spher-
oids, respectively, one finds
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(Nug)" = [(ms)cond + (L fflz ) C, (’;3[' RaB)HJ )
+ [C:fa (% Rag)ua]n (6b)

where n and f; are given in Table 2, f; and f2in Ta_lie 1,m=Band
C for prolate and oblate spheroids, respectively, (Nug)cond is given
by equations (3), and C, and C, are Prandtl-number-dependent
coefficients listed in the Nomenclature. Equation (66) has been found
to fit the results of the analysis to within about 5 percent.

5 Summary

1 Measurements of the average Nusselt number for free convec-
tion heat transfer from one prolate. and two oblate, isothermal,
spheroids to quiescent, air at uniform temperature have been re-
ported.

2 The results of an anysis, accounting for both thick-layer (or
curvature) effects and turbulent heat transfer has been presented.
Excellent agreement with experiment was found; but of perhaps
greater significance than the agreement itself, an appreciation of the
importance of curvature and turbulence etfects was gained.

3 Correlation equations were presented which are valid for a
wide range of eccentricity and for all Rayleigh numbers.
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APPENDIX A

Conduction Losses Along Lead Wires

Heat flows from the spheroids along the lead wires by conduction,
transferring heat from its surface by radiation and either from or to
its surface by convection. The local temperature of the air surrounding
the wires changes along their length because they are immersed in the
wake of the spheroid. This temperature distribution can be calculated
fairly accurately using some reasonable equation based on the con-
duction thickness, A,. (e.g., equation of Fujii, et al. [30}). A new free
convection solution, accounting for both wall and surrounding tem-
perature variations, was derived along the lines of reference [22] to
obtain the convective component of the heat transfer from the wire
surfaces. An expression for radiative exchange with the surroundings
was also obtained. The total loss along the lead was calculated by
subdividing the wire into a large number of segments and guessing
a longitudinal distribution of temperature. From this guessed dis-
tribution the heat transfer by free convection and radiation was
computed for each segment and an improved longitudinal distribution
was obtained by a finite-difference solution of the heat conduction
equation for the wire. The process was repeated until a converged
solution was obtained.
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Details of Heat Transfer Analysis

The Coordinate System and Nomenclature. The application
of the general solution of Raithby and Hollands {22| is briefly outlined
in this section. This requires converting to, and working in, spheroidal
coordinate systems. These coordinates are depicted in Fig. B.1.To
avoid giving a separate treatment for each spheroid, several new
symbols are introduced and their definitions given in Table B.1.

The spheroids shown in Fig. B.1 are generated by choosing a value
of 7 = n; in the coordinate transformation

x=ag(n)sinfcosy,y =ag(n sindsiny,z=ahin cosd (B.1)

and where 8 runs from 0 to , and ¢ from 0 to 2. a is just a scaling
factor with dimensions of length. Curves of constant § and constant
n are, respectively, hyperboloids and ellipsoids. The differential dis-
tance in the n, 8, and ¥ directions are, respectively, VEsdn V8ads, and
V/Z4dy, where the metric coefficients g,, g and gy have been given
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Fig. B.1 Schematic of spheroids showing spheroid coordinate systems
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Table B.1 Definition of variables used in Appendix B
Symbol Prolate spheroid Oblate spheroid
14 C B
m B C
R In[tanh(n,/2)/ tan~'(sinh ;) —
“tanh(n;/2) tan~!(sinh 7;)
S* (sinh®*7 + sin*0 )% (cosh’n — sin*b)¥%
(n) sinh 7 cosh 1
n) cosh 7 sinh

by Yovanovich [31] as
g, =8s = aS*?;, g, =a?sinh?5sin?é (B.2)

Focussing attention on the »; spheroid in Fig. B.1, from equation
(B.1)

B =2a cosh n;; C = 2a sinh n;;r = Vx2 + y'7 = (¢/2)sin8 (B.3)
Fixing the dimensions B and C fixes the scaling factor a and the value
of n; since, by equation (B.3)

a=V(BR2)2I=(C2%
The differential length, dss, along the surface in the direction of in-
"creasing 8 on the spheroid is

ds = (Vgg)pmnd8 = (B/2)[(m/B)? sin 8 + (£/B)? cos? 6]/2d6
= (B/2)x(6, C/B)dd (B.5)

m=05In{(B+C)(B~-C)] (Bd4)

Equation (B.5) serves also as a definition for the function x.
The surface area of the surface, A4, is given by

2x x
3

la= j;’ sin3/3 ¢ x2/3 dé (B.8)

Numerical values of f; are tabulated in Table 1.
Thick-Layer Correction. The local conduction-layer thickness
at location s on the surface is {22

ae=s[s 7 (%) ’”ds]’“ / [C:Ra,”‘ (r%)m] (B9)

Converting from s to the spheroid coordinate 8

. B xln [ [ 1/4
A, = - . f sind3 ¢ 2’3d0]
¢~ 914C, ((m/B)Rag)* sin238 LJo x

(B.10)

The local value of g a distance A, away from the n; surface along a
curve of constant 8 (i.e., normal to the surface) is given by

A8 =a f ™ S+ (n, 8)dn
n

(B.11)

where S* is defined in Table B.1. The one-dimensional local resistance
to heat transfer by conduction between the two spheroids »; and no
at this location 4 has been given by Yovanovich [29]. This is used to
estimate the local heat transfer. These local values are integrated over
the surface to yield the total heat transfer. Converted to an average
Nusselt number, one finds
V1 -(C/B)? * sind
(¢/B)f 0 R(no(8), m)

where R is given in Table B.1.

(Nug), is the Nusselt number for laminar heat transfer, corrected

to account for thick-layer effects. A numerical integration of (B.12)
is_required. This is easilv done by dividing the surface into a large

(Nug), = d (B.12)

Jo Ve dtay=—(Be¢r )

AT J[‘
v 0
. f,sin 8 x(6, C/B)do = (xB¢/2)f1 (B.6)

0

The integration can be carried out analytically and the resulting
equation for f, evaluated. Numerical values of f, are given in Table

lin the text.
These equations are now used in evaluating the free-convection heat

transfer from the spheroids.
Thin-Layer Analysis. The general solution for the average

Nusselt number is given by {22]

o[£ () %] /1 ]
(B.7)

where g; is the component of g acting along the surface.
Converting from the local Cartesian coordinate s to the spheroid
coordinate 8 results in equation (1) in which
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number of intervals of width Ag. The value of A, at the center of each
interval is found from equation (B.10). With A, known, equation
(B.11) is used to find ng at the corresponding locations; again, this
must be done numerically. These values are substituted into the ex-
pression for R and the integration in (B.12) is performed to obtain the
final result.

Accounting for Turbulence. According to the proposed equation
for turbulent heat transfer {16], the local conduction-layer thickness
is

A, = B/(C.A(¢)Rag!”) . (B.13)

where C; is a “universal” function of Prandt! number (see Nomen-
clature) and A(¢) depends on the local surface angle, ¢, from the

vertical. ¢ is related to the spheroid coordinate § by
¢ = sin~1 {—(C/B) cos 8/x(C/B, 8)} (B.19

From these, the local Nusselt number can be found. The criterion for
transition and the application of the analysis follows (16, 22].
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