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Abstract

Expressions have been developed for the determination of
thermal constriction resistance of arbitrary plamar contact
areas subjected to arbitrary heat flux distributions. Local
contact area temperatures under uniform flux conditions were

{ determined for certain important shapes: triangular, rectangu-//
lar, polygonal, circular, and annular ring. Dimensionless
thermal constriction parameters are presented for the rectangu-

L lar, circular, and annular ring contact areas.

Nomenclature

a = circular contact radius; inner radius of annular contact
b = outer radius of annular contact

B = complete elliptic integral, Eq. (50)

D = complete elliptic integral, Eq. (50)
E = complete elliptic integral of the second kind

F = incomplete elliptic integral of the first kind, omega
function, Eq. (22)

K = complete elliptic integral of the first kind

M = arbitrary point in the contact area
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398 M. M. YOVANOVICH

P = arbitrary point

r = radial position

Greek Symbols

¥ = constriction resistance parameter

Q = omega function

Subscrigts

a = annular contact
¢ = circular contact

T = rectangular contact

Introduction

A number of papers]‘-S have been publighed recently show-
ing the importance of thermal constriction resistance in gey-
eral thermal problems arising from aerospace applications. It
has been shown that, whenever heat ig contrained to flow
through contact areas whose characteristic dimensions are small
relativi Sgsthe characteristic dimensions of the contacting
bodies,** one observes a large local temperature drop, which
is a manifestation of the thermal constriction resistance,

the contacting bodies, some characteris-
tic dimension of the contact area, and a thermal constriction

parameter that is dependent upon the shape of the contact area
as well as the boundary condition over the contact area.
thermore, a complex geometry such as a sphere in elastic con-
tact with a race can be modeled with confidence as an elliptic
contact area separating two half-spaces. This model greatly
simplifies the thermal analysis.

Up to the Present, only a few publications have dealt with
analytic solutiongl, or numerical solutions.l These papers
have considered the elliptic and circular contact areas with
either uniform temperature or uniform heat flux boundary con~
ditions. There. i3, therefore, a great need for a theory for
Predicting the constriction resistance of arbitrary planar
contact areas attached to half-spaces. This Paper will develaop
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Fig. 1 Arbitrary contact on a half-space.
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Fig. 2 Point source and coordinates.

an integral expression for determining the thermal comstriction
of arbitrary contact areas subjected to arbitrary heat fluxes.

Thermal Constriction Resistance

Plane Contact Area on a Half-Space:Integral Formulation

Consider the problem of steady heat transfer from an arbi-
trary plane contact area situated in the xoy plane as shown in
Figs. 1 and 2. The heat flux q over the contact area I' is a
function of position. The region outside the contact is as-
sumed to be perfectly insulated, whereas the thermal conduc-
tivity of the half-space z > 0 1s A.

The temperature field within the half-space T(x,y,z) must
satisfy Laplace's equation

Vreo o0

which, in Cartesian coordinates (x,y,z), takes the form

(3217922 + (3%1/3y%) + (3%1/92) = 0 (2)
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400 M. M. YOVANOVICH

The temperature field tends toward a uniform value T(®) at
points within the half-space which are far from the centroid
of the contact area.

Definition of Thermal Comstrictiom Resistance

The thermal constriction resistance R is defined as the
difference between the average temperature of the contact area
T minus the temperature far from the contact area divided by
the total heat flow rate through the contact area Q. Mathe-
matically, we can state the definition as

R= [T - T(=®1/Q 3)

The average contact area temperature is determined by means of
the following expression:

T = %jf T(x,y,0) dT (4)
r

The total heat flow rate through the contact area is simply
the integrated value of the product of the local heat flux and

corresponding contact area. Therefore,

Q-ff qdl’ (5)
r

1f, for convenience, we take the temperature far from the con-
tact area to be zerc, Eq. (3) becomes

R = -llsz T(x,y,0) dl‘/ff qdl (6)
T r

It is now necessary to determine the local contact area tem—
perature T(x,y,0) as a function of the prescribed heat flux
distribution over the contact area.

Superposition of Heat Sources

Consider the effect of a heat source q(x',y')dl located

at M(x',y',0) upon a point P(x,y,z) located a distance r from
the source (Fig. 2). The effect of q(x',y')dl' at P can be de~
termined by means of Fourier's equation. If we place the ori-
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gin o at the heat source and consider the heat transfer through
the hemispherical surface located a distance r from the source,
we can write

q(x',y') dI' = =) 2wr2(dT/dr) @)

Rearranging Eq. (7) and integrating with respect to T and r,
q(x',y') dI' being constant, we obtain

Ty (r) = T,(x) = [a(x",y") dT/2mA][1/x; - 1/z,] (8)

We can let r, be an arbitrary point r and T,(r) be T. For
convenience, we choose Tir)to be T(») = 0 and T,

The temperature at P due to a heat source at o' is there-
fore

T(x,y,z) = q(x',y") dI'/2mr €))

We now can consider the effect of heat input into the half-
space due to the entire contact area. The temperature at P is
simply the expression in Eq. (9) integrated over the entire
contact area. Thus,

t t
T(x,y,2) = 5oy || 22 (10)

r

Since dI' can be vrit&en as dx'dy' and%the radial distance is
given by r = [(x'-x)< + (y'-y)2 + 22] ,» Eq. (10) in a Cartes~
ian system becomes :

T(X,y,2) = "-2%5‘—/‘/’
T

As a result of the definition of the thermal constriction re-
sistance, it can be seen in Eq. (6) that the contact area tem—
perature is required. This being the case, it is recommended
that the following method to be used for the evaluation of

Eq. (11). The projection of P(x,y,z) upon the xoy plane is
shown in Fig. 3. Introduce the polar coordinates p,w with this
point as origin. Therefore,

q(x',y")dx'dy’
(-2 + G'-9)2 + 2

2,172 (1)

)

x'-x=pcosw, y' -y=psinw (12)

™ g
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P(x,y,0)

a) b)

Fig. 3 Polar coordinates.

An elemental area in I becomes dI' = pdpdw. Equatiom (10), with
z = 0, now becomes

T(x,9,0) = 355 ff qdisdp (13)
T

e w has minimum and maxi-

If the point P lies outside I, the angl
(11) becomes

mum values wy and w, (rig. 3a). For z = 0, Eq.

¢

T(x,5,0) = Fax [p, (W) = py(w)]dw (14)

s |

where p, and p, are clearly functions of w, and q is uniform.
1f, on the othér hand, the point P lies inside ', as shown in
Fig. 3b, the angle w goes from 0 to 27, and Eq. (11) reduces to

2n
T(x,y,0) = ??r‘i p(w)dw (15)

when q is uniform.

Alternate Expressions of the Thermal Constriction Resistance

Equation (6) now can be written in the following manner
when we use the expression for the temperature givemn by

Eq. (10):
1 {{ qdr
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; For the special cas
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ation in the numerator as well as the
integration in the denominator and canceled. Thus Eq. (16)
reduces to

)
’quation (10), with ‘

{ _
lzj[[ffﬂ;-]dr (17)
27AT r r

which is clearly dependent upon the geometry of the contact
only. According to Eq. (15), Eq. (17) can be expressed as

R=

@13)

hi
2n R
18/~ nimum and maxi- 1 /ﬂ
2q. .i1) becomes R = 2 P(w) dw | dr (18) _
2mr* |
Jr (o]
0
ldw (14) Several special cases will be considered next to demonstrate
. the applicability of Egs. (17) and (18). -
Contact Area Tewperatures due to Uniform Heat Flux 1;
ind q 15 uniform.
e rq as :hown in Triangular Contact, The temperature at the vertex of a Af
q. Ell) reduces to triangular contact area (Fig. 4) due to uniform heat flux over
the entire area now will be determined. 1In Fig. 4a, the per-
pendicular from the vertex P(x,y) to the opposite side AB in- o
s tersects it at C and divides the triangular area into two
15 —
c _
¢ ,O\ £
tion Resistance ¢
b o
ollowing manner
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P(x,y)

Fig. 5 Triangular element.

right-angle triangles PAC and PBC with angles w, and w, sub-~
tended at the vertex P. The length PC will be &enoted 8.

Consider the triangle PAC alone (Fig. 5). The effect of
uniform heat flux distributed over the shaded elemental area
is, according to Eq. (13),

w w.

1 1
T(x’y) - 4. .6;‘“ ™ 9 Sdw (19)

2mA cosw  2TA
° ° /l—sinzw

where w, = tan-l(ACISs) Equation (19) integrates readily and is

T(x,y) =(q/2mA)8 1n tan [(n/4) + (w1/2)] (20)
For convenience, we introduce the omega function:

Q(N)-lntan{i “’] 11 [1+Sinm]

A S Rl SRl (s g (21)

The second expression in Eq. (19) is recognized as the
incomplete elliptic integral of the first kind of w, and modu~-
lus equal to unity. Thus an alternative expression for the
omega function is

Q(ul) = F(wl.l) (22)

The values of Q(wl) can be read directly from a table of
elliptic integrals.7°

In a similar manner, the effect of a unform heat flux dis-
over the right-angle triangle PBC can be obtained:

T(x,y) = (q6/2ﬂk)ﬂ(m2) (23)

with Q(w,) = In tan [(7/4) + (1/2) tan”l(Bc/8)].
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By superposition, we now can write, for the temperature
at the vertex P of triangle PAB due to uniform heat flux dis-
tribution q,

T(x,y) = (qes/zm\){n(wl) + ﬂ(mz)} (24)

By means of superposition, the temperature at the vertex P of
the triangle PAB shown in Fig. 4b can be shown to be

T(x,y) = (a8/2m){R()) - B(w,)} (25)

with
2()) = 1n tan [% + % tan"t A—g] (26a)
2(w,) = 1n tan [% + % tan~t %’9] (26b)

Regular Polygon Contact. The results of the previous sec-—
tion now can be applied to the determination of the temperature
at an arbitrary point P lying inside a polygon of n sides
(Fig. 6). If the point P is joined to the n vertices of the
n-sided polygon, n triangles are formed, A,, 23 Alyeaey, A,
with common vertices at point P, the bases of vhicg form the
sides of the polygon. The temperature T(x,y) at P consists of
the evaluation of integrals over the triangles A, and their
subsequent summation. For the point P lying witéin the poly-
gon, the temperature is

n
T(x,5) = 5o I 6§, @ (27)

i=1

where the § are the perpendiculars from P to the n sides or
their projection, and the . are the corresponding omega func-
tions defined by Eqs. (21) *nd (22).

Fig. 6 Polygon contact.
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Fig. 7 Rectangular contact.

Rectangular Contact.

The temperature at an internal point

P(x,y) of a rectangular contact area (2a x 2b) can be deter-
mined readily by the superposition of solutions of eight tri-

angular areas.

and 2b, respectively (Fig. 7).

Place the origin at
area, with the x and y axes running
The four perp

the center of the contact
parallel to the sides 2a
endiculars from

the point P to the four sides of the rectangular area are

61 =g -XxX=a

§,=b-y=b

8

3 =3 +Xx=2a

64 =b+x=0D>

with £ = x/a and N = y/b.

a-28
(1L-n
1L+ 8

(L +n)

(28a)
(28b)
{28¢c)

(284d)

There are eight triangles whose vertices have the common

point P.
w -tan_l——lb- = tan
1 61

- -la-x
mZ tan —3;—— = tan

-la+x
wy = tan = Sy
P

=t

-1b@1 -MN
a(l - &)

-1 a(l - &)
b(1 - n)

-1 a(l + &)
b1 - N)

w, - tan"! -‘-’—5:—1 - tan ! b1 -n)

3

a(l + &)

The eight angles subtended at the point P are

(29a)

(29b)

(29¢)

(294d)

e

-

A

"";ﬂ: “‘W“W""' ‘

- .
Ua tan
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temperature at P is
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where
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T(0,0) =~
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ws = tannl 23§~z - tan_l %%%%E—%% (29e)
we = tan 1 ng-i = tan”? f%%—%—%% (29f)
w, = tan-l aT;-E - tan-l -:—8‘_%2—;— (29g)
wg =t -1 _b_é__:_z = tan"! %—81’—2%— (29h)

By superposition of solutions for eight triangular areas, the
temperature at P is

8

T(x,y) = -2—}}: I 8, 9 (30)
i=1

where the omega functions are determined by means of Egqs. (29),
and the §, are to be determined by means of Eq. (28). It
should be noted that 61 is common to Al and A8’ 62 is common
to Az and A3, etc.

The temperature at the center of the rectangular area can
be evaluated easily because, by symmetry, there are two sets of
triangles which are identical. Thus,

T(0,0) = (q/2mA) & [6191 + 529 (31)

2]

where

6, =a, §

1 =b

2

w, = tan T (b/a), w, = tan * (a/b)

1 2

Thus Eq. (31) reduces to

4

T(0,0) = %-gga in x:an[E + %— tan ! E]+
b 1n tan [% + % tan~1 %]} (32)
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823 2a

8,-2b

a) b)
Fig. 8 Midpoint temperature.

For the special case of a square contact area, the temperature
at the center can be shown to be

T(0, 0)-—3-;2 1n :an[z+%4}§-11221— (33)

The temperatures at the midpoints of the two sides of the rec-
tangular contact areas (Fig. 8) also can be determined easily,
and they are

T(0,b) = -2::5 §2 a ln tan [1 +31ant %—] +

4 2
4b 1n tan [% + % tan—l %;]% (34)
1 -1 2
T(a,0) = E%Xiz b 1n tan [Z 2 tan 33]+
4a 1n r.an[l‘ + % tan -1 :a]z (35)

At the corners, the temperature is

T(a,b) = %32 a ln tan [l(:- %]+

1 -1 a
2 b 1ln tan [4 3 tan -g]i (36)

For the square contact area, the temperatures at the midpoints
and corners are, respectively,

T(a,0) = T(0,a) = 0.7659(qa/}) an
T(a,a) = 0.561(qa/}) (38)
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Fig. 9 Circular contact with internal point.

The maximum temperature occurs at the center of the contact and
is twice the temperature at the corners.

Circular Contact. In this section, the temperature inside
and outside the contact area will be determined for the case of
uniform heat flux distributed over a circular contact of radius
a (Fig. 9). Figure 9a shows the internal point P located at
any distance r from the center of the contact area. A straight
line drawn through P intersects the circumference of the con-
tact area at points W and S, making an angle w with the di-
ameter UV. The perpendicular from 0 to WS intersects it at L.

We wish to determine the temperature at P due to unform
heat flux distribution along the line WS as it is rotated

through an angle ®. Equation (13) can be used to determine the
temperature:

n/2

T = 5—,};'/' 2(p, + p,)dw (39)
(]

In Eq. (39), we have used symmetry to simplify the calcula-
tions. It can be seen in Fig. 9b that, as the radius vectors
N and p, are rotated through w/2 rad, the effect of the uni-
form hea% flux distribution over the shaded area is taken into
account. Since the unshaded area is identical to the shaded

area by reason of symmetry, we need only multiply by a factor
of 2 to account for all heat fluxes.

From simple geometric arguments, we have that

3 WP = WL - PL, Py = PS = LS + PL (40)

] 77

T % la T\

T
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Since OL bisects WS, WL = LS and both are equal to Vaz -~ OLZ.
We also note that OL = r sin w. Adding the two expressions in
Eq. (40) yields

Py + py = 2LS = 2a V{ - (r/a)2 sin2 w (41)
Upon substitution of Eq. (41) into Eq. (39), we have an ex-
pression of the temperature at P:

T(r) = %?f V{ - (-:-)2 sin2 w dw

-2ges (D

where E is the complete elliptic integral of the second kind of
modulus k' = r/a. The temperature at the center of the contact
area is qa/A, whereas the temperature at the edge r = a is
(2/m) qa/A. As expected, the temperature at the center is in
excess of the temperature at the edge (approximately 63.7%

greater). $7.1 7{

The temperature outside the contact area will be deter-
mined by means of Eq. (13) and the geometric relationships
shown in Fig. 10. The external point P is located a distance r
from the center of the contact area. The effect of uniform
heat fluxes distributed along LM rotated through an angle Zm
can be determined by Eq. (14), which, by reason of symmecry,
is written as

e
T(r) = %‘%f M dw (43)
o

But we know that

0 2,1/2

LM = 2UM = 2[oM% - oU®]

and

OM = 3,.0U=r ginw

THEr
Thus, Eq. (43) car'

T(r) =

where sin w_ = a/r.l
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sin w = sin Wy siny.
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T(r) = % A.
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Thus, Eq. (43) can be written as

W
T(r) = %'?f ’ /1 - (5)2 sin’ w dw (44)
[o]

a

where sin mo = a/r. Equation (44) can be put into a more man-
ageable form if we use the following transformation:

sin wy cosy dy

sin w = sin wy siny, dw =

V{ - (a/r)2 sinzw
After substitution Eq. (44) becomes

/2

| 2 2
T(r)-%iﬁ g] K~ cos Y dy
o

(45)

T
Kzfi - (a/t)2 sin? ]

where the numerator and demonimator have been multiplied by Kz.
The numerator inside the integral can be rewritten as

% - 1) + A - &% sin?y) (46)
where k = a/r. With Eq. (46), Eq. (45) reduces to

~n/2
g{i 1 ?-vay
X .

[+

7
KA - «? sin?y

T(r) =

E RS

i ¢{7- Kz sinzw dy } (47)
K

Fig. 10 Circular contact with external point.
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b

Fig. 11 Coordinates and heat flux distribution
for annular contact.

Thus, for r > a, we have

2
T(r) - ;2{%2 (K) [E(K) = (12- K ) K (K)l (108)

K

where K and E are the complete elliptic integrals of the first
and second kind of modulus k. But Eq. (48) can be written in
terms of.other complete elliptic integrals defined by Jahnke

and Emde” as
T(r) = (2/7)(qa/}) x B(x) 49)
vhere

1;--1(-1),1)-(1(-1-:)/u<2 (50)

According to Jahnke and Emde, B + n/4 as ¢ + 0; therefore, the
temperature of z = 0 for points far from the center can be
approximated as

T(r + ®) = qaZIZAr (51)

Annular Contact. The temperature at any internal point P
within an annular contact area of radii a, b (a < b) due to a
uniform heat flux distribution over the area m(b® - az) can be
determined by superposition of two solutions corresponding to
the circular contact area. Figure 11 shows the resgltant heat
flux distribution due to +q placed over the area 7b“ and -q

placed over the area naZ. The temperature at a point P (a <

-

r < b) is required.
bution over ﬂbz, ar. t
of Eq. (42):

re - (IR

P is an external poli —

the temperature car
(49) to be -
-2
T(-q) —nt
} I
T(-q) = (-7}

where x = a/r. ;

Adding Eqs. (54 '

PSR
T =33 25\ —
where a < r < b. -7

An equivalent e

(54) is i

‘r(r)% zz( -
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r < b) 1s required. P 1s an internal point for the +q distri-
bution over sz, and the temperature can be determined by means
of Eq. (42):

T(+q) = (2/7)(qb/A)E(x/b) (52)

) P is an external point for the —q distribution over naz, and

‘ the temperature can be determined by means of Eq. (48) or Eq.

; (49) to be

=2qa ., [EG) - (A -k} KK)]
T(-q) = — 3= () 7 (53)
K
or

\ T(-q) = (-2/m)(qa/A) ¢ B(k) (54)
vhere k = a/r.

¢

Adding Eqs. (52) and (53), we have, as the temperature
at P,

- 29b)p(r) _(r) g(a IV —(2\2 | (2

e = 22 0e0) -(5) 5(e) + (B @]k oo
where a <r < b.

¢

An equivalent expression obtained by adding Eqs. (52) and

. (54) is

2.gb }p/ry _ (ay(a a
v 28 1e(3) - (2)) » (3)]
Constriction Resistances Due to Uniform Heat Flux
Distributions

In this section, the thermal constriction resistance of

* three important shapes (rectangular, circular, and an annular
ring) will be evaluated for uniform heat flux. From our defi-

! nition of constriction resistance, we must evaluate the average
contact temperature.

Rectangular Contact. The local contact temperature can be
determined by means of Eqs. (28-30). Because of symmetry, the
average temperature can be written as

a b )
T=1i
s ab T(x,y) dx dy (57)
o/ o
T S — 1
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Table 1 Some values of . as a function After substitutior'i
of € for a rectangular contact

€ Ye f-l

1 0.2366 '
1.5 0.1919 The integral can HiE_
2 0.1625 '
3 0.1272 _
5 0.09128
10 0.05617 1
100 0.00925 IE -~
o
Since we are
' the second kind, —
1 ft .
It can be shown that the average contact temperature is6 vatue o he intei

A

"f-z-g'—;sinhlb- b s:t.nh-l3 +
a a

and, theref ore,

3 )2) 3/2 ( Q= q‘na becomesg:

[RIF

s+ @) - (e® (38

With the total heat flow rate Q = 4 qab, the dimensionless

constriction resistance can be shown to be . with § = AaRe.
-11,1 -1 .
Il’t = —' ,sinh E € imh € + Annular Contac
an annular contaci
3/2 .
Shiel-(-2,)
€ € -
. T=
where ) = AbR_and € = a/b > 1. Some values of w are given

in Tabl® 1 forfan interesting range of €.
¢ where T is given by

Circular Contact. The average temperature of a circular
contact subjected to a uniform heat flux is If we substi
expression 11

Aa
- °
1 I
T = —~5 1 T 2mdr (60) Ta2g
ma““o . A

‘ .

Al

-
" —
k4




function
tact

6
ct temperature is

(58)

e dimensionless

(59)

8 of wr are given

ure of a circular

(60)
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After substitution of Eq. (42) into Eq. (60), we obtain

1

Tebga ' '

T Y f E(x') x'dk (61)
[+

The integral can be evaluated readily by means of Refs. 8 and 9:

1
2
Jf E($,K) Kdk = %-[Sin ¢ +1- °°S¢] (62)

o sing

Since we are considering the complete elliptic integral of
the second kind, ¢ = m/2, and by Eq. (62) we have 2/3 as the
value of the integral. Thus,

T = (8/3m) (qa/A) (63)

and, therefore, the dimensionless constriction resistance with
Q= qna“ becomes”®

v, = 8/3n° (64)

with wc = )aRc.

Annular Contact. The average contact area temperature of
an annular contact with uniform heat flux is given by

b

- 2 ‘[

Ts —— T rdr (65)
b2-a%) Ja

where T is given by either Eq. (55) or Eq. (56).

1f we substitute Eq. (55) into Eq. (65), we obtain the
expression

= _4qgb 1 [ " '
T=— 11, +I_+I_+1 (66)
LRI b e 4J
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wherell

I1f we let € = a/b < 1 and wri
dimensionless constriction resistance wa can be expr

M. M. YOVANOVICH

r

€
13 - (—E) E (3) rdr = - ef KQKZdK
1 K

b €

2
o )@ k@) e o], 2

(67a)

(67b)

(67¢c)

(67d)

The evaluation of these integrals is given in Ref. 1l.

te Q= q1rbZ (1-52), the

essed as

v, - (8/37%) (1-eH 2 [1+e3-(1+e2)z(e)+(1-e2>x(e)] (68)

Table 2 wa as a function of €
for an annular contact

£ ]

a

0.2702
0.2695
0.2680
0.2667
0.2660
0.2666
0.2691
0.2746
0.2858
0.3109
0.3306
0.4506

e o & o o
SHWN-O

-
O 0O 0~ O

n

COoOO0O0O00O0

.

00000
s s o °

B
_ et S | ‘
f L

8
¢ R

where_waE AbRa. I
elliptic integralsf.f
having modulus €.
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in Table 2. For a
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where waE AbRa. In Eq. (68), K(c) and E(c) are the complete
elliptic integrals of the first and second kind, respectively,
having modulus €. It should be noted that, as a + o (¢ + o),
Eq. (68) yields ¢ = 8/3m%, which is identical to Eq. (64).
Some typical valuls of Y for several values of £ are presented
in Table 2. For a detailed discussion of these results, the
reader is referred to Ref. 1l.

Conclusions

Superposition of heat sources due to arbitrary heat flux
distributions over planar contact areas has been used to derive
general expressions for evaluating local contact area tempera-
tures and thermal constriction resistances as a function of heat
flux distributions over the contact. The special case of uni-
form heat flux was considered, and a number of important con-
tact area shapes were examined. Thermal constriction param-
eters were obtained for the rectangular, circular and annular
ring contacts.
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