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Abstract

Steady-state thermal constriction resistance between
smooth spheres and rough flats in contact is analyzed by means
of a mechanical model that considers the elastic and plastic
deformation of the mean planes and roughness, respectively.

It incorporates a variable contact size and distribution. The
thermal model predicts the resistance of contact areas when
the microcontacts are circular or elliptical under isothermal
or uniform flux conditions. Plots of a novel dimensionless
contact resistance vs the dimensionless surface roughness for
several values of the dimensionless asperity slope are obtain-
ed for some selected dimensionless hardness values.

Nomenclature
Aq = agrea of the flat
Ac = contact area
Ay = Hertzian area
A, = real contact area
a = microcontact radius
B = complete elliptic integral
b = cell half-width
D = sphere diameter 2 ; 5
= + - i + -V i 3
i3 ai/[(pjcosej Hy picosei) + (pj81n6j Vi p151n6l ]
E;{,Ep = Young's elastic modulus of contacting solids 1 and 2
f.. = sin—1d,. .
13 sin dij’ Egs. (7) and (9)
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= dijB(dij), Egs. (8) and (10}
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radiant interchange factor
M

summation term I a?
i=1

microhardness 1

dimensionless hardness, mH [(9/64)(D A /N)] /3

number of microcontacts

absolute average asperity slope

dimensionless asperity slope m/HA

contact load

number of summation term

number of microcontacts per unit area

contact pressure

heat flow rate

constriction resistance

radiative resistance

contact resistance

radial coordinate

contour radius

contact radius

Hertzian radius [(3/8)NDA]

1/(1 + 2.5/m*1-2y
1/(1 + 1.05/m")

temperature
mean surface temperature
2
. M o
summation term I L

= weight factor

separation between the mean surfaces at some r

= dimensionless microcontact radius a/ry

physical parameter (1 - v%)/El + (1 - \)%)/E2

dimensionless cell half-width b/ry
dimensionless separation Y/ovV2
thermal conductivity of contacting solids 1 and 2

harmonic mean thermal conductivity 2A1A2/(Al + Az)

dimensionless coordinate x/rH
dimensionless coordinate y/ry

= Poisson's ratio of contacting solids 1 and 2

dimensionless radius r/rH

dimensionless contour radius rcont/rH
root-mean-square (rms) roughness
Stefan-Boltzman constant 1

/
dimensionless roughness nc[(3/8)(D/N A )] 3
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Introduction

There are large number of papers in the literature con-
cerning surface topography, deformation analysis, and the
contact resistance between two rough, flat or wavy solids.
This problem is of significant importance, for example, in
aerospace and nuclear industries. The authorsl-9 assumed in
their contact models that all microcontacts are of equal
radius and that they are distributed uniformly in the contour
area formed between rough, wavy surfaces in contact or in the
apparent area in case of rough, flat iurfaces in contact.
Thermal models are available 4~7,10-1 for predicting the con-

striction resistance of a microcontact on a half-space or on

a right circular cylinder under some thermal boundary condi-
tion. By the principle of superposition of microresistances
and macroresistance, the total constriction resistance is equal
to the sum of the microresistances and the macroresistance.

The assumptions that the microcontacts are of equal
radius and distributed uniformly in the apparent area between
the rough, flat surfaces in contact are good approximations
for a certain range of contact pressure. However, these
assumptions are questionable in case of the rough, wavy sur-
faces in contact where the pressure at the load axis is maxi-
mum and decreases along the radial coordinate. As a result of
this pressure distribution, the microcontacts would be denser
near the load axis and of larger radius than those away from
the axis. It is almost impossible to determine the heat flux

‘N

Fig. 1 Model of smooth-sphere/rough-flat surface contact.
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tube radius associated with the microcontacts within accept-
able accuracy when the microcontact distribution is nonuniform.
Consequently, the existing models of predicting the micro-
resistance fail to give the result, and therefore the method

of superposition of resistances cannot be applied in determin- ;
ing the constriction resistance. =

The objective of the present investigation is to derive
the expressions on a statistical basis wherever required to
determine the microcontact size distribution and the extent of
the contact area for a model of smooth-sphere/rough-flat con-
tact under load, and to develop a more general method of de-
termining the constriction resistance based on either uniform
flux or isothermal boundary condition on the microcontacts and
the contact area. The interstitial fluid is assumed to be
absent in the present work. The radiation resistance will be
studied based upon the decoupled model and will be added in
parallel to the constriction resistance.

Mechanical Analysis

Contact Model

Consider a contact model in which a smooth sphere 1 of
diameter D is in contact with a rough, softer flat 2 (Fig. 1).

It is assumed for the mechanical analysis of the contact
problem that 1) the roughness heights from the mean plane have
a gaussian distribution; 2) the asperities deform plastic~—
ally, whereas the sublayers and the bulk of the solids undergo
elastic deformation; 3) the plastic deformation of the con-
tacting asperities is related to the hardness of the softer
solid; 4) the problem will be analyzed for first contact
where the plastic deformation of asperities is the dominant
mode of the mechanical interaction; 5) the contacting sur-
faces are clean and isotropic and remain so during the contact;
6) the contacting solids are thick relative to the roughness
heights; 7) the contact occurs under static loading, i.e.,
vibrational effects are absent; and 8) the tangential forces
due to friction have negligible effect upon the compressive load.

Separation

I When a hard, smooth sphere and a softer, rough flat first

i are brought into contact, they touch only at a few points.

- These points and the mean surfaces of both solids undergo def-
ormation by the application of the load. Consequently, the
separation between the mean surfaces decreases, thereby in-
creasing the number of discrete contact spots, as well as the
deformed area over the asperities. The separation is minimum




THERMAL RESISTANCE 87

at the load axis and increases continuously in a certain
fashion along the radial coordinate r. The separation Y(r) for

small r can be obtained by means of Hankel transforms
(Terezawa's solution)l2,

Real Contact Area

The real contact area between the surfaces is the sum of
the areas of the individual contact spots. The real contact
area at any asperity tip is usually very small compared to the
contour area, and they may differ from one another depending
upon their location relative to the load axis. The pressure
distribution on the contact plane is assumed to be symmetrical
about the load axis, with maximum pressure on the load axis
and zero far away from it. Assuming this, the contact area
near the axis will be stressed more than that away from it;
therefore, the contact spots near the axis will be larger than
those away from the axis. The stress on the deformed asperi-
ties is assumed to be the microhardness H of the material de-
termined in a Vickers test, and that work-hardening is
negligible.

Pressure Distribution

The force balance on the elemental real area and the
elemental contact area is considered and the following rela-
tionship is obtained for the local pressure as a function of
the local separation n(p) between the mean planes:

PC(D) = (HSl/Z) erfc [n(p)] (1)

Mikic16 showed that the elastic deformation under the
contact points is significant under light contact loads if
the modulus of elasticity of the surface is not very large.
The parameter S1 takes this effect into account.

The external load N applied on the contact must be dis-
tributed over the contact spots. The spots located near the
origin will share a larger load than those farther away be-
Cause of the equivalent pressure distribution. Also, the load

must be equal to the integrated value of the pressure over the
contact area, i.e., '

v ] e o, @)
Ac
Equation for the separation and Eqs.(l) and(2) are required for

determining the pressure and the corresponding separation be-
tween the mean surfaces along the radius p. These equations
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are nondimensionalized and are functions of the dimensionless
parameters H*, o*, and m* alone. Their values are required
for the numerical solution by means of the iterative procedure
described in Ref. 15. The pressure distribution was obtained
for certain selected values of H*, ¢*, and a* corresponding to
a practical range of geometric and surface characteristics.

It is evident that there are many combinations of the geomet- :
ric and surface characteristics, physical properties, and =
mechanicq% load giving the same values of the parameters H¥,

c*, and m and therefore the same pressure distribution.

Number of Microcontacts ;

The expression for the contact spot density ﬂ(p) at the
separation n(p) is8

%k % |2
m H exp[-ZnZ(o)]

4rHo* erfe[n(p)]

The total number of contact spots can be obtained by integrat-
ing Eq. 3)numerically over the contact area. It should be
noted that the number of contact spots is directly proportion-
al to the square of the average roughness slope. Surfaces
prepared by different particles under different conditions
will have different average slopes, although the roughness may
be the same, resulting in large differences in the number of
microcontacts 17.

n(p) = (3)

Microcontact Distribution

As a result of the contact pressure falling continuously

along the radius, it is expected that microcontacts will be
farther apart from those nearer to the origin. In order to
describe this effect, a model of microcontact distribution is
considered 17 where there are a certain number of microcon-
tacts in various rows of annular areas along the radius, the
number being different in each row. The area associated with :
a microcontact, called a cell, is considered on a line similar §
to a heat flux tube associated with a microcontact when micro-
contacts are distributed uniformly. The cell area is approx-
imated by a square of side 2b. The expression for the dimen-
sionless cell size ¢(p) as a function of the separation n(p)

is

£(p) = (20*/m BY) exp [n2(p)] Verfcln(o)] (4)

For given contact parameters, Eq.(4)shows that the cell half-
width is a minimum on the load axis and increases along the




THERMAL RESISTANCE 89

MICROCONTACT

Fig. 2 Model of microcontact distribution in the contact area.

radius. A model of the first row of an annular area is con-
sidered, and the method of determining subsequent rows of
annular areas is described in Ref. 17. The procedure of de-
termining the number of microcontacts M; associated with the
ith annular region is given in Ref. 17. These microcontacts
are distributed uniformly on the line corresponding to the
mean radius of the annular region. The microcontact radius in
an annular area will be discussed next.

Microcontact Radius

It is assumed in the present analysis that all microcon-
tacts are circular and that the microcontact size varies as a
function of the radius alone. The following expression is de-
veloped for the microcontact radius a(p) as a function of the
separation and other contact parameters :

*
4Slo

alp) = exp[n®(p)] erfc [n(p)] (5)

Vo szn'l*n*

where So takes into account the effect of the elastic deforma-
tion under the contact points 16, It can be seen from Eq. (5)
that the microcontact radius decreases with an increase in the
absolute average asperity slope in some manner. This is app-
arent from the fact that, for a given surface roughness,
Material properties, and the load, a surface with a large num-
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ber of asperities (high absolute average asperity slope) would
have greater number of microcontacts and smaller microcontact
radius than those for a surface with a few asperities (low
absolute average asperity slope) . Inspection of Eq.(5) reveals
that the microcontact size is maximum at the load axis and
decreases along the radius. Equation(5)can be evaluated for
the line corresponding to the mean radius pj of the ith
annular area to determine the microcontact radius oy for the
probable number of microcontacts M;. This is repeated for all
rows of the annular areas to determine the microcontact radii
on the contact area.

Figure 2 shows a model of the contact area of radius pg
formed between the contacting solids under a certain load.
There are M microcontacts of different radii distributed at
known radial coordinates in the annular areas. Physically
there is no contact between the solids beyond this radius, and
it is quite different from the contour radius defined by the
authors -~ »15 1t is assumed equal to the radius of a circle
touching the microcontacts in the last row of annular area
(Fig. 2)17. The area enclosed by the dotted circle (p=1) rep-
resents the Hertzian area between contacting smooth solids.

Examination of Egs. (3-5) indicates that the dimension-
less parameters H*, ¢*, and #* must be maintained constant in
order to obtain the same microcontact radii distribution, the
number and the microcontact distribution at the interface
formed between the contacting solids having various combina-
tions of the surface characteristics, material properties, and
load.

If the roughness heights y; and ¥y, from the mean planes
and \yi\ and ‘yz\ of the two rough spherical surfaces have

gaussian distribution and are brought into contact under the
load, the equations developed here can be applied for predict-
ing the probable microcontact size, the number, and the distri-
bution in the contact area. In this case y is replaced by
yi+y2. The standard deviation for the height distribution O

and the absolute average asperity slope m are replaced by the
square-root of the sum of the squares of the res ective values
for the two surfaces. If the slopes |yl| and lyz\ are approx-
imately constant or have Qiffereq% values, m is replaced by

the larger of two slopes my and m2.

Comparison between Present and Existing Models

The present contact model is somewhat similar to that of
Yip 7 because both models assumed the contacting rough surf-

- lmwméd
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aces to have a gaussian height distribution and that the mean
surfaces and the asperities undergo elastic and plastic defor-
mation, respectively. The important differences in these
models can be found in the determination of the separation
between the mean planes and the resulting microcontact size
and distribution on the contact area. The present model ass-
umes a continuously increasing separation between the mean
surfaces as a function of the radius, whereas the Yip model,
inappropriately, considered two separation regimes: one
consisting of uniform separation within the Hertzian area,

and another of increasing separation beyond the Hertzian area.

A typical contact between a smooth sphere and a rough
flat under various loads will be considered. The number of
microcontacts M, the average microcontact radius a, and the
contact area radius pg are determined for the following con-
tact parameters: D = 28.58 mm, ¢ = 1.305 u, m = 0.073,

H =3.923 x 109 N/m2, and A = 0.88 x 10~11 m2/N. The results
are compared with those given by Yip 7 and are presented in
Table 1.

It can be seen from Table 1 that the present model pre-
dicts larger contact radii than the contour radii given by
Yip's model and Mikicd at light contact loads. However, at
high contact loads, the contact and the contour radii pre-
dicted by all the models are close to one another. It is also
observed that the present model predicts more microcontacts
and consequently smaller average microcontact radii than those
given by Yip's model at light loads. The present model pre-
dicts a certain microcontact radius distribution along the
contact radius. Microcontacts near the load axis are larger
than those near the contact boundary by an order of magnitude,
depending upon the load. At loads beyond 360 N the present
model predicts fewer microcontacts, and consequently larger

Table 1 Comparison between present and Yip's model12
Pe pcont M ¢
Contact load, Present Yip Present Yip Present Yip
N model model model
26.1 2.224 1.433 28 16 0644 .0852
75.1 1.712 1.284 56 35 .0543 .0687
146.3 1.500 1.224 80 57 .0508 .0602
360.0 1.307 1.155 120 104 .0482 .0518

690.4 1.200 1.112 146 152 .0487 .0477

———
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average microcontact radius, than those given by Yip's model.
The difference in the microcontact size along the radius
becomes relatively small.

To recapitulate, the proposed mechanical analysis predicts
the probable number and radii of microcontacts, their distri-

bution, and the contact area radius for the contact model. It
appears to be more appropriate than the analyses available in
the literature from the physical standpoint. Its importance

will be clear when we discuss the thermal analysis to deter-

mine the constriction resistance.

Thermal Analysis

It is important to note that the metal-to-metal conduc-
tion is the dominant mode of heat transfer across the inter-
face formed between the contacting solids. Other modes of
heat transfer, such as the conduction and the convection
through the interstitial fluid, are absent when the contact
occurs in a vacuum environment. Radiation heat transfer
across the gaps is usually quite small; however, it has been
taken into account by considering an approximate model of
radiative resistance.

A mathematical model of the constriction resistance will
be discussed based on a known microcontact distribution on the
contact area and some thermal boundary condition on the micro-
contacts and the contact area. For practical purposes, the
contact area will be assumed to be under either of the two
well-known boundary conditions: 1) uniform temperature, or

2) uniform heat flux. Similarly, the microcontacts may be
assumed under either boundary condition.

It is assumed further in the thermal analysis that 1) the
contacting surfaces are free from oxides, 2) the contact
occurs in a vacuum environment, 3) the microcontacts are on a
plane, 4) heat flow rate is steady, and 5) the noncontact
region in the contact area is perfectly insulated. Express-
ions will be developed in the following sections for the con-
tact constriction resistance under four possible combinations
of the thermal boundary conditions on the microcontacts and
the contact area.

Constriction Resistance Definition

The thermal constriction resistance R. of the contact
area (Fig. 2) is defined as the average temperature of the
real contact area Ay divided by the total heat flow rate Q,i.e.,

OIS =
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radius p, oOn a half-space where the microcontacts are assumed
to be under uniform heat flux conditiom. The dimensionless
resistance of the contact area between two solids under_ rhese
conditions can be determined by the following equation

M
A /A';RqT=_7_Z__3“ 5 o
s ¢ T Gw1=1/—l_(p/p)2
i'"Ve
M n
2 2 :
Lo+ gzl IowE Guov) (8)

Constriction Resistance: Contact Area under Uniform Heat Flux ;

Isothermal Microcontacts. The dimensionless constriction
resistance of the contact area under uniform heat flux and the
microcontacts under isothermal condition can be obtained by
means of the following expression 17

i oI M . 2 X oo,

A YA R = 5 oo, |Eof+ 3ot Towf, L (u V) (9)
2 . b

s cq ynG2 4o 1 |21 41 I e kij "k’ 'k

where the subscript q refers to the uniform flux on the con-
tact area, and the superscript T refers to the isothermal
boundary condition on the microcontacts.

Microcontacts under Uniform Heat Flux. The dimensionless
constriction resistance of the contact area can be determined
by the following expression, where the microcontacts are
assumed to be under the same uniform flux

q_ 4 " i 2 Moo0®
A VA RY=—— ¥ a, |zo,+ L o, 1L w, £, . v )] (10)
"2 Req Tr3/2G2 jop T 371 P | ki Tk’ k

1f the contact area is on a coaxial right circular cyl-
inder, the resistance given by Eqs. (7-10) must be modified
to take into account the effect of the cylinder wall on the
contact temperature and the resulting drop in the resistance.
This situation may occur where a very wavy smooth surface at
one end of the cylinder is in contact with a rough flat end of
another cylinder at high load. The total constriction resist-
ance in this case is defined as the average temperature. of the
real contact area minus the average temperature of the cyl-
inder area divided by the heat flow rate across the interface.
Expressions for the total resistance have been obtained for
the contact area and the microcontacts under the above bound-

ary conditions and are given in Ref. 17.

From the analysis presented here, it is evident that, for
a given harmonic mean thermal conductivity of the contacting

o
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solids and the thermal boundary conditions, the constriction
resistance merely depends upon the microcontact radii, their
number, and their distribution in the contact area. It has

been shown in the '"Mechanical Analysis' that several combina-
tions of the contacting solids can have the same contact con-
figuration provided that the dimensionless parameters H*, o%*
and m”" are maintained constant. It is apparent that these

contacting solids would have the same dimensionless resistance.

b

Radiative Resistance

The contacting surfaces are assumed to be isothermal and
are enclosed by a reradiating (insulated) surface. If the
surface temperatures are close to each other, the radiative

resistance_can be determined by the following approximate ex-
pression

~ 3
Rr = l/4oAlf12Tm (11)

The radiant interchange factor f12 can be determined by the
method described in Ref. 17.

Contact Resistance

It is assumed in the present thermal analysis that both
the constriction and the radiative resistances are independ-
ent of each other and that they are connected thermally in
parallel. The total resistance of the contact area, Ry, under
a vacuum condition is given by the following relation:

1/Rt = (l/RC) + (l/Rr) (12)

Comparison between Resistances by the Models

Contact geometries described in Table 1 with known micro-
contact number and radii distribution in the contact area were
considered. The constriction resistances were obtained by
means of Eq. (7) for the contact area and the microcontacts under
isothermal conditions. The results were obtained for the same
boundary conditions by Yip's method (superposition of micro-
scopic and macroscopic resistances). Experiments have been
Performed by the authors 17 to measure the resistances for .
several combinations of surface characteristics, material prop-
erties, and load including the typical contact. The radiative
resistances were determined by Eq.(1D for the measured surface
temperatures,and the theoretical contact resistances were
obtained by Eq. (12). The radiative resistances were found to
be about 20 times the constriction resistances at light loads
and about 50 times at high loads. The results are presented
In Table 2. It can be seen that the resistances obtained by
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Table 2 Comparison between the resistances by
present and Yip's modell2

Contact load, Contact resistance, °C/w
N Measurement Present Yip
model
26.1 72.81 80.45 101.0
75.1 53.93 57.10 61.63
146.3 46.63 47 .44 46.87
360.0 35.20 35.52 33.89
690.4 29.54 29.66 27.09

the present model are closer to the measured values at light
loads and also lower than those given by Yip's model. We
believe that this is primarily due to more microcontacts dis-—
tributed in the larger contact area predicted by the proposed
mechanical analysis than those given by Yip's model. Thermal
analysis also determines the interaction of microcontacts with
greater accuracy. At loads higher than 75 N, the agreement
between the results by measurement and the proposed model is
excellent, while Yip's model predicts resistances lower than

the measured values.
Numerical Results

For a given H*, several contact configurations were ob-
tained by varying the parameters o* and m* within the range of
industrial applications. The microcontacts and the contact
area are assumed isothermal, and the contact area is assumed
to be on a half-space. The dimensionless constriction re-
sistances were obtained by means of Eq.(7) for each set of o*
and m . The results are presented in Figs. 3 - 6 for H* = 5,
10, 25, and 50, respectively. It is noteworthy that the con-
striction resistance parameters are presented in a compact
form to obtain the resistance readily once the parameters H”,
o*, and m* are available.

It is noted from the figures that, for a given H* and 0*,
the resistance increases with decrease in m*. In other words,
the resistance increases with a decrease in the asperity slope
for a given rms roughness, curvature, material properties, and
load. This is apparent because a smaller asperity slope yields
fewer microcontacts and, as a result, a higher resistance. It
is important to realize that, for fixed values of H* and o,
the constriction resistance may be below, equal to, or greater
than the resistance of contacting smooth solids under the same
conditions, depending upon the asperity slope. It can be
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inferred from the results that there are some combinations of

7 3 % .
the parameters H and m” where ¢* has no effect on the resist-
ance whatsoever. For instance, when H* = 10 and 1/m* ® 0.25
(Fig. 4), the dimensionless resistance is always 0.886, inde-
pendent of o¥, However, the roughness effect is negligible
for any asperity slope, as can be seen from the convergence of
the 1/m* curves at small values of o*., This is valid at suff-
iciently high mechanical loads and can be determined from Figs.
3 - 6 for the given contacting solids.

The preceding discussion confirms the consistency of the
results presented in Figs. 3 - 6. Based upon the theoretical
and the experimental 17 results, it is expected that the re~-
sults in Fig. 3 may be about 10% above the actual resistance
for o* and l/magreater than 1.0 and 0.4, respectively. For
large values of H*, the results in Figs. 4 - 6 may be about
12% above the actual resistance for ¢* and 1/m* greater than
4.0 and 0.4, respectively.

Discussion and Conclusion

A "Mechanical Analysis" is presented for determining the
microcontact radius distribution, the number, and the distri-
bution in the contact area formed between a smooth sphere and
a rough flat. The roughness heights on the flat solid had
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Fig. 3 Dimensionless constriction resistance between rough
spheres in contact (H* = 5).




98

S.S. BURDE AND M. M. YOVANOVICH

1.6
I
* 902A’-] 3
H'= TH [ 64N 0.7
1.4
o*= o | 32 ]I/B
2 A2
8N2 A 56
13) rh*= m/HA
@ 1.2 -
< H =10 0.5
<
1.0 0.4
wn
~< 0.3
0.8 0.2
(/m*= 0.l
0.6 | | | |
0 1.0 20 3.0 4.0 5.0

o_*

Fig. 4 Dimensionless constriction resistance between rough
10).

spheres in contact (H* =

1.6
2,213
*_ 9D A
o= H| 64N ]
|.4'— l/
» 3
o o '"U[aNzAZ]
.* ./H
- |2 m* m A
H =25
[72}
~<£

0.8—

0.6 | |

0.2

2.0
*

(o
Fig. 5 Dimensionless constriction resistance between rough
spheres in contact (H* =

25).

5.0




THERMAL RESISTANCE 99

gaussian distribution from the mean plane. A "Thermal Analy-
sis" is considered, and the expressions are developed for de-
termining the contact constriction resistance under various

thermal boundary conditions on the microcontacts and the con-

tact area.

The microcontact radius, the number, and the distribution
in the contact area obtained by the proposed mechanical model
definitely are appropriate to the real contact situation where
the separation between the mean surfaces increases, and con~
sequently the contact pressure decreases along the radial co-
ordinate. The thermal analysis presented here is superior to
the principle of superposition of microscopic and macroscopic
resistances. The proposed model, unlike the superposition
method, can be employed in predicting the resistance of a con-
tact area where the microcontacts of different radii are dis-
tributed in a known manner. (Coordinates of the microcontacts
are known.) Its usefulness in a variety of contact problems
is remarkable, especially when it is difficult or impossible
to establish the boundary of noncircular contact areas. The
superposition method is unable to predict the resistance of
such contact areas. The proposed model does not require the
artificial and disputable boundary of the contact area when
the microcontacts are assumed to be under equal uniform heat
flux 17, This method yields the upper limit of the contact
constriction resistance.

The results of the present method are made available in
graphical form to allow prediction of constriction resistances
between rough spheres in contact, having different combina-
tions of geometry, surface characteristics, material proper-
ties, and mechanical load all grouped in the dimensionless
parameters H*, o*, and m*. It is observed that the roughness
effect on the contact resistance is negligible, and, as a re-
sult, the contact area acts as a single circular isothermal
spot at loads greater than or equal to some load, depending
upon the surface characteristics and the material properties.
The limiting value of the load can be determined for the sel-
ected values of H* by means of Figs. 3 - 6 with the desired
accuracy. The constriction resistance at this load simply
becomes l/2ASrH and indicates that neither the present theory
nor the other theories in the literature are required in pre-
dicting the constriction resistance of the contact under high
load. The negligible effect of the roughness on the resist-
ance is expected to be valid for other shapes of the contact-
ing smooth solids with the rough flats. The shape of the con-
tact area depends upon the shape of the smooth solid. TFor in-
Stance, a smooth spheroid in contact with a rough flat would
result in an elliptical contact area. The microcontacts are
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Fig. 6 Dimensionless constriction resistance between rough
spheres in contact (H* = 50).

expected to lie on several ellipses within it. The present
and other existing models are unable to predict the precise
contact area and, consequently, its comstriction resistance at
any load. At sufficiently high load, it would act like a sin-
gle elliptical contact spot of the same area and can be compu-
ted easily by the elasticity theory for smooth solids in con-
tact. It has been shown that the dimensionless resistance of
a single circular contact spot based upon the square root of
the area under uniform heat flux varies insignificantly with
some change in its size and the shape 19, 1n particular, the
Hertzian area, unlike the contact area, is unique under all
loads and coincides with the contact area under high loads.
Therefore, the nondimensionalization of the constriction re-
sistance based upon the square root of the Hertzian area is
appropriate. The dimensionless resistance of the single iso-
thermal circular contact spot then becomes 0.886. The dimen-
sionless constriction resistance of the smooth-spheroid/rough-
flat contact based upon the square root of its area is approx-
imately 0.886, provided that the shape does not vary too much
from the circle 19,
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