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ABSTRACT m
A numerical method based upon the integral N

formulation of the conduction equation has been

applied to extended surfaces of arbitrary profile, with P

nonuniform heat transfer coefficient, end cooling and

imperfect base contact. The method utilizes tempera- Q

ture excess coefficients which relate local and

adjacent upstream temperature excesses. General q

expressions of the temperature excess coefficients,

local temperature excess, total fin heat loss rate and R

fin efficiency are developed for longitudinal fins, ¢

spines and pins, and circular annular fins. Several T

examples discussed in Kern and Kraus are consildered to
demonstrate the simplicity, directness and accuracy of [
the method which can be easily adapted to programmable
calculators or microcomputers.

NOMENCLATURE

A conduction area

a fin end half-thickness

Bi Biot number

Bic Bagse Biot number

Bie End Biot number

b fin base half-thickness

Cj temperature excess coefficient (1 <3z N)
cv control volume

h(x) nonuniform heat transfer coefficient
hj mean value of h(x) over CVj

h overall mean value of h(x)

k thermal conductivity

L fin length
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fin parameter ( = /£;7;z;
number of control volumes

fin perimeter

heat flow rate

heat flux

contact resistance

radial coordinate

convection surface

temperature

cartesian coordinate

fin width

fin half-thickness at arbitrary location
circular fin inner radius
circular fin outer radius

fin parameter ( = Bi(L/b)z)

fin half-thickness ratio (=a/b)

temperature excess coefficient parameter
(E= 0Oorl)

fin efficiency
temperature excess

temperature excess coefficient parameter
(A = 1or 2)

fin profile parameter

heat transfer coefficient parameter



p - circular annular fin radii parameter

(=1-9

SUBSCRIPTS

b base

c contact

ce convection loss from end

cj convection loss from jth control volume

f ambient condition

i ideal

3 jth control volume (1 <3 N)

j+1,3 boundary between local and upstream control
volumes

3,J-1 boundary between local and downstream control
volumes

s convection surface

n outward normal

SUPERSCRIPT

- mean value of parameter

-+ vector notation

INTRODUCTION

Analytical solutions to extended surfaces (or ome
dimensional conduction with convection problems) are
available for a relatively small number of special
cases such as longitudinal fins, spines or pins and
circular annular fins having uniform film coefficients,
isothermal base and insulated end (1-6). The fin pro-
files which have been examined (6) are i) rectangular,
11) convex parabolic, 14i1) triangular and iv) concave
parabolic. Special functions are frequently encoun-
tered in these solutions, e.g., modified Bessel func~
tions of integer and fractional order, and Gamma
functions. Many of the special functions are not
tabulated, nor are they available in computer librar-
ies, therefore extensive numerical computations are
required to determine temperatures, total heat flow
rates and fin efficiencies.

Analytical methods cannot be employed for fins of
arbitrary profile, with variable film coefficients,
imperfect base contact and end cooling. It is there-
fore necessary to consider numerical methods such as
finite difference (1-6) or finite element (4) to
obtain discrete approximate solutions.

The purpose of this paper is to develop by means
of the integral form of the conduction equation or
physical approach (1-4) a general simple, accurate,
non-iterative numerical method which can be applied to
any one-dimensional, steady-state conduction with
convection problems, To demonstrate the simplicity
and accuracy of the method, it will be applied to
extended surfaces of arbitrary profile, nonuniform
lateral heat transfer coefficient, with base contact
conductance and end cooling. Several fin examples
given in Kern and Kraus (6) will be discussed to
demonstrate the applicability of this novel numerical
method to programmable calculators or microcomputers.
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Integral Form of Conduction Equation Applied to
Control Volumes

The novel, non-iterative control volume or
physical approach to the solution of any one-
dimensional, steady-state, conduction with convection
problems presented in this paper is based upon the
integral form of the conduction equation

>

i
where 3 is the outward directed heat flux vector at
the boundary of the system under consideration, and

q n is the outward normal component of the heat flux
vector q . In general equation (1) can be written as

ndsS =0 [6))

6
I q.S =0 2
=1 nj j

where an is the mean value of the normal component of

the heat” flux vector acting over the jth surface,
defined as

L g
— q &)
n S 5 nj
Over convection boundaries we will take
q,=h, B8 4
9 5 %j 4)
where hy is the mean value of the nonuniform heat
transfer coefficient over the jth boundary and esj
is some mean value of the surface temperature
excess defined as (Tsj ~ Tf), where
= 1
6. =5 [f (Tgy - Tg) dS, &)
J s
3
and
hy = Ll nwo as, (6)
:) 54
At conduction boundaries
Ty = K (D), %)

where k; is the local thermal conductivity and (de/dn)j
is the “mean temperature excess gradient normal to
the jth boundaty,

1
dnj'§ ” dnj (8)
Over adiabatic boundaries
q,=0 9)

The control volume method conserves the geometry
(conduction and convection areas), the thermal con-
ductiyity k. and approximates the mean values of the
normal temperature excess gradient at conduction areas
and the mean value of the temperature excess at con=-
vection areas.

Qutline of the Temperature Excess Coefficient Method-
ology (TECM)

The non-iterative numerical method is based upon
the control volume or physical approach which can be
applied to any one-dimensional conduction with con-~
vection problem. It is based upon the concept of
temperature excess coefficients and the following
methodology is employed:




1. Subdivide the one-dimensional system (e.g. extended
surfaces) into N control volumes as shown in Figure 1.
For most systems control volumes of equal length yield

the simplest formulations of the temperature excess
coefficients.

cv, CVj{2sjsN-1) CVNn
e ¢ 1 w 1 [ W 8y
] L| L/N L/N L/N L/N L
25[9' B, L 8 ) 9.'.5-N

Fig. 1 Subdivision of one-dimensional system

2. Denote the end (boundary) control volume CV; and
the base (boundary) control volume CVy. The remaining
(internal) control volumes are denoted CVj with

2 < j < (N-1) as shown in Fig. 1.

3. Let 683, 687, 63, ... 8y represent the effective
temperature excess associated with each control volume.
This temperature excess is assigned to the mid-point of
each control volume as shown in Fig. 1. The temper-
ature excess assigned to the fin base and end are
denoted 6y and 6,, respectively.

4. By means of a heat balance over the end of the
first control volume, CVy, as shown in Fig. 2, derive
a relationship between the end temperature excess 0,
and the control volume temperature excess 6;, and
define the end temperature excess coefficient Cg:

8, = Ceel (10)

5. By means of a heat balance over the boundaries of
the first control volume, Fig. 2, derive the relation-
ship between the local temperature excess 61 and the
upstream temperature excess 62,

0

1= 6% ()

where C, is the temperature excess coefficient for CV;.

Fig. 2 Heat balance over end control volume

6. By means of a heat balance over the boundaries of
an arbitrary internal control volume CV4, Fig. 3, de-
rive the relationship between the local temperature
excess 04 and the upstream temperature excess 6j+1,
using the fact that ej_l = cj-l Gj:

]

j = Cjej+1 (12)
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where Cj i8 the temperature excess coefficient for all

internal control volumes and 2 < j £ (N-1).
Q¢j
4
R
=== - [ - ---- =
|
i Qj,j-1 Q41 I
I — ¢ =] !
| [
§ 1
| P S PO PR |
L/N L/N
8;.1°Cj8; 8; 8jn

Fig. 3 Heat balance over arbitrary internal control
volume

7. By means of a heat balance over the base control
volume CVy, Fig. 4, derive the relationship between the
local temperature excess GN and the fin base tempera-
ture excess O, using the fact that Oy-1 = Cn-1%%:

6 = (¢ 6

N N b an

where Cy is the base control volume temperature excess
coefficient.

Qcn
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— ———
1
: QN,N-1 Qo
i -————— 1 - —
|
)
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By-1" Cn-On Oy 8y

Fig. 4 Heat balarce over base control volume

8. By means of a heat balance over the base conduc-
tion area, Fig. 4, derive the relationship between the
fin base temperature excess 6 due to base contact
conductance, and the base temperature excess 8, using
the fact that 6y = CNeé:

1 =
Bb Cceb

where C_ 1is the temperature excess coefficient due to
imperfect contact at the base.

(14)

9. Compute the numerical value of the end temperature
excess coefficient first; then compute directly the
numerical values of all upstream temperature excess
coefficients Cl’ CZ""’ Cj’

10. Having determined the numerical values of all
temperature excess coefficients, compute directly the
temperature excess of each control volume beginning
with the base control volume and the known temperature

excess eb:

o+Cys Coo



b 0

eg =C.o . s

oy = % é2 = €%

On-1" On-1% 8, = €18 (15)
8, = C,9;

B, =0,

11. Having determined the effective temperature excess
at each control volume, compute directly the convective
heat loss rate from each control volume Q.j where

1 £ 3 £ N, and the end heat loss rate Q.o. The total
heat loss rate from the fin is equal to the sum of the
control volume heat loss rates plus the end loss rate:

N

Q= I h,8,5. +h oA

sE1 %955 T Refete (16)

12. The fin efficiency n can be determined by means of
the following relationship:
N
I h,9,5, +h 86 A
n.j:ljjj eee-g—
Q an

(hs + heAe) eb

where Qi 1s the fin ideal heat loss rate.
In""Eq. (17)" hg 1is the end heat transfer coeffic-

lent, and hS is given by

hs = [f n(x) ds (18)
5

where h(x) is the nonuniform lateral heat transfer
coefficient.

13. The general procedure outlined above can be re-
peated for any number of control volumes beginning with
N 2 3, until the local temperature excess 64, or the
total heat loss rate Q, or the fin efficiency n satisfy
the specified convergence tolerances.

The methodology outlined above can be applied to
extended surfaces such as a) longitudinal fins, b)
spines or pins, and ¢) circular annular fins having the
following geometric and thermal characteristics: 1)
arbitrary fin profile, ii) long and short fins, iii)
truncated or not truncated, iv) with or without end
cooling v) uniform or variable lateral film coeffi-
cients, vi) perfect or imperfect contact at the base,
and vii) variable thermal conductivity. The arbitrary
profiles are shown in Fig., 5 where u is the fin profile
parameter.

Temperature Excess Coefficients C, and C;

The general expressions of the temperature excess
coefficients Cp and C; will be derived by means of a
heat balance over the boundaries of the end control
volume CVy. Fig. 6 shows the end, local and upstream
temperature excess and their locations. The conduction
area between 9] and 0, is denoted Az j and the conduc-
tion flow rate from CV2 into CV; is denoted Q2,1. The
lateral convection surface is denoted S; and the con-
vection heat loss rate from CV; through this surface
is denoted Qq.1. The mean value of the film
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Fig. 5 Profiles of non-truncated fins with coordinate

Qs S.
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Fig., 6 Geometric and thermal relationships for end
control volume

coefficient is denoted hj; it can be determined ana-
lytically or numerically given the distribution h{(x)
over the lateral surface. The end area is Ag, the end
film coefficient is h, and the convection heat loss
rate from CV{ through the end is Qce.

A heat balance over CV; gives

Q2,1 = ch + ch 19
The following exact expressions can be used to

determine the conduction and convection heat flow
rates:

- ds
Q. q = [aAly y = [kgly 108 (20
Q = Jf he(x)ds, (21)
S1 a8
Qe = heAde = [hgrlecs e 22

The exact expressions, "Eqs. (20-22)", will
be approximated by replacing the exact mean values of
the temperature excess gradients at A2 1 and Ae by
»
ag, _%2-% (23)
L/N



and

61 -6e

o W]

The convective heat loss rate from CVy will be
approximated by

2 (24)

Qi ~ M85

in which h; is the mean value of the heat transfer
coefficient given by "Eq. (6)" and 6; is the effective
local temperature excess.

The approximations given by "Egs. (23-25)" will
be used in "Eqs. (19-22)" to derive the general ex-
pressions of the temperature excess coefficients Ce
and C1.

By means of "Eq. (22)" with "Eq. (24)" we can
solve for 6, in terms of 83, thereby defining Cg:

N
e Bie
1+ T

where the Biot number, Bie = hgL/k, is defined with
respect to the end film coefficient he, the fin length
L and the fin thermal conductivity k. It can be seen
that when the fin end is insulated, (hg = 0 and
Bie = 0), C, = 1; also when Ble = =, C, = 0,

The relationship between 6; and 6, can be derived
by means of "Eq. (19)" with the approximations given
by "Eqs. (23) and (25)", and using the relationship

(25)

=C 8

281 (26)

given by "Eq. (26)". Therefore,
0 %2
= =C.8 (27)
1 hlL Sl Bie Ae Ce 172
LR
2,1 2,1

It can be seen that the temperature excess co-—
efficient of CV) depends upon several geometric char-
acteristics, several heat transfer characteristics,
the downstream temperature excess coefficient and the
number of control volumes selected for subdivision.
For an insulated end condition, the third term in the
denominator of "Eq. (27)" vanishes. It is also
apparent that the third term of the denominator of Cl
will not be present in non-truncated fins.

Internal Temperature Excess Coefficients C

The relationship between the local temperature
excess 04 and the upstream temperature excess Gj+1
can be derived by means of a heat balance over the
boundaries of the arbitrary internal control volume
CVJ as illustrated in Figure 7. The heat balance
gives:

Uar,3 " % Y, 51 s

The conduction flow rates into and out of CVj are
approximated by

6 - 8
o k[i+1
Q1,3 i A4, (29)
and
6, - C 8
k[ ] i-1 3]
- « A
Y, 31 /N 1,3-1 30)
where the downstream temperature excess ej—l has been
replaced by cj_lej.
The convective heat loss rate from CVj is
approximated by
Qcy = hy83Sy (31)
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Fig. 7 Geometric and thermal relationships for
arbitrary internal control volume

Solving for 6§ in terms of ej+1 gives the tempera-
ture excess coefficient Cj:

6
= j+l - %]
E hL S A R
14 Ay dsL (- Gy ) (32)
3+1,3 j+i.3

This expression is valid for all internal control
volumes for which 2<j < (N-1).

Base Temperature Excess Coefficient Cy

The relationship between the local temperature
excess 0. and the fin base temperature excess 6! can be
derived gy means of a heat balance over the boundaries
of the base control volume CVy as illustrated in Figure
8. The heat balance gives

Q, = Qy * O §-1 (33)

h, P Ao

Q LIS CLIN
{ L/N L/2N
8" Ch O 6y

Fig. 8 Geometric and thermal relationships for base
control volume

The conduction flow rates into and out of CVy are
approximated by

6, -8
- k[b__N],
% M (34)
and
8, ~-C 8
. k[N N-1 N},
O, N-1 /N Ag,N-1 (35
where the downstream temperature excess 8 has been

N-1



replaced by Cy_10y.
The convective heat loss rate from CVy is approx-
imated by

Qn = oSN
Solving for 8y in terms of 6y, gives the tempera-

ture excess coefficient CN:

L}
zeb

(36)

8

= C.8'

N'b S

N hNL S N

T L

The base temperature excess coefficient Cy de-
pends upon local geometric and heat transfer charact-
eristics, the downstream temperature excess coeffic-
ient CyN.-1 and the number of control volumes.

Temperature Excess Coefficient for Imperfect Contact C,
Whenever the extended surface (one-dimensional
syastem) is mechanically attached or bonded to the
base, there will be an additional temperature drop at
the base due to the contact resistance, This inter-
face resistance can be characterized by a contact
resistance R, or a contact conductance h, = (1/R.4p).
A heat balance across the base gives'

8, - 6!
' - T ds, |
Q- hc(eb—eb) A ' [k dx]x-L Ay (38)

where 8 is the base temperature excess, Of 1s the fin
base temperature excess, and 8 - eb 1s the tempera-~
ture drop across the interface due to the imperfect
contact., For perfect contact this temperature differ-
ence vanishes.
As above we will approximate the mean value of

the temperature excess gradient over the base area
Ay by

1
% ~ % _ %

L/28

- '
CNeb

L/2N

-]
(ot | (39)
dx x=L

Substitution of "Eq. (39" into "Eq. (38)" and solving
for 8} in terms of 6y, yields

2]

b

2N
Bic a-

6 =

b =C#8

cb (40

1+ c)

N

where C_ 1s the temperature excess coefficient due to
imperfect contact at the base and Bic = h.L/k > 0 is
the contact Biot number based upon the contact con-
ductance, fin length and conductivity. It can be seen
that C. depends upon Bic, Cy and N. For perfect con-
tact, he = =, Bic = =, therefore C; = 1 and 6} = 8y,

The general expressions of the temperature excess
coefficients: Cg,, C;, Ci, Cys and C. are applicable
to all extended surfaces” (or one-dimensional conduc-
tion with convection systems). For convenience the
relationships are listed in Table 1.

General Expressions of Conduction Areas and Convection
Surfaces

The temperature excess coefficients listed in
Table 1 depend upon local conduction areas and convec-
tion surfaces. For convenient reference these geo-
metric characteristics will be reported here for the
longitudinal fins, spines and pins, and circular
annular fins.

The fin half-thickness for truncated fins is
given by:

y(x) = a+ (b-a) PV (41)
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where a and b are the fin half-thickness at the fin
end, x = 0, and the fin base, x = L, respectively.

Table 1 General Expressions of Temperature Excess

Coefficients
c -1 (0 < Bie < «)
e 1 + Bie/2N -
¢ = h.L S : C
1+ 1 1 Bie "e”’e
kN A N
2,1 2,1
c, = 1 (2 <3 <1
3 h,L S AT - -
L+ R A e Ay
41,3 j+1,3
C, = z
N hNL Sv . Avne1
+-=== (1 -C_ )
Ab A N-1

1
1+ —-—- (l - C )

C. -

(0 < Bic < =)

Longitudinal Fins
The variable conduction area 1is therefore:

A(x) = 2wy(x) = 2vw[a + (b-a)(—? ] (42)
where w is the fin width.
The end and base conduction areas are A = 2wa and
and A, = 2wb,
The conduction areas of the jth control volume
CVjy are:
- - 1y H/wH
Ay 4 Ale + (1-e) (3-1)7/N"} (43)
and
- ey ¥
Aj+1,j Ab{e + (1-e)3"/N"} (44)

where ¢ = a/b < 1 is the fin half-thickness ratio.
In general the convection surfaces are given by

L
S = 2y of 1 + (dy/dx)< dx

(45)
and
JL/N
Sj = 2w Yl + Zdy7dx52 dx (46)
(3-1)L/N

where

dy/dx = u(1-¢) (b/L) (x/L)*L %)

For thin fins b/L << 1, (dy/dx)2 << 1 and the
convection surfaces reduce to 8 = 2wL and S; = 2wL/N,

independent of the fin profile parameter y.

Spines and Pins
The fin half-radius y(x) for a truncated fin is

given by "Eq. (41)". The variable conduction area is
therefore:

A = 1y’ = A le + (1-0) (/L)Y

where Ab = nbz.

(48)

The conduction areas of the jth control volume



CVj are

- _ _1yH .2

Ay o1 T Ay te + Q) (-DF/NY) (49)

and
- ) 1M /M2
Aj+1,j Ab{e + (1-e)3 /N"} (50)
In general the convection surfaces are given by
L
s= [ 2y AT (/a2 dx (s1)
0

and JL/N

S, = 2ry /T + idy?dx)z dx (52)

[
i (J-1)L/N

For the special case of thin fins (dy/dx)2 << 1,
"Eqs. (51) and (52)" reduce to:

§ = 20bL {e + (L =€)/ +u) } (53)

and

Sy = 2wl {f S gt ety sy
(10N

Circular Annular Fins

The pertinent geometric parameters of circular
annular fins are shown in Figure 9. The inner and
outer fin radii relative to the tube axis are g and 8
respectively, and the fin length is L = 8 = a. The
fin half-thickness is given by "Eq. (41)" in which a
and b are the fin half-thickness at the end and base of
the fin. The cartesian coordinate X, whose origin is
located in the fin end, is related to the radial co-
ordinate r by

X=g -7 (55)
The variable conduction area 1s therefore
A(x) = 47 (B - x) ¥ (56)

he y{x) 2b
_\‘T 20 . .

L=(B-a) e
B

M s

Fig. 9 Geometric parameters of truncated annular fin
with coordinates

The end and base conduction areas are Ae = 47nRa
and Ab = 4gxab.
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In the general case the convection surfaces are
glven by
L
s« J 4n(8 - 0 TF (Gy/an? dx (57)
and
JL/N
4u(B - x) vY1 + dy?dx)2 dx (58)
(3-DL/N

where dy/dx is given by "Eq. (47)".
For the special case of thin fins, (dy/dx)2 << 1,
"Eqs. (57) and (58)" reduce to:

2

S = 21(8% - o?) (59)

independent of , and

Znszp
5, = === {2N - (2] - 1) p} (60)
j N2

with p = 1 - % .

The circular annular fin numerical formulations
can be used to approximate the numerical solution of
longitudinal fins. This is accomplished by placing the
circular fins on tubes whose outer radius a is some
fraction of the fin outer radius B such that p 1s very
nearly zero. The two constraints on o and B are

therefore,
L=g-o=2gp (61a)
a/g > 0.99 (61b)

The total heat flow rates through circular annular
fins therefore approximate the total heat flow rates
through longitudinal fins of width

we=n(atf) = aL (2 -p)/p (62)
Nonuniform Heat Transfer Coefficient

In many practical fin problems, the lateral heat
transfer coefficient is nonuniform( 7, 8) over the fin
length. The magnitude of the heat transfer coefficient
is usually small (or zero) at the fin base; it in~
creases with distance from the base, reaching a maxi-
mum value at the fin end ( 7),

If the heat transfer coefficient distribution over
the lateral surface is known, its mean value over the
fin length or over each control volume can be evaluated
analytically or numerically.

To illustrate how this novel, numerical method can
be used to handle nonuniform heat transfer coeffi-
clents, the power series form proposed by Han and
Lefkowitz (7) will be applied to the longitudinal fin
of arbitrary profile. The local value of the heat
transfer coefficient is

hx) = R(l+v) (1 - %" (63)
where v is the nonuniform heat transfer coefficient
parameter, and h is the overall mean value of h(x)
defined by "Eq. (6)". When v = o, the coefficient is
uniform over the lateral surface. When v = 1, the
coefficient increases linearly from the fin base to
its end. 1In all cases of v > o, the heat transfer
coefficient is zero at the fin base.

The mean value of h(x) over the convection surface
of the jth control volume is defined by

JL/N
N = x, vV
hj =L hQ+v) (1 - E) dx (64)

(J-1)L/N



with 1 < 3 < N. "Eq. 64)" can be integrated to give

by

v+l
2 1"

h, = iy - 34V

I N
The mean value over each control volume can be
substituted into the temperature excess coefficient
listed in Table 1. The second term in the denominator
of C1, C; and CN is dependent upon hl. By examination
n

N=-3 (65)

of the general expression appearing "Eq. (32)", we
find that
h L S vl v+l
_L. .1 = Y { [N'j +1] "'LN'il )(66)
kN A 2+v (VIR
j+1,3 N €+ (1-e)3° /N

where the fin parameter y is defined by

v= B i/ (67)
and B1 = hb/k is the fin Biot number which is defined
in terms of the fin half-thickness at the base., For
the one-dimensional conduction model to be applicable,
the Biot number must be small, i.e. Bi < 0.1.

The conduction-convection parameter given by
"Eq. (66)" is valid for all longitudinal fins of
arbitrary profile having arbitrary heat transfer co-

efficient, For this general case, the total heat loss
rate from the fin becomes
7 N
Q= 2%%% L oo, {(IN-3+11""V- =31V 4 no A (68)
N §=1 3j e ee

Applications of the Temperature Excess Coefficient
Method

To demonstrate the simplicity and accuracy of
numerical computations by means of the temperature
excess coefficient method, we will consider some
examples appearing in 6).

The first examples consist of four non-truncated
(e=0), longitudinal, thin fins with perfect base con-
tact (h, = =, Bie = o, C. = 1), uniform lateral heat
transfer coefficient (v = 0), and insulated end
(hg = 0, Bie = 0, C, = 1) when the fin is rectangular
(u = 0). The thermal, heat tranafer and geometric
characteristics of the fins are listed in Table 2.

It can be shown that Bi = 6.98 x 10~3 << 0.1 and
L/b = 21,33 >> 1, therefore the thin fin model can be
employed. The ideal heat loss rate from the fins is
Q1 = 2wLhe, = 154.75 W,

b

Table 2 Longitudinal Fin Characteristics (6)

T, = 212°F (373 K) k = 19.7 BTU/hrft°F (34.10W/mK)
T, = 122°F (323K)  h = 8.8 BTU/hr£t2°F (49.97W/m2K)
8, = 90°F (50 K) w=1 ft (30.48 cm)

. 5
2b = 3/8 in (9.53 mm) v = BA(L/b)% = 3.17§
L =4 in (30.16 cm) mL = vy

To compute the effective temperature excess of
each control volume of these longitudinal fins we
first require the general expression of the tempera-
ture excess coefficients. All coefficients
Ca (1 £ J £ N) can be computed directly by means of
the following single, general expression:

A

C -
Ias

- (69)
-;;%:; + E(Jaéﬁu 1 - Cj-l)
3
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where ¢ = 0 for j =1l and g =1 for j 2 2; A =1
for 1 < j < N-1 and X = 2 for j = N. The temperature
excess coefficients C; and C, are not required in these
examples for the numerical computations of the total
fin heat loss rates and fin efficiencies.

To compute the effective temperature excess at
each control volume, put 8; = Cj6j+1, with 1 < § £ N,
beginning with SN = C eb. Having computed all temper-
ature excess 0;, we now proceed to compute the total
fin heat loss rate:
N
£ 8, = 2uLh®

3 70

Q = 2vLh % .
j=1

where § is the mean effective fin temperature excess.
We can normalize B by means of the fin base temperature
excess; therefore "Eq. (70)" becomes

2
Q 2th6b. o Qin (71)
The fin efficiencies n can be computed by means of

the following expression:

N o
n= 5 oz 72)
i=1 "b

which represents the mean normalized control volume
temperature excess. Employing the temperature excess
coefficients, "Eq. (72)" can be re-written in nested-
notation to show clearly the non-iterative aspect of
the temperature excess coefficient method,

N = (e s (((EH)CpHL) G C b L H1) G+ )G #1)Cy
(73)

The rapid convergence and the accuracy of the
numerical values are clearly demonstrated in Table 3
for the four fin profiles studied by Kern and Kraus( 6).

The difference between the analytical and numeri-
cal values decreases rapidly with increasing N. For
these four examples, the five control volume subdivi-
sion gives reasonable accuracy (a relative error less
than 2 percent) and the.ten control volume subdivision
gives excellent agreement with the analytical values.

As another example of the application of the
temperature excess coefficient method, we will examine
the case of longitudinal, thin fins of rectangular
profile (4 = 0), with insulated end (h, = 0, Bie = 0,
Ce = 1), perfect base contact (he = », Bic = », C. = 1)
and nonuniform heat transfer coefficient given by
"Eq. (63)" [7]. Kern and Kraus [6] give the analytical
solution for the case in which v = 4 and h = 49.97
W/m2K., The fin thermal conductivity, and its thickness
and width are identical to the fins described in Table
2, For the fin length L = 7.62 cm, the fin Biot number
is 6.98 x 10~3 << 0.1, and L/b = 16 >> 1; therefore the
thin fin model is applicable. In this example the fin
parameter y = Bi(L/b)“ = 1.7868. The ideal fin heat
loss rate and fin efficiency are (9) Qi = 116.06 W and
n = 0.429.

A single, general expression of the temperature
excess coefficients C; (1 < j £ N) and the fin effi-
ciency for the longitudinal, thin fin of arbitrary pro-
file, arbitrary heat transfer coefficient, perfect base
contact and non-truncated are listed in Table 4. For
completeness and easy reference, expressions for the
spines and pins, and circular annular fins are also
listed in Table 4.

For the special case of uy = o, v = 4, Bie = o,

Bic = », and vy = 1.7868 the temperature excess co-
efficients and fin efficiency can be computed by means
of the following expressions:



Table 3 Convergence and Accuracy of the Numerical Results of the Temperature Excess
Coefficient Method

Rectaﬂgular profile y = 0

Triangular profile p = 1

N QW] n % Difference on n and Q N Q[w] n % Difference on n and Q
3 78.46 .507 ~4.34 3 71.34 461 ~2.74
5 80.62 .521 -1.70 5 72.58 .469 -1.05
10 81.71 .528 -0.38 10 73.20 473 -0.21
Exact [6] 82.02 .530 - Exact [6] 73.35 474 -
Convex parabolic profile p = 1/2 Concave parabolic profile u = 2
N QW] n 4 Difference on n and Q N QW] n % Difference on n and Q
3 74.90 484 -3.78 3 65.15 421 -0.94
5 76.60 .495 -1.59 5 65.61 424 -0.24
10 77.38 .500 ~0.60 10 65.77 .425 0
Exact [6] 77.84 .503 - Exact [6] 65,77 425 -

Table 4 Temperature Excess Coefficients and Fin Efficiencies of Non-Truncated Longitudinal

Fins, Spines and Pins, and Circular Annular Fins of Arbitrary Profile, Nonuniform
Heat Transfer Coefficient, and Perfect Base Contact

Longitudinal Fins

A
C -
] —_—— (-3 eyt EES TR
M e (e =117+ edPY a-cy )
: Ei vl vl 14y
no= Lo ([N-341]1777 - [N-317T N
=1L b

Spines and Pins

A
¢ 2y v vy ¥ - ettty 4oy 2
A+ e (LA A (O P 3 b e A
(1+u)N J
N )
n - _EJ { [N—j+1]v+l _ [N—j]v+1} {ju+1 _ (j_l)u+1}/ul+v+u
j=1 .
Circular Annular Fins
c, = A
3 u
A . 2N-(2§-1)p - vtk e vh 3-1y N-(j-D)p
At T T N-31p {[N-3+1] LA DI S T s (l-Cj_l)
N 8
n = I Ei {[N—j+1]""1 - [N-j]"u} {2N§ - (2j-1)p}/N2+"(2-p)
j=1 b

withp =1 ~ %

For all fins, £ = O when j =1 and £ =1 for j > 2; X =1 for 1 <j<N-land A =2 for j =N
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cj - (74)
+ 2288 (3111 - -31%) 4 6 - 6 )
and
1 ¥y 5 5
n=—% I 3 {{N~-j+1]1" - [N-31"} (75)
=1 b
with 6J = cjej+1’ 1<} <Nand £ =0 at § =1,
E=lat j>2;x=1atl 3 <N-1and
A=2atj=N.

The computed fin efficiency with N = 5 is 0.431
which is 0.47% greater than the analytical value
reported in (6 ). The agreement between the numerical
value computed by means of the temperature excess co-
efficient method and the analytical value 1s excellent.

It can be shown that the computed values of the
fin efficiencies are 0.434 and 0.430 for N = 3 and 10
respectively. These numerical values are within 1.17
and 0.23 percent of the analytical value. The accur—
acy of the temperature excess coefficient method is
quite good even when the least number (N = 3) of con-
trol volumes is used.

To further demonstrate the rapid convergence of
the temperature excess coefficient method, the constant
cross-section fins with variable heat transfer co-
efficient studied by Han and Lefkowitz (7 ) were ex-
amined. The general longitudinal fin expressious
listed in Table 4 were used. The fin profile parameter
u = o; the heat transfer coefficient parameter v was
set to values of 0, 0.25, 0.50, 1.0 and 2.0. The fin
parameter y ranged between (.25 and 16. The tolerance
on the fin efficiency was set to 0.001. The computed
values of the fin efficlencies ranged from 0.111 to
0.924. The number of control volumes required to
achieve the prescribed tolerance ranged from a minimum
of 6 to a maximum of 48. The minimum number is re-
quired when y is small and v is large; on the other
hand the maxiwum number is required when vy 1s large
and v = o.

The numerical values of n computed by means of the
temperature excess coefficlent method are in excellent
agreement with the reported analytical values (J).

In all cases the difference between the numerical
values of n computed by this novel method and those
reported (7 ) is less than 1%.

Numerous other examples have been studied by many
students over the past seven years. In all cases it
was observed that the method proposed in this paper is
easy to implement on microcomputers (11) and programm-
able calculators (12 12 ) The direct computations were
found to be stable and accurate, and in most cases
fewer than twenty control volumes are required to sat-
isfy reasonable tolerances on temperature excess, total
heat loss rate or fin efficiency.

Recently Zwart (13 )was able to demonstrate by
analysis that the temperature excess coefficient
method (TECM) developed here is a special case of the
so-called TDMA (Tri Diagonal - Matrix Algorithm) (14)
which is a special case of the standard Gaussian-elim-
ination method when the coefficient matrix is in the
form of a tri-diagonal matrix.

SUMMARY

A novel, non-iterative, numerical method called
the temperature excess coefficient method (TECM) has
been developed for the solution of one-dimensional
conduction with convection problems.
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A general methodology has been presented for de-
riving, by means of heat balances over boundary and
internal control volumes, general expressions of the
temperature excess coefficients, temperature excess,
total heat flow rate and fin efficiency for thin,
truncated fins of arbitrary profile, nonuniform heat
transfer coefficient, with end cooling and imperfect
base contact. General expressions are given for long-
itudinal fins, spines and pins, and circular annular
fins.

The simplicity of formulation, ease of programm-
ing, accuracy and rapid convergence of the numerical
values are demonstrated by means of several fin
examples given by Kern and Kraus ' 6 /. Few (N < 10)
control volumes are required to satisfy reasonable
convergence tolerances which may be put on 1) the local
temperature excess, 11) local temperature, iii) total
heat flow rate or iv) the fin efficiency. In many
cages as few as 3 to 6 control volumes are required to
give reasonable approximation of fin efficiency. It
was observed that the largest relative error occurs at
the base temperature excess 6y because of the tempera-
ture excess gradient approximation appearing in
"Eq. (34)". This error can be minimized by making the
base control volume smaller than the other control
volumes; thereby placing 6y closer to 6. But this
expected increase in accuracy would be gained by some
loss in the simplicity of the temperature excess co-
efficient formulation.

The general expressions of the temperature excess
coefficients are shown to be dependent upon several
dimensionless geometric and heat transfer parameters
(L/b, u, v, B1, Bie, Bic).

The temperature excess coefficient and fin
efficiency expressions developed for circular annular
fins can be used to obtain solutions for longitudinal
fins; this is achieved by letting the fin radii ratio p
approach zero.

The spine and longitudinal fin formulations yield
the same numerical results for uniform cross-sections.

The temperature excesa coefficient method can be
extended to thick fins (dy/dx > 0.3); this would
require analytical or numerical integration of the
convection surface expressions.
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