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Abstract Nu;  Nusselt number [Nu; = hL/k]
Ny, thin laminar boundary layer Nusselt number
. . . . of Raithby-Hollands
A simple correlation equation based on the linear su-
perposition of the diffusive and laminar boundary-layer Nu, tx;rbn.lte:t b‘émum layer Nusselt number
limits is presented for prolate and oblate spheroids and o R.u b?' 20
P . Nu®  diffusive limit Nusselt sumber as Ra — 0 .

spheres. The characteristic body length is based upon the o ee x ve s ber based on VA
diffusive limit characteristic length which is the square ¥z diffusive limit Nusselt number based on
root of the total surface area. The accuracy of the sim- P Churr.hx.llsta.gx parameter in Hassani-Hollands
ple correlation equation is as accurate or more accurate carrelation
than the more complex correlation equations proposed P local perimeter of the body

by Raithby-Hollands and Hollands-Hassani for these bod-

ies.

Nomenclature

surface area of the body

characteristic length of the body

aspect ratio of oblate and prolate spheroids
correlation coefficient or major axis of spheroid
correlation coefficient or minor axis of spheroid
correlation coefficient for air based on £ = VA
Raithby-Hollands parameter

Hassani-Hoilands parameter

CVA/H

eccentricity of the oblate and prolate spheroids
[e=v1 =143

fo conversion factor for oblate spheroids

5 conversion factor for prolate sphervids

function of Prandt! number .

[0.670/[1 + (0.492/ Pr)®/18)4/9)

scalar gravitational acceleration

laminar boundary layer body-gravity function

)

[ I (Tsmﬂ)llsdA]

Grashof number {g8(To — T.,)ﬁ’/u’]

h heat transfer coefficient

H Hassani-Hollands characteristic length in
Rayleigh number only

k thermal conductivity

L characteristic length of the body

m correlation coefficient

n Churchill-Usagi parameter in Hassani-Hollands
correlation

nggggomgmx

!Professor, Associate Fellow, AIALA

Pr Prandt! number [v/q]

Rayleigh number [Gr;Pr = g8(To — To) L3 /va]
To uniform boundary temperature

Tw fluid temperature remote from the body

" ratio of minor to major axes of spheroids

Greek Letters .

a thermal diffusivity

8 thermal compressibility coefficient
v kinematic viscosity
[
P

angle between outward body normal and gravity vector

mass density
I Ai .

The current state of knowledge about free convection
heat and mass transfer from three-dimensional bodies of
arbitrary shape is somewhat incomplete. A variety of the-
oretical expressions, graphical correlations and empirical
equations have been developed to represent the coeffi-
cients for heat and mass transfer. However, the discrep-
ancies between the expressions proposed for correlations

and the different sets of experimental data have still not
been completely resolved or explained. The theoretical .

- results are mostly limited to the range of Rayleigh num-

ber for which the postulates of laminar boundary-layer
theory are applicable, i.e. (10° < Ra < 10%). A satisfac-
tory theory (1} has now been developed for the diffusive
regime (Ra < 107%). But a completely satisfactory the-
ory for the tramsition from the diffusive regime to the
laminar regime (10~* < Ra < 10*), the laminar regime
(10* < Ra < 10%) or the turbulent regime (Ra > 10°),
is presently unavailable for bodies of arbitrary shape and
aspect ratio.




The primary shortcoming of the empirical correla-
tions is their failure to properly take into account the
shape, aspect ratio and orientation of the bodies as well
as using the most physically correct characteristic length
in the Nusselt and Rayleigh numbers. There is a great
peed for empirical data and correlations of natural con-
vection from isothermal bodies of arbitrary shape in the
Rayleigh number range: 10~* < Ra < 10°. With the ex-
ception of the sphere and the circular cylinder, very little
or no information is available for other geomstries in the
Rayleigh number range of interest. Raithby, Pollard, Hol-
lands and Yovanovich [2] reported free convection data for
two oblate spheroids and a single prolate spheroid for the
Rayleigh number ranges: 10¢ < Rs < 2.7 x 10* (oblate of
aspect ratio AR = 0.5), 2 x 10* < Ra < 2.3 x 10* (oblate
of aspect ratio AR = 0.1) and 4 x 10’ < Ra < 3.3 x 10*
(prolate of aspect ratio AR = 1.93). The accuracy of
the spheroidal test data and the ranges of the Rayleigh
number have bean increased by the recent work of Hae-
sani [19] and they have been presented in a recent paper
[16]. The oblate data for AR = 0.5 are now valid for
33 < Ra < 2.1 x 107 and the oblate data for AR = 0.1
are valid over the range 177 < Ra < 2 x 107, while
the prolate data for AR = 1.93 are now valid over the
range 65 < Ra < 2.88 x 10”. Chamberlain, Hollands
and Raithby [6,7] reported results for natural convec-
tion into air from small and large spheres in the range:
50 < Ra < 107. Yuge [4] and Amato and Tien [§]
have reported data for natural convection from isother-
mal spheres into air and water respectively. Their results
fall in the Rayleigh pumber ranges discussed above.

Most authors use the diameter for the sphere and
" aligned bi-sphere; the side of the cube, or the major
axis for the obiate and prolate spheroids. When these
jengths are employed in the Nusselt and Rayleigh num-
bers, the data plot as separate curves. The oblate and
prolate data [2] are shown plotted in Figures 2-5. In
each case the same characteristic length was used in both
Nu and Ra numbers. It can be seen in Figure 2 that
King’s length [11] places the datz in the Rayleigh oum-
ber range: 10 < Ra < 10%, and in Figure 3 it can be seen
that the Sparrow-Stretton length [8,9] places the same
data in the Rayleigh number range: 10* < Rs < 10°.
These lengths appear to give the extreme ranges on the
Rayleigh number. On the other hand the classical char-
acteristic length, the major axis, places the data in the
Rayleigh number range: 4 x 10° < Ra < 6 x 10° as seen
in Figure 4. While this length appears to be more ap-
propriate than the other two lengths because the plotted
results are closer together, the data still appear as three
separate groups. From these plots, the authors have con-
cluded that each shape is different and, therefore, each
will require a separate correlation equation. In fact, in
a recent heat transfer text, Kreith and Bohn [13] state
“Jt is likely that no such simple charscteristic length wll
collapse data for a wide range of geometric shapes and
that ¢ separate correlation equation may be required for
each shape®.

In two recent papers Sparrow and Ansari (10} and
Sparrow and Stretton 9] demonstrated that King’s rule is
incorrect and should not be used. They found Lienhard’s
length [12] to be better than King’s length, but it also -
gave separate plots for the various shapes. Sparrow and
Stretton proposed a length which worked very well with
the unity aspect ratio results: sphers, cube and short
cyﬁndcdua;buthihdwhenitwueomplndwiththe
non-unity aspect ratio results: oblate, prolats and aligned
bi-sphers data.

This paper presents a simple, correlation equation
for the space-mean value of the Nusselt number for free
convection from isothermal spheroids in the diffusive to

- laminar flow regimes (0 < Rs < 10°). The correlation

equation is shown to be relatsd to the general solutions
developed by similarity methods for Pr — co and the
appraximate method developed by Raithby and Hollands
{14] which is valid for all values of Pr. )

Correlation Equations

Natural convection heat transfer correlation equations
have been developed for isothermal bodies losing heat to
an extensive, stagnant fluid for Rayleigh numbers of the
order of 10° to 10%. In this range of Rayleigh number,
correlation equations adequately predicted the data when
they are expressed in the simple form:

Nw=CRa™ - (1)

where the correlation coefficients C and m are observed to
be appraximately 0.45 and 1/4, respectively, for a sphere
in air [3,4,7] when the sphere diameter is used as the char-
acteristic length in the Nusselt and Rayleigh numbers.

The inadequacy of the simple form to predict data in
the extended range 10 < Ra < 10° has lead researchers to
consider the usefulness of the following correlation equa-
tions:

Nu = B + CRa"™ (2)

and
N = Nu™ + CRa™ (3)

The parameters B, C and Nu® in the above equations
are dependent on the Rayleigh number range, the body
length used in both Nusselt and Rayleigh numbers, and
whether the parameter m has been set to the theoretical
boundary layer value of 1/4. The correlation coefficient,
B, in Eq. (2) represents the intercept value resulting
from linear least-squares data fitting, whereas the Nu®™ in
Eq. (3) represents the contribution of molecular diffusion
into an infinite, stagnant fluid which corresponds to Ra
approaching zero; this is called the diffusive limit.




-

Amato and Tien {5| have reported correlation equa-
tions developed for both heat and mass transfer from
spheres into a variety of fluids. One set of correlation
equations is based on £ = D, Nu® =2, m = 1/4, and
the fitted coefficient, C, was found to lie in the range,
0.399 < C £ 0.59. Two correlation equations were based
on L =D,m=1/4,and B = 5.4 or 2.3, with C = 0.44
or 0.585. The third set of correlation equations were
based on L = D, m = 1/4, B = 0, and the fitted
correlation coefficient, C, was found to lie in the range,
0.51 € C £0.56. Amato and Tien (5] used Eq. (3) with
L =D, Nu® =2, m=1/4, and determined C = 0.500
for heat transfer into water. They reported a mean devi-
ation of less than 11% provided 3 x 10* € Rap < 8 x 10%.

Shell {17] calculated the mean value of N'u for a sphere
in air and found that

Nup = 0.429Gr}* (4)

where Grp is the Grashof number. This expression was
confirmed by measurements in air. Assuming a value of
0.71 for the Prandtl number, the correlation coefficient
in Eq. (4) becomes 0.467.

Churchill and Chu [20] have used the diffusive limit
and the boundary-layer asymptote in the following blended
form to increase the range and accuracy of the correlation
equation:

Nu =B~ + (CRa¥4)nji/n (5)
The parameter m was set to the boundary-layer value of
1/4. They found that flat plate and horizontal circular
cylinder data could be predicted accurately with a value
of n = 1 provided Ra < 10%.

Raithby and Hollands [14] have used the Churchill-
Usagi [21] method of blending limiting solutions to corre-
late free convection from bodies of complex shape. They
recornmend the equation

Nu = (Nup + Nu])!/» (6)

where Nuy; and Nu, are the Raithby-Hollands method
solutions for the thin laminar and turbulent boundary
layers respectively. This method was used with success
{7,14] to correlate air data for two spheres, an aligned bi-
sphere and a cube in three orientations. As an example of
this method, the sphere correlation equation is presented
here to illustrate several points discussed above. The
sphere correlation equation is

Nu = [(2 + 0.452Ra*/*)® + (0.099Ra!*)%)1/¢  (7)

where the characteristic length is the sphere diameter,
Nu® = 2, and the Churchill-Usagi parameter n = 6.
They reported excellent agreement between these corre-
lation equations and the air data of Chamberlain [7]. The
Churchill-Usagi correlation parameter used by Raithby
and Hollands must be determined embpirically to give the
best fit to the data.

In a recent paper Hassani and Hollands [17] have mod-
ified and simplified the Raithby-Hollands method by in-
troducing the diffusive limit Nu%. of Yovanovich (1] and

the characteristi: leugth, vA, proposed by Yovanovich
in the Nusselt numbers which appear in their correla-
tion equation. They also introduced another character-
istic length, H, in the laminar and turbulent Rayleigh
numbers which are in the correlation equation. This new
length is seen to be closely related to the length proposed
by Yovanovich for all body shapes where vA/H = £5%,
and 9% for the bi-sphere. The largest difference of 37.5%
is observed for the horizontal, circular disk. They pro-
posed the correlation equation:

n 1/n
Nuyz = [[CoRaly +(CRH Y™ +Nuyal]”

(8)
where n and p are a new set of Churchill-Usagi parame-
ters. As anticipated the choice of VA as the characteris-
tic length has reduced the range of the parameter n from
1.01 to 1.14 for the variety of body shapes considered
in their paper. The other parameter p is determined by
means of another correlation equation developed by Has-
sani and Hollands [16]. The laminar Rayleigh number
coefficient, C;, is reported to be a constant for all body
shapes, and the turbulent Rayleigh number coefficient,
G, = Civ/A/H, has values ranging between 0.090 for the
cube in orientation 1 and 0.114 for the bi-sphere.

There is at present no theoretical basis to support the
use of one correlation equation over another for a range of
body shapes, aspect ratio, orientation and a wide range
of the Rayleigh number. It is, therefore, proposed to
compare the simplest correlation equation which is based
on the linear superposition of the Yovanovich diffusive
limit {1] and the laminar boundary layer limit based on
the Yovanovich characteristic length with air data for a
variety of body shapes, aspect ratio and orientation. The
proposed simple correlation equation is

Nu ;= Nulz+CzRal% (9)

where N s is the diffusive limit and C, 7 is an empirical
correlation coefficient to be determined from the air data
for 10* < Ra /£ < 10° or all data.

The simple correlation equation can be modified to
account for Prandt! numbers different from the air value
by the use of the Prandt! number function F(Pr) defined
as [9,14]

0.670
[ + (0.492/ Pryorse)ere

which was developed by Churchill and Chu {20] and used
effectively by Sparrow and Stretton [9] to correlate their
air and water data. This function has the value of 0.514
for Pr = 0.71. The laminar Rayleigh number coeff-
cient, C s, (18| is related to the laminar boundary layer
body-gravity function G 5 which is dimensionless azd
the Prandtl number function, Eq.(10), [18):

Ca=F(Pr)G (11) -

a5 (G "

F(Pr) =

(10)

and




The relationships for conversion of the oblate spheroidal 'O’: o
data are 2 s ﬁﬁé
Nu g = f,(s)Nug (13) - ?%o
. - < s 4
and w gfg
Raz = {(v)Ras 9 2 r o
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® - 2 L Won
4 - 1/3 o
L) =5 [1 N/ PR (1 a ‘)] a9y S5 F
2 2e 1-c¢ Ll [
_ & & OBLATE SPHEROID (C/B +0.1)
_and S i ¢ OBLATE SPHEROID (C/B s 0.5)
c= Vit (16) < - v ;ROLOA';El SPHEROIO (B/C = 193)
- c 1 y )
«=Z = AR 17 [e) 1 ' ] ! 1 i !
o . B ( ) i® 0 1t 10* w0t 10® 0t w0 et
ih;r::twmhxpu for the conversion of the prolate spheroidal RAYLEIGH NUMBER, Ra
Nuﬁ = uf,(s) Nup (18) Fig 2[E]ﬁxt of King’s characteristic length on a spheroidal
air data [2
and
. The data points for 10* < Ra ~ < 10° were used
Ra $f3(u)Ra 19 . ) = TVA =
VA= f: (u)Rap (19) with the following equation to obtain a set of vaiues of
where . sin-le 12 the laminar boundary-layer correlation coefficients:
h= 5 i 25 @)

can be derived from the boundary layer equations by sim-
ilarity methods for Pr — oo for any arbitrary body shape
which does not possess horisontal planes, corners, or sur-
face depressions. This new function can also be derived
from the relationship developed by the Raithby-Hollands
approximate method [14] by assuming £ = /4 is the
characteristic body length and performing the integration

maximum values of Nu and Ra. The other two charac-
teristic lengths, major axis of the spheroids and £ = vA
produce intermediate values of Nu and Ra as seen in
Figs. (4,5). The major axis of the spheroids and the new
diffusive length £ = VA are clearly seen to be superior
to the other two lengths. The diffusive length was shown
to be superior to the major axis [1] or any other length

over the total body surfacs. The geometric parameter P based on a single body dimension.
which appears in the integrand is the local perimeterof = .
the body, and # is the local angle between the outward . : £
normal to the body surface and the direction of the grav- 3
ity vector. This function can be evaluated analytically for /
the oblate and prolate sphercids, and some other simple /1/ <
body shapes. It is noted [18] that it is a relatively weak Z : .
function of the body shape, aspect ratio and orientation 3
for a relatively wide range of these geometric parameters. %m%.
2
Results and Discumsion c/a=os c/ssau scersy
QOLATE SPHEROD
The air data of Nu and Ra for isothermal spheres € lmm) »2 800 0
8 (sm) ™ 00 2!

{6,7], oblate and prolate spheroids [2,16,19], are converted
to Nu sz and Ra 7. The sphere data are converted by
the conversion factors: /7 and x*/2 for Nw and Ra re-
spectively.

and ¢ and u are defined in Eqs. (16) and (17), but for
prolate spheroids the aspect ratio, AR = 1/u.

Log-log plots of Nu - versus Ra ,; for the various
body shapes: prolate spheroid (AR = 1.93), spheres,
thick oblate sph=roid (AR = 0.50), and thin oblate spheroid
(AR = 0.1) shown in Figure 1 are presented in Figures 2-
9. Figures 2-5 clearly illustrate the effect of various char-
acteristic body lengths on the plotting of the sphercidal
air data {2,19]. The body length proposed by King [11]
yields the lowest values of Nt and Ra, and the body
length proposed by Sparrow and Stretton [16] yialds the

Fig 1 Cross section and dimensions of prolate and

_ (Nu‘/z);—Nu:;’—
(C A)‘ - (Rayi .‘ 4

where ¢ denotes the ith data point and Nu™- is the dif-
.usive limit of Yovanovich [1] reported in Tabie 2.

It can be seen that the largest difference in the values
of Nu ,; is between the thin oblate spheroid of aspect
ratio AR = 0.1 and the prolate spheroid of aspect ratio
AR = 1.93 and this relative difference is approximately
6.7%. The arithmetic average of the (C ) for each
body shape as well as correlation coefficients obtained
by means of a least-squares method are given in Table
3. A least-squares method applied to all data yielded
coefficients which are within £2% nf those determined

(21)
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Table 1: Nusselt Numbers at Zerc Rayleigh Number for
Various Body Shapes [1] -

Body Shape Nu%e
Sphere 3.545
Proiate Spheroid | 3.566
(AR = 1.93)

Oblate Spheroid | 3.529
(AR = 0.5)
Oblate Spheroid | 3.342
(AR = 0.1)

Table 2: Correlation Coefficients for the Spheroids

__ﬁody Shape Cu/x
Sphere 0.526
Prolate Spheroid | 0.520
(AR = 1.93)

Oblate Spheroid | 0.500
(AR = 0.5)
Oblate Spheroid | 0.395
(AR = 0.1)

by the method described above. The average method is
recommended because the coefficients give more accurate
results. :

These empirically determined coefficients are remark-
ably similar considering the variety of body shapes, their
aspect ratios and orientations. As anticipated the largest
value is associated with the prolate spheroid which is a
streamlined body and the smallest value is associated
with the thin oblate spheroid which is a blunt body.
The prolate coeflicient is approximately 32% larger than
the thin oblate coefficient. Excluding the thin oblate
spheroid, the coefficients lie in the range 0.500 < Cras
0.520 where the lower bound corresponds to the thick

oblate spheroid and the upper bound to the prolate spheroids.
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Figure 8 Comparison of simple correlation equation
and prolate (AR = 1.93) air data (19|
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Table 3: Comparison of Simple Correlation with Air Data
and Other Correlations

RMS Percent lf-ﬁ'eg_ence
Body Shape AR |R-H|B-HE[ MMY
Spheres 1 0.84 | 3.67 0.92
Prolate Spheroid | 1.93 | 1.90 | 3.56 1.83
Oblate Spheroid | 0.50 | 3.71 | 4.09 2.60
Oblate Spheroid | 0.10 | 9.38 | - 234

" The laminar boundary layer coefficients were used in
the correlation equation and the predictions are com-
pared with the data in the Figs. (6-9) where it can be
seen that agresment is excellent for all body shapes and
aspect ratios over the full range of Ra.

The RMS percent difference between the data and the
corresponding predictions for all body shapes are given
in Table 3. ’

The best agreement between the data and the correla-
tion equation occurs with the sphere where the RMS per-
cent difference is less than 1%. For all other body shapes
the RMS percent differencs is less than 3%. The RMS
percent differences between the data and the predictions
of the more complex correlation equations of Raithby-
Hollands [14] and Hassani-Hollands (18] are also given in
Table 4. Overall the RMS percent differences of the sim-
ple correlation equation are as small or smaller than those
of the more complex correlation equations of Raithby-
Hollands {14] and Hassani-Hollands [18] which purport-
edly accounts for turbulence effects at high Rayleigh num-
ber.

Summary and Conclusions

A simple, but accurate, correlation equation is de-
veloped for isothermal prolate and oblate spheroids and
spheres. The linear superposition of the diffusive and
the boundary-layer limits for the the prediction of the
Nusaelt number is supported by the very good agreement
between the theory and the data over the full range of
Rayleigh number, body shapes and aspect ratios.
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Figure 10 shows the upper and lower boﬁnds on the

Nusselt number in free convection from isothermal spheroids

(0.1 < AR < 1.93) for 10™* < Ra 7 < 10°, In the dif-

i fusive limit, R £ — 0, the differences between the upper

and lower bounds is approximately 7% and in the the
laminar low regime the difference approaches 33%. The
difference between the prolate spheroid (AR = 1.93) and
the oblate spheroid (AR = 0.50) is only 1% over the en-
tire range of Ra .

The contribution of the diffusive limit to the total
Nusselt number is significant in the laminar boundary
layer regime. At the lower limit where Ra 7 = 10%, the
diffusive limit contributes 40.7% and 45.8% to the total
for the prolate and thin oblate spheroids respectively. At
Ra 7 = 10°, the percentages reduce to 6.4% and 7.83%
respectively.

The characteristic length based upon the square root
of the total surface area appears to be an appropriate
length for correlating natural convection from isothermal
spheroids. :

Simple equations are presented for estimating the sin-
gle semi-empirical correlation coefficient with acceptable
accuracy.
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