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Abstract K(x) complete elliptic integral of the first kind
} i i . .
A general expression is developed for the dimensionless Z ;ody lm::iduc.w:ty of the extensive fluid
numbers: Nusselt and Sherwood under near zero forced L characteristic length of the body
and free convection conditions. The expression is valid " mass flow rate
for isopotential ellipsoids in an extensive stagnant fluid. Nu Nusselt number [Nu, = hL/k]
Special cases which arise from the general expression are: n ¢ outward body nonmﬁ
oblate and prolate spheroids; spheres; elliptical and cir- a % ionless outward body normal
cular disks; and long elliptical and circular cylinders. A Pe Peclet number [RePr]
new characteristic length based on the square root of the Pr Prandt! number [v/a]
total surface area is introduced and used in a new general ? P .
expression for the Nusselt and Sherwood numbers which .
are shown to be weak functions of the ellipsoid shape and g m?::::t’and:rg ::e be:‘tieynsive Guid
aspect ratio over a wide range of these parameters. The R dimensionless resistance [R% = AkR/L)
analytical expressions for the special cases can be used to £ ] - s
appraximate the results for many other sim:lar bodies for gdc g.:ylele; nt::;er [Ct:jr;}’r =98(To — Tw) L¥[vel
which analytical, experimental, and numerical solutions R ec pofi:;n v:c tor er [UL/v]
are presently not available. s shape factor )
/ s dimensionless shape factor [SL/A]

Nomenclature Se Schmidt number [v/D]
A surface ares of the body She Sherwood zumber [She = AnL/D]
AR aspect ratio of oblate and prolate spheroids T te:f:penture
A dimensionless surface area T umform body temperature
B correlation coefficient tT., f.uxd temperature remote from the body
a,b,¢ semi-axes of the ellipsoidal body mme .
o] capacitance of a charged body [Q/Vo) 5,2 ::.;tesxa.n coorc’:ma.tu
C: dimensionless capacitance [C}; = CL/eA| Voo erence velocity
¢ concentration in the extensive fluid Y? volta.ge of charged body
o uniform body concentration 4 v?locxty. vector )
Coo concentration remote from body v dimensionless velocity vector
D body diameter Greek Letters
D molecular diffusivity thermal diffusivity
E(¢,x) incomplete elliptic integral of the second kind thermal compressibility coefficient
e eccentricity of the oblate and prolate spheroids permittivity of space
F(x,8) incomplete elliptic integral of the first kind amplitude of incomplete elliptic integral
fo approximation for oblate area modulus of elliptic integrals
Ir approximation fer prolate area ellipsoidal coordinate
g scalar gravitational acceleration kinematic viscosity of the extensive fluid

Grashof number [¢8(To — Too) L2/
heat transfer coefficient
mass transfer coefficient
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mass density of the extensive fluid

density of Auid remote from the body
dimensionless time

dimensionless potential in the extensive fluid
dimensionless resistance




Introduction
Many researchers over several decades have published
bundreds of thecretical, experimental and numerical pa-
pers which consider heat and mass transfer from isopo-
tential (isothermal or isoconcentration) bodies of arbi-
trary shape under free and forced convection into a stag-
nant fiuid of large extent. The results in heat transfer
are reported as Nusselt aumber, Nu, and in mass trans-
fer as Sherwood number, Sh, plotted and/or correlated
against the Peclet number, Pe (RePr or ReSc), in forced
fiow or the Rayleigh number, Ra (GrPr or GrSc), in nat-
ural convection. Often correlations of the theoretical and
experimental results are given for a particular range of
. the Peclet or Rayleigh numbers; and over the years a
large number of these correlations have been developed
and they now appear in handbooks and in the many heat
transfer texts [1-11] presently available to the interested

researcher, engineer and student.

With the exception of vertical plates [12,21,22,23], cir-
cular cylinders [13-20], spheres [24,25], bisphere [26] and
cubes in several orientations [26,27], the various correla-
tions do not inciude the near zero Peciet and Rayleigh
number range which is of considerable interest to those
thermal analysts who mmst deal with i) small bodies ii)
small temperature or concentration differences iii) creep-
ing flow or iv) miro-gravity effects such as in aerospace
applications. There are also other conditions which can
result in very low to near sero Peclet and Rayleigh aum-
bers in both heat and mass transfer cases. .

There is, therefore, a great need to extend the existing
correlations to the near zero Peclet or Rayleigh number
range and to develop new correlations for the many ge-
ometries which are of interest to the thermophysics and
heat transfer community. :

The purpose of the paper is to obtain a general an-
alytical solution for a body shape which contains many
other body shapes as special cases. Figure 1 shows how
the ellipsoid is related to several body shapes such as
oblate and prolate spheroids, spheres, elliptical and cir-
cular disks, and the elliptical and circular cylinders. The
ellipsoid is obviously a general body shape whose solution
should reduce to the solutions for the particular body
shapes discussed above. The solutions for the special
cases can then be used to approximate the heat and mass
from bodies of arbitrary shape for which solutions are not

avaijable.

General Field Problem. Arising From Forced and Natural
Convection Beat and Mass Transfer for Per and
Ra, Approaching Zero

Forced and natural convection heat and mass trans-
fer from isothermal or isoconcentration bodies of arbi-
trary shape are similar mathematical problems when the
governing equations and boundary conditions are nondi-
mensionalized. In the limit of zero forced or natural con-
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Fig.1 Ellipsoid and special body shapes

vection, i.e., pure diffusive heat and mass transfer, the
thermal and mass transfer problems are similar to the
classical capacitance problem. In this section the dimen-
sionless groups from convective heat and mass transfer
will be related to the conduction and capacitance dimen-
sionless groups.

-C ive Heat Transf

Application of the first law of thermodynamics to a
differential control volume of incompressible Newtonian
fluid having constant properties, and neglecting the vis-
cous dissipation term yields the simple form of the energy
equation pr
e = aViT 43 4
where a is the thermal diffusivity of the fuid.

The term on the left-hand side can be expanded using
the expression for the substantial derivative, or Stokes
operator,

D 9 =
==tV @)

where the first term, called the local derivative, represents
changes at a fixed point in the fiuid and the second term,
the convective term, accounts for changes following the
motion of the fluid.

The velocity vector appearing in the substantial deriva-
tive is the solution of the Navier-Stokes equation of mo-
tion




DV _ ~
por =Pi- Vp+uViV (3)

which is obtained from the application of Newton’s sec-
ond law of motion to a differential control volume of an
incompressible Newtonian fluid of density p and constant
viscosity u, under the action of gravity as the only body
force. The remaining two terms in Eq. (3) are the pres-
sure and viscous forces which act normal and tangential
to the control volume surfaces.

Application of the principle of conservation of mass
to an incompressible fluid yields the continuity equation:

v.V=0 (4)
These equations are subject to the following boundary
conditions on the temperature and the velocity fields:
i) on the body:

T=T, and V=0 (5)
ii) remote from the body:
T=T, and V=0 or V=U, (6)

It is convenient to introduce the dimensionless tem-
perature difference or poteatial difference
(T - Ten)
e 7
(To _ Ta) ( )
which has the values unity and zero on the body and at
points remote from the body respectively.

¢=

The no-slip condition is used on the body and the
zero velocity or uniform velocity conditions are used for
the natural convection and forced convection problems
respectively.

The area-mean Nusselt number is obtained from the
application of Newton's ¢cooling law and Fourier's law of
conduction to the fluid at the body surface:

Q=f/;h(r)(To—T.,)dA=/L-k (%1;')04.4 )

‘where h(r) is the local value of the heat transfer coef-
ficient, r is the position vector, k is the fluid thermal
conductivity, (3T /dn) is the local temperature gradient
normal to the body surface and dA is the differential heat
transfer area on the body.

Introducing the area-mean Nusselt number
hL

k
where A is the area-mean heat transfer coefficient defined

" h=%/Ah(r)dA

and £ is some characteristic length of the body, yields
the following relationships:

Nu, =

(10)

- (9)-
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where Q° is the dimensionless heat flow rate and R} is the
dimensionless overall thermal resistance defined as R =
(To — Tw)/Q. To obtain the area-mean Nusselt number
it is necessary to obtain solutions to the dimensionless
energy equation

Nug =@ (12)

D¢ 1 =,
Dr — Pe;v ¢ (13)
and the dimensionless Navier-Stokes equation
DV _ o
—=-Vj+ —V?
Dr P+ Re; v. (14)

where the tildes denote dimensionless quantities or oper-
ators formed using dimensionless variables. The Peclet
number which appears in the energy equation is Pep =
Res Pr. Reference quantities Uy, pe and the character-
istic length £ are used with the fluid thermophysical and
transport properties to form the following dimensionless
quantities and groups:

dimensionless position and position vector:

2z y

- - . z . T
:-z’ V—z, z-zv r“z (15)
dimensionless surface area and outward normal:
A . n
A= 7 i = 7 (16)
dimensionless velocity vector:
- vV
V= 7 (17)
dimensionless time:
tUs
= — 18
r= 2 (19)
dimensionless pressure
- _ (P — Poo)
and the Reynolds number:
Re; = U‘Zﬁ (20)

Natural convection heat transfer is produced by den-
sity gradients which are due to temperature gradients,
and because the body force is caused by the density gra-
dients the energy and momentum equations are coupled
and the solutions are difficult to obtain. A set of simpli-
fying assumptions, called the Boussinesq approximation,
is used to obtain the solutions. Analyses of natural con-
vection assume that:

1. density is constant in the continuity and momentum
equations, except in the body force;




2. density variations are caused by temperature gra-
" dients;

3. all other thermophysical properties are constant.

The variable mass density p is expanded in a Taylor
series about the density of the fluid remote from the body,

Pool

ap
P=pat+ (T ~Ta) (—) (21
aT - )
Introducing thc compressibilty coefficient
1 [8p '
p=-l ( ar),_ (22)

and the assumptions given above, the steady-state mo-
mentum equation becomes

VUV --:-’ +B(T-T)F+oV 7 ()

which can be transformed into dimensionless form:

797 = -5 G" d w (24)
where- Grz = gf(To ~ T.)t‘/u’ is the Grashof number,
an important dimensionless group in natural convection
heat transfer.

The continuity, momentum and enexrgy equations for
steady-state, constant properties and Pe; — 0 for forced
convection heat transfer and Ra; ~— 0 for natural con-
vection reduce to the following equations:

V.v=0 (25)
Pr¥®V=0 ' (26)
Vi¢=0 (27

The Nusselt number is to be determined by the fol-
lowing dimensionless equation:

Nu;=%f/;-(-g-:;)°d.d (28)

Mixed Convection Grr > 0,Rer >0

For mixed convection heat transfer the Nusselt num-
ber is expected to depend on several dimensioniess pa-
rameters such that

Nut = f(Gl’;,RC;,P?, LrAR) (29)

where AR is the body aspect ratio defined as the maxi~
mum body length parallel to the gravity vector divided by
the maximum body length perpendicular to the gravity
vector.

Forced Convection Grz > 0,Res > 0,Grz/Re:? << 1

For pure forced convection heat transfer the Nusselt
number is expected to depend on several dimensionless

parameters such that
 Nug = f(Reg,Pr,L,AR) (30)

Natural Convection Gry > 0,Rer > 0, GrQ/Rq’ >>1

For pure natural convection heat transfer the Nusselt
number is expected to depend on several dimensionless
parameters such that

Nu; = f(Grs,Pr,L,AR) (31)

Conduction Heat Transfer Grpy = 0, Rep «— 0

For pure conduction heat transfer the Nusselt aumber

is expected to depend on the geometry of the body only
such that

Nu; = f(L,AR) (32)

It is anticipated that the proper choice of the char-
acteristic length £ will minimize the dependence of the
Nusselt number on the independent parameters, and this
will be demonstrated for pure conduction from isothermal
ellipsoids.

Convective Mass Transfer
Application of the principle of conservation of mass

to a binary system consisting of a non-reactive solute in
dilute solution in an incompressible fluid yields

Dc
Dt

where D, the diffusivity, is assumed constant. The driving
force for diffusion is provided by molar concentration gra-
dients, and therefore, Eq. (33) is an adequate description
of diffusion in most liquids, since the density is essentially
constant, and in gases when the molecular weight of the
solute is similar to that of the host gas.

= DVic (33)

If the solution is dilute, the diffusion process will not
appreciably alter the fluid motion, so that the velocity
field can be considered to be unaltered and the momen-
tum and continuity equations discussed under convection
heat transfer also apply here. The Reynolds number
is the same, but the Peclet number is now defined as
Pe; = Re;Sc where the Schmidt number replaces the
Prandtl number in forced convection. The Schmidt aum-
ber is Se=v/D.

The dimensionless concentration is defined as
o= Lo Cm) (34)
(c0 = cen) :

where ¢y and ¢, are the concentrations on the body and
at points remote from the body respectively.

The area-mean Sherwood number, Sh, is obtained
from the application of the mass transfer relationship and
Fick’s law of mass transfer to the fluid at the body sur-
face:

= [[ hateea = earia = [[ -0 (55) aa (39




here A, (r) is the local mass transfer éoeﬁcient analo-
gous to the heat transfer coefficient.

Introducing the area-mean Sherwood number

_hul

She="~

where h,, is defined by Eq. (35) in which h(r) is replaced
by Am(r), yields the following dimensionless relationship:

_£ a¢ '

she=2 [/, (ﬁ)o“

and thus we see that Sh; = Nu, for the same flow con-
ditions which are determined by the Peclet number and

the Grashof number which for convective mass transfer
is defined as

(36)

(37)

Gre = gBe(co ~ ex) L3

- (38)
where
(@, @

Thus it is seen that the determination of the area-
mean Sherwood number is identical to the determination
of the area-mean Nusselt number, and the functional de-
pendence of the Sherwood number on the several physical
and geometric parameters is also identical.

/" Capacitance of Isopotential Bodies in Free Space

The diffusion of heat and mass from an isopotential
body into a stagnant fluid of large extent is analogous
to the determination of the total charge supported by
an isopotential body which is charged to some voltage
above ground voltage when it is located in a charge-free
homogeneous dielectric medium whose permittivity is e.
The voltage must satisfy the Laplace equation:

vViv=0 (40)
and the total charge Q is determined from
v
Q= / /,. —es—dd (41)

The capacitance C = Q/V, where V; is the body volt-
age can be nondimensionlized

._CL 1 ad

ci=Zr =3 /]~ (5) u

which is seen to be identical to the equations developed
for the convective heat and mass transfer problems.

(42)

General Relationship Between Various Dimensionless
Heat, Mass, Conduction and Capacitance Groups

We can now write the general relationship which brings

/" together the heat and mass transfer dimensionless groups,

.he pure conduction groups and the capacitance group:

Nug=5h5=Cz=L=S'

= (43)

&)

where S* = SL£/A is the dimensionless conduction shape
factor which is defined as [34,42,43):

Q=kS(To - Tw) (44)
Thus it can be seen that the conduction shape factor,
S, and the cond_uctive resistance, R, are related:

§==

kR
By means of these relationships it is possible to deter-
mine the geometric dependence of one group given the
geometric dependence of some other group.

(45)

Ellipsoidal Problem and Its Solution

Consider an isothermal ellipsoid with semi-axes ¢ >
b > ¢ > 0 oriented along the z,y and z— axes, respec-
tively, with the origin of the Cartesian coordinate system
placed at the centroid of the ellipsoid.

When steady-state heat transfer from the isothermal
ellipsoid into the extensive fluid occurs under the condi-
tions that both Peclet and Rayleigh numbers are zero or
nearly zero, the dimensionless temperature field within
the fluid must satisfy Laplace’s equation [41]:

Vo= [V AT a ] =0 e

where the dimensionless temperature has been defined as
T - T@
TB -T ]
and the ellipsoidal parameter u is the positive root of

2 v 2
= 48
a‘+u+bz+u E+u ! (48)

¢= (47)

The dimensionless temperature {isopotential) must also
satisfy the following uniform Dirichlet boundary condi-
tions: :

¢=1 when p=0 (49)
$=0 when y=oo ~ (s0)
The solution of Eq.(46) is [41]:
F(x,0
b= T((i—vT) 0<u<oo (51)
with
e -
= ] ——— 52
=y 5= (52)
2l —&f
i = 53
smﬂu a; + o ( )
sind = | 2= (54)

a3

The functions which appear in the solution are incom-
plete elliptic integrals of the first kind of modulus < and
amplitude angles ¢ and 4,.




The isopotentials in the neighborhood of the body are
ellipsoidal and at points remote from the body they are
nearly spherical. The complex isopotential distribution
thhmthezxtenxweﬁmdmbcdelcribedmtermsof
the single ellipsoidal parameter u.

The total heat flow rate through the extensive fuid
can be obtained by means of a heat balance over the total
surface of the isothermal body or more easily over a con-
trol surface located at points which are at large distances
relative to the largest length of the body. Schctmgs
spherical control surface whose radius is arders of magni-’
tude larger than the semimajor axis of the ellipsoid, the
heat balance gives [41]:

8xk(To — Te
( d‘T) (55)

j.\/(c’ + 1) (8 + ) (3 + )

ot equivalently, in terms of the incomplete elliptic integral
of the first kind: :

Q=

4xk(To — Tw) VT =&

F(x.0) (58)

Q=

From the last equation the dimensioniess resistance,
R, or the diffusive Nusselt number, Nu., are obtained

directly,
H LF(x,0)
47343 -

axvad =L
AF(x,0)

Ry =  (57)

and

Nug = (58)

The appropriate choice of the characteristic body length
will be dealt with in a later section after discussions of
surface areas and intrinsic resistances.

Surface Area of Ellipsoids and Disks

The surface area of an ellipsoid having semiaxes a >

b2cis _
A=2mc 22 [(;) F(¢,x)+( il )E(¢,n)]

¢
. (59)
wi
' _c . bBP- 3
cosqb—a and n—m (60)
The special functions which appear in Eq. (59) are

incomplete elliptic integrals of the first and second kind
of amplitude ¢ and modulus «.

Several special cases arise out of this general case:

1. Oblate Sphervids: @ = b > ¢. The surface area is

L2
A=2xa’[1+1 c}-l.x:l-ii-:-] (61)

with € = /1 — (¢/a)?.

2. Prolate Spheroids: @ > b = ¢. The surface area is

-1
= P f 43+ [ 4 82
A =2xb [1+m] (62)
with ¢ = /1 = (b/a)?.
3. Sphere: a = b = ¢. The surface area is
.A = 4xd’ (3)

4. Elliptical .Dish: @ > b and ¢ = 0. The total area
is .

A = 2xab (64)
5. Circular Disk: @ = b,¢c = 0. The total krea is
A = 2xa? (65)

It should be noted that both sides of the disks are con-
sidered because the heat and rmass transfer are assumed
to occur at both surfaces.

Dimensionless Diffusive Resi

The dimensionless diffusive resistance R* = AkR/[

is equivalent to the reciprocal of the dimensionless Nus-

selt and Sherwood numbers. For the ellipsoids and the

special cases which arise from the general solution the
dimensionless resistances are: .

1.Elipeoids: o 2 b2 e.

V@ TFkR= _F (min\/“’:,", \/‘3::’:)

(68)

The special function F(¢,x) which appears in the el-
lipsoidal resistance is the incomplete elliptic integral of
the first kind of amplitude ¢ and modulus < as they are
defined in Eq. (66).

2. Prolate Spheroids: ¢ > b =ec.

J.:z_-'?m=—1-1n[°+‘/“_zﬁ (67)
g —-vai-¢
3. Oblate Spheroids: a =5,0<c< a. |
V@ —SkR= ll;cu"(i) (68)
4. Spheres: e =b=c.
kR = ;1; (69)

5. Elliptical Disks: ¢ > b,e = 0.

gt — b3

al

kR = -l—x(
4x




'

The function appearing in Eq. (70) is the complete ei-
liptic integral of the first kind of modulus « =
Polynomial approximations are available for accurate com-
putation of K{(x) [44].

6. Circular Disks: ¢ = b,e =0.

akR = % (1)

The characteristic lengths used to nondimensionalize
the conductive resistances are those which arise naturally
from the analysis. For the ellipsoid and the two spheroids
the characteristic or intrinsic length is seen to be equal to
the square root of the difference between the squares of
the largest and smallest semiaxes. For the sphere and the
circular disk the intrinsic length is seen to be the radius,
and in the elliptical disk it is the semimajor axis.

With the exception of the sphere and circnlar disk the
dimensionless resistance is dependent on the ratio of the
smallest and largest semiaxis or the body aspect ratio.
The body aspect ratio for the oblate spheroid is u = ¢/a
where 0 < ¥ < 1. The body aspect ratio for the prolate
spheroid can be defined as ¢/a or a/¢, but to be consistent

_ with the oblate spheroid for which the body aspect ratio
is the semiaxis parallel to the bulk flow divided by the
semiaxis perpendicular to the low, we will let u = afe. It
can be seen that the ellipsoid has two body aspect ratios
b/a and ¢/a. The sphere has unit body aspect ratio and

f\’che disks have zero body aspect ratio.

Characteristic Lengths Used to Correlate Forced and
Free Convection Heat and Mass Transfer From Spheroids

Various characteristic lengths have been used to nondi-
mensionalize the Nusselt and Sherwood numbers under
forced and free convection conditions. In this section the
characteristic lengths which have been used in heat and
mass transfer will be discussed with respect to the oblate
spheroid which is axisymmetric about its minor axis and
has two axes one of which goes to zero in the limit when
the oblate spheroid becomes a circular disk having zero
thickness.

In the discussion which follows it is assumed that
when forced or free convection occurs, the bulk flow of
the surrounding fluid takes place -parallel to the minor
axis only. The semiminor and semimajor axes are de-
noted by ¢ and b respectively. The total surface area and
the volume are denoted by A and V respectively. The
maximum perimeter of the spheroid is denoted by Pee
and it lies in the plane of the major axis. There is an-
other perimeter which lies in the plane which contains
the minor axis. It is associated with the boundary layer
flow length.

/(a® — ) /al.

~1

1. Length of the axis parallel to the motion of the
fluid. For the oblate the length is the minor axis, £, = 2e.

2. Length of the axis perpendicular to the motion of
the fluid. For the oblate the length is the major axis,
L3 = 2b.

3. The arithmetic mean of the axes parallel and per-
pendicular to the motion of the fluid. For the oblate the
length is the arithmetic mean of the minor and major
axes, £s = (¢ +b).

4. Length is the geometric mean of the semiaxes.

£(= Jb_;.

5. Length is the harmonic mean of the semiaxes.
1/Lg=(1/b+1/c) [2.

6. Length is the volume of the body divided by the
total surface area of the body. L4 =V/A.

7. L:ngth is the cube root of the volume of the body.
£1 =V,

8. Length is the square root of the total surface area
of the body. £ = VA.

9. Length is the total surface area of the body divided
by the perimeter of the maximum projected area normal
to the motion of the fluid. L3 = A/Pe,,.

10. Length is the diameter of a sphere having the
same total surface area of the body. £y = /A/7.

. 11. Length is the diameter of a sphere having the
same volume as the body. £;; = (6V/a')*.

12. Length is the sphericity muitiplied by the diame-
ter of a sphere having the same volume as the body.

Other more complex definitions of the characteristic
length are available in the literature. The ones which are
of interest here are thase recently examined by Sparrow
and Stretton [27| and Sparrow and Ansari [28].

13. King’s length is defined as 1/Lx = 1/£, +1/La
where £, and £, are the minor and major axes of the
oblate spheroid. In this case King’s length is the har-
monic mean length, Lx = L.

14. Lienhard’s length is defined to be equal to the
length of travel of the fluid in the boundary layer. For
the case of the oblate spheroid the Lienhard length is
equal to half the perimeter of the elliptical cross sec-
tion, and therefore Lz = 20E(x) where E(x) is the com-
plete elliptic integral of the second kind of modulus « =

1—(c/b)3.

15. Sparrow-Stretton length [27] is defined to be equal
to the total surface area of the body divided by the equiv-
alent diameter of a circular area set equal to the area
of the projection of the body onto a plane situated ei-
ther above or below the body. For the oblate spheroid
the Sparrow-Stretton length is equal to its area divided
by its perimeter in the plane perpendiculzr to the mi-
nor axis multiplied by the constant x. Therefore, Ls5 =
XA/ Proga-




The oblate spheroid is an interesting and important

body because in one limit it is a sphere having unit as-
pect ratio, and in the other limit it becomes a circular
disk having zero thickness, zero volume and serc body
aspect ratio. If the circular disk is included in the devel
opment of heat and mass transfer correlation equations,
then any characteristic length based upon the minor axis
ot containing it in some combination which goes to zero
or becomes unbounded cannot be used. For this reason
L1, L4 Lss Loy L1, L1sy and Lx cannot be used to nondi-
mensionalize the oblate spheroidal results.

Sparrow and Ansari [28] obtained fres convection re-
sults for a vertical short cylinder{length = diameter) in
the Rayleigh number range of 3 x 10 to 1.5 x 10° when
the diameter of the cylinder is used as the characteris-
tic length. They examined King's length, Lx = D/2,
and Lienhard’s length, £ = 2D, with respect to their
«xperimental results. They concluded that King's length
which led to 40— 50% overpredictions of the experimental
data should not be used in free convection correlations.
They observed that Lienhard’s length was somewhat bet-
ter because at the lower end of the Rayleigh number

range Lienhard’s length underpredicted the experimental. .

results by about 30%, but at the higher end the predic-
tions were within 8% of the experimental results. They
further concluded that Lienhard’s length does not war-
rant its adoption as the link between multi-dimensional
free convection and the established literature.

Sparrow and Stretton [27] conducted a series of free
convection experiments from an isothermal cube (aspect
ratio =1) in various orientations which included the hor-
izontal top/horizontal bottom case, the on edge case and
the diagonal aligned case. The steady-state experiments
were conducted in air and in water and the combined
Rayleigh number based on the side of the cube ranged
from 2 x 10° to 107. The King's length is equal to half
the cnbe side, that is, Lx = S/2, and it overpredicted
the experimental results by 40 — 58%, while Lienhard's
length which ranged from 2 to 2.414 times the cube side
underpredicted the experimental results by as much as
23%. As a result of these cbservations, they introduced
their own characteristic length which for the cube in the
horizontal top/horizontal bottom orientation was found
to be Lss = 35/v/%. They found it gave a very tight fit
to their experimental data, which for all cube orientations
were fitted with the correlation equation

Nuss = 6.65 + 0.623 [Rags/F(Pr)|*  (72)
where the function
F(Pr) = [+ (0.492/Pr)*/*

was highly effective in correlating the air and water data.
They found that 78% of the data fall within 2% of the
correlating equation and that the maximum deviation is
only 5.5%.

] 16/9 (73)

. The constant 6.65 was determined empirically and it
is the limiting value of Nugs as Rass — 0. This pure
conduction limit can be compared with the calculated
value Nug = 1.383 which was based on the cube side
S. They concluded that since Lg3/S ranges from 5.317
to 4.040 corresponding to the extreme orientations, the
conduction limit for Nugs should range from 5.587 to

7.353, which bounds the empirical value of 6.65.

The apparent success of the Nugs and Rass groups in
correlating the cube data prompted Sparrow and Stret-

" ton to use these groups for other bodies of unity aspect

ratio. The available experimental data for spheres in air,
spheres in water, shart cylinder in air, and cubes in air
were recast in terms of Nugs and Rags and correlated
by the equation .
Nugs = 5.748 + 0.752 [Rass |F (Pr)]w (74)

where 84% of the data fell within 5% of the correlation,
and the maximum deviation is 9.5%. The Rayleigh num-

" ber ranged from about 200 to 1.5 x 10°.

When Sparrow and Stretton used their correlation to
predict free convection from oblate spheroids of aspect
ratios of 0.1 and 0.5, and a prolate spheroid of aspect
ratio of 1.93, and the vertically aligned bi-sphere, they
observed significant differences, especially at the lower
values of the Rayleigh number. They concluded that their
general correlation can be used with confidence for bodies
having aspect ratios which deviate slightly from unity,
but it is not recommended for bodies whose aspect ratios
deviate significantly from unity.

General Dimensionless Resistance Expression

The general expression for the conductive resistance
can be obtained from the general solution of the resis-
tance by multiplying the result by the new characteristic
length, that is, the square root of the total body area V/A.
Using the expression developed in the previous section we
obtain )

Rz = kVAR
1 [ 1 v [F(én) }
= m[‘mz¢+m¢[mz¢ +E(¢,&)]]
F (¢, :m' :;) (75)
with b |
"=§' v=;’ 12”2“ (76)
and oty
$=cos"ly, «? —= (77

T o3l - u?)
The special functions appearing in Eq. (75) are the in-
complete elliptic integrals of the first and second kinds
respectively. They can be evaluated accurately and ef-
ficiently by means of gaussian quadrature, or by means
of the Landen’s ascending or ascending transformations
[44]. ’
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Special Cases

Elliptical and Circnlar Disks: a > b,¢ = 0;1> v,u=0

R =(%_-_\/GK(~/1 - v3) (78)

where K(-) is the complete elliptic integral of the first
kind of modulus (V1 — v3).

When the elliptical disk is w, v—Q,
K (V1 -1v%) = In(4/v) and therefore,
1 4 L
R <gm/ola(5) -

For the circular disk, v = 1, and the dimensionjess re-
;islt;.f;e, R:/Z = 0.3133 and the Nusselt number, N v g =

(79)

Oblate Spheroids: a = b > ¢;v = 1,05u<1

——

The dimensionless resistance for oblate spherbids is

cos’él
sing 2

1+sing
l—sging

. _ 1 4
Rﬂ"\/s—niw[l
¢ =cos" 'y, sing = Vi wd (81)

The general expression for the oblate spheroids reduces
to that for the circular disk when u = O.where N v Z=
3.1915 and the sphere when u = 1 where NV % o = 3.5449.

]* (s0)

with

‘{,\\Prolate Spheroids: a 2 b=co=uz1

-

The dimensionless resistance for prolate spheroids is

R = 1 1. 1l+sing
VAT fersing2 1-sing

[cos’ 6+ ¢ = ¢] ! (82)

sing

Effect of Characteristic Length on Nusselt Number

. The choice of characteristic length in the definition
of the Nusselt number can have a significant effect on
its dependence upon body shape and its aspect ratio.
This will be demonstrated by considering the oblate and
prolate spheroids for a range of body aspect ratios such
that the Nusselt number for circular disks (AR = 0),
spheres (AR = 1) and long prolate spheroids (AR >> 1)
are included. The characteristic lengths will be the new
length, £ = v/4, and the conventional one, £ = 2b,

where 2b is the major axis for both oblate and prolate

spheroids. When the oblate and prolate spheroids reduce
to the sphere, the characteristic length is the sphere di-
ameter.

The expressions for the Nusselt numbers for these
characteristic lengths are:
Oblate Spheroids

Wl (1+4¢ -
Nugy = —= -1
L2 4e{[1+ . ZIn(l—c)] cos u} (83)

and

. . ”
2 1 3
Nuﬁ=,/;-4e{[1+u7%ln<lt:)] cos"‘u}

(84)

Prolate Spheroids

Nu,;.=4e{[u.’-i-1:-sin"e]-;-h(if:)}"x (85)

and

. -1

_ [T 1 8. *_1. l+e s
Nu‘,;-\/zu{[u +csm e 21:1(1_.‘)}

(88)

where 4 = ‘;./b and ¢ = V1 - 43, which is called the
eccentricity. The aspect ratio is AR = u for the oblate
spheroids and AR = 1/u for the prolate spheroids.

Nusselt numbers based on £ = VA and £ = 2b are
given in Tables 1 and 2, and are plotted in Fig. 2 for
the oblate and prolate spheroids for a wide range of the
parameter u. In Table 1 and Fig. 2 it is seen that NV %y
for both spheroids approach asymptotically the value for
the sphere which is Nu 4 = 2,/%; but the difference
from the sphere value is very small. The circular disk
(AR = 0) is only 10% below the sphere value, while the
prolate (AR = 20) is 36.6% above the sphere value. The
circular disk and the long prolate differ by approximately
52%; a remarkably samall difference considering the great
difference in the body shapes and aspect ratics. The
percent difference between values of the Nusselt numbers
for the two body shapes is less than 1% when the ratio
of their aspect ratios is 4 and reaches approximately 10%
when the ratio is 25; this is clearly seen in Fig. 2.

On the other hand, the Nusselt numbers based on
L = 2b for the two body shapes differ considerably as seen
in Table 2 and Fig. 2. Both oblate and prolate values
approach the sphere value of 2; but the oblate values do
not vary monotonically, and the values of the circular disk
are greater than those of the sphere. There is no physical
reason for the Nusselt number of the oblate spheroid of
aspect ratio AR = 0.15 to have the optimum value. The
difference between the values for the prolate of aspect
ratio AR = 20 and the sphere is approximately 290%.
This very large percent difference is to be compared with
the 36.6% difference when £ = /4 is used.

Effect of Body Shape and
Body Aspect Ratio on Nusseit Number

- The effect of the body aspect ratio on the Nusselt
number can be demonstrated by examining the results for
the prolate spheroid and the right circular cylinder, which
are axisymmetric bodies, and the elliptical disk, which is
a planar body. These bodies are shown in Fig. 3 with
their maximum and minimum body lengths, L and D,
respectively. The aspect ratio is defined as AR = L/D.




. Table 1: Comparison of Nu sz for Oblate and Prolate  Table 2: Comparisan of Nus for Oblate and Prolate

Spheroxds vsu Spheroids vs u
Oblate Spheroid | Prolate Spheroid Oblate Spheroid | Prolate Spheroid
. ' u Nu 7 Nu % Nuy Nugy
—

0.0000 3.1915 - 0.0000 2.5464 -

0.0500 32773 4.8412 0.0500 2.6029 13.7748
0.1000 3.3419 4.1951 ~ : 0.1000 2.6273 8.4260
0.1500 33016 3.9312 0.1500 2.6299 6.4298
0.2000 3.4290 3.7905 0.2000 26170 5.3503
0.2500 3.4594 T 3.7084 . 02500 |  2.5929 4.6594
0.3000 3.4819 3.8528 : 0.3000 2.5610 4.1714
0.3500 3.4991 3.6174 0.3500 2.5238 ~ 3.8037
0.4000 3.5121 3.5936 0.4000 2.4832 3.5135
0.4500 3.5218 3.5773 0.4500 2.4405 3.2766
0.5000 3.5290 - . 3.5661 N . ~ 1 0.5000 2.3068 3.0779
0.5500 3.5343 3.5585 0.5500 2.3529 2.9078
0.6000 3.5380 3.5534 0.6000 2.3093 2.7507
0.6500 3.5407 3.5500 0.6500 2.2664 2.6289
0.7000 3.5424 3.5478 0.7000 2.2245 2.5122
0.7500 3.5436 3.5464 0.7500 2.1837 2.4070
0.8000 3.5443 . 3.5456 0.8000 2.1442 2.3114
0.8500 3.5447 © 3.5452 0.8500 2.1061 2.2239
0.9000 3.5448 3.5450 - 0.9000 2.0694 - 2.1435
0.9500 3.5449 3.5449 0.9500 2.0340 2.0691
1.0000 3.5449 3.5449 , 1.0000 2.0000 2.0000

R b

10'r
3 L { ma—tnf .
. PROLATE S22t OBLATE PROLATE l r—— L
2 L fr\ 3 F
: D | e ([
]
§ 2b \J’ Y N
2 PROLATE SPHEROID RIGHT CIRCULAR
- CYLINDER
o
[72]
(72} .
2 ['— L ——]
» VNS S TS N SR SO SR IUN TR T A B ,1 P T U 1 CD
o0 0.2 0.4 06 0s Lo y
ASPECT RATIO FOR OBLATE us=e/bd
ASPECT RATIO FOR PROLATE u™=b/c ELUPTICAL DISK
Fig. 2 Effect of body aspect ratio and characteristic Fig. 3 Axisymmetric and planar body shapes having

length on Nusselt number for oblate and prolate spheroids identical aspect ratios

The Nusselt number for the prolate spheroid and the Nu ~— 8 + 6.95(L/D)>™
elliptical disk can be determined from Egs. (86) and (78) \Z /27 + 4x(L/ D)
respectively. The Nusselt number for the right circular
cylinder can be obtained from Smythe’s correlation of his with a maximum error of 0.2%. The effect of the aspect
capacitance solution [39,40): ratio is shown in Table 3.

<L/D<8  (87)
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Table 3: Efect of Body Aspect Ratio for Prolate
Spheroids, Circular Cylinders and Elliptical Disks

AR | Prolate Right | Elliptical
L/D | Spheroids | Cylinders Disks

1 3.545 3.443 3.192

2 3.566 3.527 3.288

3 3.628 3.622 3.434

4 3.708 3.714 3.579

5 3.790 3.803 3.716

6 3.875 3.887 3.845

7 3.959 3.965 3.952

8 4.040 4.040 4.080

The largest difference in the Nusselt number occurs
when the aspect ratio is unity, and the bodies are spheres,
short cylinders and circular disks. The circular disk has
the smallest Nuaselt number and the sphere has the largest
Nusselt number, where the difference is approximately
10%. As the aspect ratio increases from 1 to 8 the Nusselt
number increases slowly to a value of 4.04 for these body
shapes. This is appraximately 14% above the sphere
value. .

When the diameter of the body is used in the def-
inition of the Nusselt number, the values reported for
AR = 1 become 2, 1.5865, and 2.5468 for the sphere,
cylinder and circular disk, respectively. We first observe
that the circular disk appears to be more conductive than
the sphere, and second, that the percent difference be-
tween the cylinder value and the circular disk is now ap-
proximately 61%. : '

The Nusseit number for the cube can also be deter-
mined from the capacitance reported by Greenspan (36|,
and its value is Nu o = 3.388 and Nug = 1.3831 when
its side is used as the characteristic length. When the
unity aspect ratio bodies are compared, the largest per-
cent difference is approximately 10% when £ = /A, and
approximately 84% when £ =D or £ = S.

When AR > 5, the prolate spheroida.l Nusselt number
can be approximated accurately by

4\/[3x(L] D)
Nu\/— =

A ln(,%"L/D)

with an error < 0.68%; and, as a resuit of the observations
made above, this expression may be used to approximate
with an error < 0.68%; and, as a result of the observations
made above, this expression may be used to approximate
the Nusselt number for right circular cylinders and sim-
ilar bodies as well as elliptical disks and similar bodies
such as rectangular or diamond- shaped plates.

(88)

The Nu s for the rectangular and elliptical plates
are given in Fig. 4 where it can be seen that the effect
of shape is very small, and the effect of aspect ratio is
similar to that of the prolate spheroid.

1

—— | ——

b

¥

RECTANGLE ELLIPSE
LD Neg () Nuz  (2)
| 3.205 3.192
2 3.303 3.288
3 3.438 3.434
4 3.553 3.579

(1) NUMERICAL RESULTS
(2) ANALYTICAL RESULTS

Fig. 4 Comparison of Nusselt numbers for rectangular
and elliptical plates :

The Smythe right-circular cylinder correlation can be
compared with the oblate spheroidal solution when the
body aspect ratio is less than unity. The Nusselt number
for the oblate spheroid is greater than that of the cylin-
derfora.llO<AR$1,mdthemaximnmdiﬁerenceof
approximately 3.3% occurs at AR ss 0.6.

elt tes

The Nusselt number for disks of arbitrary shape can
be obtained from the reported data on the capacitance
of disks [45] by the use of Eqs. (42) and (43). With the
exception of the circular disk, the data for all shapes were
obtained from numerical methods such as the method of
moments [45]. The results are given in Fig. 5 for a range
of body shapes. The body aspect ratio defined as the
ratio of the minimum to maximum body lengths is unity
for the circle and the square; and two for the semi-circle
and the 2 : 1 diamond. The aspect ratios of the hexagon,
90° sector and the 2 : 1 right triangle are difficult to
define. The very close agreement between the analytical
result for the circle and the numerical resuit for the square
is remarkable, because the difference is less than 0.5%;
and even the hexagon result is within 0.4% of the circle
result. The semi-circle and 2 : 1 diamond results also
differ by less than 0.5%, and their Nusselt numbers are
very close to those of rectangular and elliptical plates
having 2 : 1 aspect ratios (See Fig. 4). The 2: 1 right
triangle and the 1.65 : 1 diamond have Nusselt numbers
which are within 1.0% of each other and only 8.1% above
the circle result.

From an examination of the Nusselt numbers in Figs.
4 and 5, it can be concluded that body shapes having

identical or similar aspect ratios will have similar Nusselt
aumbers,




DISK SHAPES AND RESULTS

M
O 3.1%2

O - <3
O - <D -

Fig. 5 Nusselt Numbers for disks of arbitrary shape
and aspect ratio

Summary and Conclusions

Relationships between the dimensionless diffusive re-
sistance, shape factor, capacitance, and the Nusselt and
Sherwood numbers have been developed. A review of the
numerous characteristic lengths used in heat and mass
transfer, and some conclusions regarding the appropriate
length for natural convection from isothermal bodies of
complex shape have been presented. An analytical so-
lution for conduction from isothermal ellipscids into an
infinite domain is developed, and special cases such as
oblate and prolate spheroids, spheres, elliptical and cir-

The solutions for the oblate and prolate spheroids .

were used to demonstrate the effect of the selection of
the characteristic body length on the Nusselt number. It
was shown that the square root of the body surface area
is far superior to the classical body lengths proposed by
other authors. When the appropriate body length is used
to define the Nusselt number or the other dimensionless
groups, the results for a wide range of body shapes and
aspect ratios lie in a relatively narrow range for simi-
lor body shapes having nimilar aspect ratios as shown in
Fig. 6.

Although the solutions presented here are for convex
bodies of arbitrary shape and aspect ratio, they can be
used to approximate the Nusselt number for non-convex
bodies such as the bi-sphere which consists of two iden-
tical spheres in point contact. Considering this body to
have an aspect ratio of two and using the result for a pro-
late spheroid of the same aspect ratio, one would predict
a Nusselt number of 3.57. The actual Nusselt pumber
based on the value given in Ref. 35 is 3.48, which is only
different by 2.6%.

Thus, it can be concluded, that the general solution
for the ellipsoid with the characteristic body length based
on the square root of the total body surface area, can be
used to approximate the Nusselt and Sherwood numbers

SUMMARY OF T

hA A C t
L/AR

B e— .L ————
Nu . s Sh 3 -%'

Fig. 6 Summary of results for a wide range of body
:htpesa.ndupectntio{

for bodies of complex shape with the same surface area
and one or more similar body aspect ratios. The partic-
ular soiutions such as the sphere can be used to approx-
imate bodies of unity aspect ratio; the oblate spheroids
can be used to approximate axisymmetric bodies of as-
pect ratio iess than one, and the prolate spheroids can be
used to approximate axisymmetric bodies of aspect ra-
tios greater than one. These analytical solutions and the
bodies which can be approximated are shown in Fig. 6.
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