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Abstract g scalar gravitational acceleration
Gz laminar boundary layer body-gravity function
A simple, semi-empirical, correlation equation for natural con- 1 P . 1/3 8/4
vection from complex isothermal three-dimensional bodies is [G‘/X = [I IIa (77&' sin 5) dA]
presented. It is based on the linear superposition of the the- Gre Grashof number [g8(Ty — T} L3/17]
oretical diffusive and thin boundary layer asymptotic limits. h heat transfer coefficient
One empirical parameter only is required when the Nusselt and H Hassani-Hollands characteristic length in Rayleigh
Rayleigh numbers are based on the characteristic length pro- number only
posed by Yovanovich for the diffusive limit. The correlations k thermal conductivity
are shown to be in excellent agreement over several decades L characteristic length of the body
of the Rayleigh number with data obtained by several authors m correlation coefficient
for spheres, oblate and prolate spheroids, bisphere, cubes and n Churchill-Usagi parameter in Hassani-Hollands
short cylinders in various orientations. The accuracy of the new correlation
correlations is, on average, equal to the accuracy of the com- Nuy  Nusselt number [Nuy = hL/k]
plex correlation equations of Raithby-Hollands and Hassani- Ny, thin laminar boundary layer Nusselt number of
Hollands. The correlation equation can be modified to account Raithby-Hollands
for Pr different from air. Alternate approximate correlation co- Nug turbulent boundary layer Nusselt number of
efficients are also presented. Raithby-Hollands
Nu>  diffusive limit Nusselt number as Ra — O
Nu, diffusive limit Nusselt number based on v 4
Nomenclature VA X X K .
’ P Churchill-Usagi parameter in Hassani-Hollands
A surface area of the body correlation
VA characteristic length of the body P local perimeter of the body
AR aspect ratio of oblate and prolate spheroids Pr Prandtl number [/ q]
B correlation coeficient or major axis of spheroid Ra, Rayleigh number [Gr; Pr = gB(To — Too) £3/va]
(o] correlation coefficient or minor axis of spheroid S cube side
Q\/z correlation coefficient for air based on £ = VA To uniform boundary temperature
C Raithby-Hollands parameter Too fluid temperature remote from the body
C Hassani-Hollands parameter u ratio of minor to major axes of spheroids

(o CVA/H

Greek Letters

e eccentricity of the oblate and prolate spheroids

» le = vI—1u? a thermal diffusivity

fo conversion factor for oblate spheroids B tl:lerma.l 'con.xpres.sibility coefficient

fo conversion factor for prolate spheroids v kinematic viscosity

F(Pr) function of Prandtl number 8 angle between outward body normal and gravity vector
p mass density

[0.670/[1 + (0.492/ Pr)®/1814/9)
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heat transfer from isothermal three-
dimensional bodies of various shapes and aspect ratios under
different orientations relative to the gravity vector has been
studied experimentally by numerous researchers over several
decades beginning with the important work of Langmuir {1} in
1912. Over the next thirty years Saunders [2] and Elenbass
{3! extended the experimental results over 2 wider range of the
Rayleigh number, body shapes and orientations. They derived
correlation equations specific to body shapes using the conven-
tional characteristic lengths: body diameter or body length.

Yuge [4] examined free, forced and combined convection
heat transfer from from a sphere into air, while Amato and Tien
[5| measured and correlated natural convection from isothermal
spheres into water. They used the diameter of the sphere as
the characteristic length, and employed the diffusive limit in
their correlation equations. Amato and Tien also compared
their results to the numerous correlation equations which had
been developed for heat and mass transfer from spheres.

During the past ten years at the Universities of Minnesota
and Waterloo precise data have been obtained for a variety of
body shapes, aspect ratios and orientations over a wide range
of Rayleigh number for air and water. Raithby, Pollard, Hol-
lands and Yovanovich {6} obtained data for isothermal oblate
and prolate spheroids; Sparrow and Ansari |7} reported some
data for an isothermal short cylinder of unit aspect ratio in the
vertical orientation; Chamberlain, Hollands and Raithby {8] re-
ported data for small and large isothermal spheres, an isother-
mal bi-sphere and an isothermal cube in three orientations;
while Sparrow and Stretton [9] obtained data for two isother-
mal cubes in numerous orientations in natural convection to
water or air. With the exception of the Sparrow-Stretton data,
all other data were obtained in air.

These data were obtained for eight different body shapes
having different sizes and quite different aspect ratios; which
ranged from a low value of 0.1 for one of the two oblate spheroids
up to a value of 2 for the prolate spheroid and the bi-sphere.
The other oblate spheroid had an aspect ratio of 0.5, and the
spheres, cube and short cylinder had an aspect ratio of unity.
The cube in the various orientations can be considered to be
some other body having aspect ratios greater than unity.

Raithby, Pollard, Hollands and Yovanovich [6] used the ma-
jor axes of the oblate and prolate spheroids to reduce their
data. The Nusselt number versus Rayleigh number data for
the respective bodies plotted as three separate curves requir-
ing separate correlation equations. The conclusions drawn
from these spheroidal results are that natural convection from
spheroids is dependent upon shape and aspect ratio.

Chamberlain, Hollands and Raithby (8] used the diame-
ter for the two spheres and the bi-sphere, and the side of the
cube as the characteristic length for these bodies. Again, the
reduced data plotted as separate curves requiring separate cor-
relation equations, and the conclusion derived from this work
is that natural convection from spheres, bi-sphere and cubes is
dependent upon shape and aspect ratio. The cube data (8,9]
for the three different orientations showed a nominal effect of
orientation. The maximum difference was found to be approx-
imately 5% at a Rayleigh number of the order of 107.
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Sparrow and Ansari {7] showed that the characteristic lengths
proposed by King {10] and Lienhard [11} do not yield good re-
sults when the short cylinder reduced data were compared with
the sphere correlation. When they used the diameter of the
short cylinder they found significant differences between the
sphere and short cylinder results. Their conclusion is that nat-
ural convection from spheres and short cylinders in the vertical
orientation is somewhat dependent upon shape.

Sparrow and Stretton [9] obtained data for two isothermal
cubes in air and water, and examined the effect of using vari-
ous characteristic lengths in the Nusselt and Rayleigh numbers.
They found that the lengths which they examined gave signifi-
cantly different correlation equations for their cube data. They
introduced a new definition of the characteristic length which
depends on the total surface area and the square root of the
projected area of the body which blocks the natural convection

 flow. This characteristic length brought the cube, short cylin-

der and sphere results together and allowed them to deveiop a
single correlation of Nu versus Ra for body shapes having an
aspect ratio of unity. When they used the new characteristic
length for the oblate, prolate and bi-sphere data {16], they ob-
served that the data plotted as separate curves requiring four
separate correlation equations. They found that their general
correlation underpredicted the vertical bi-sphere data on aver-
age by 12% and the prolate spheroid data by 19%. The differ-
ence between their predictions and the data for the thin oblate
spheroid data was found, on average, to be —32%, but the data
for the oblate spheroid of aspect ratio of 0.5 was in excellent
agreement with their predictions. They concluded that natural
convection is quite dependent on body aspect ratio. Sparrow
and Stretton [9] observed a 5% maximum difference in their
air data and a 12% maximum difference in their water data for
the two extreme orientations of the cube. They also observed
that the effect of orientation was somewhat dependent on the
magnitude of the Rayleigh number.

Raithby and Hollands {12} proposed an approximate method
for predicting natural convection heat transfer from isother-
mal bodies immersed in an extensive, stagnant fluid. Their
method which accounts for thick layer effects, reduces the nat-
ural convection problem to an equivalent simpler, conduction
problem, by surrounding the isothermal body with a station-
ary fluid layer of variable thickness and then solving the con-
duction problem through this conduction layer as first sug-
gested by Langmuir [1]. The approximate method was used
to obtain solutions for numerous two-dimensional and axisym-
metric bodies, including the spheroids and the bi-sphere [6,8]-
The effect of variable Prandt! number and turbulent flow was
also taken into account by means of the Churchill-Usagi (14}

~ method of blending asymptotic solutions. They used the di-

ameter for the spheres and bi-sphere, and the side of the cube
as the characteristic length. They reported very good agree-
ment between their predictions and data over a wide range of
Rayleigh number (100 < Ra < 10°); but this modified method
requires another correlation parameter which also appears to
depend on the body shape, orientation and aspect ratio.
Recently Hassani and Hollands [17,18] modified the Raithby-
Hollands approximate method by using the diffusive limit pro-
posed by Yovanovich {19} which is based on the square root of
the total heat transfer area as the characteristic length of the
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body. They also introduced another characteristic length into
the Rayleigh number, and they showed [18] that this length
is closely related to the diffusive length of Yovanovich [19].
The difference between the Hassani-Hollands length and the
Yovanovich length is less than 4% for most body shapes except
for the horizontal circular and square disks and the thin oblate
spheroid where the difference is approximately 40%. They
also used the Churchill-Usagi blending method twice in the
development of another general correlation equation which is
applicable for a variety of complex shapes. The new correla-
tion equation requires another correlation coefficient which is
shown to be dependent on body shape, aspect ratio and the
orjentation of the body relative to the gravity vector. The
Hassani-Hollands correlation equation requires the evaluation
of their proposed characteristic length, the laminar and tur-
bulent Rayleigh number coefficients, and two Churchill-Usagi
coefficients. Tables are presented [18] for these parameters for
the various body shapes considered to-date.

This paper presents a simple correlation equation which is
based on the linear superposition of the diffusive limit (Ra —
0) and the boundary layer limit (10* < Ra < 10%). The charac-
teristic body length used in the Nusselt and Rayleigh numbers
is the square root of the total heat transfer area which has
been demonstrated by Yovanovich to be the best characteristic
body length for pure conduction from isothermal bodies. The
boundary layer limit is based on the results of similarity anal-
ysis valid for Pr — oo and the Raithby-Hollands approximate
method which is valid for all Pr.

Theoretical Considerations

The earliest natural convection heat transfer correlations
were developed for isothermal bodies losing heat to an exten-
sive, stagnant fluid for Rayleigh numbers of the order of 10° to
10%. For this range of Rayleigh number the correlation equa-
tion which adequately predicts the data has the simple form

Nu =CRag™ (1)

where the correlation coefficients C and m are found to be
approximately 0.45 and 1/4 respectively for a sphere in air
[4,6,12] when the sphere diameter is used as the characteristic
length in the Nusselt and Rayleigh numbers.

The failure of the simple form to correlate data in the ex-
tended range 1 < Ra < 10® has lead researchers to consider
the usefulness of the following correlation equations:

Nu= B + CRa™ )

and
Nu= Nu® + CRa™ (3)

The parameters B, C and Nu® in the above equations are
dependent on the Rayleigh number range, the body charac-
teristic length and whether the parameter m has been set to
the theoretical boundary layer value of 1/4. The parameter B
in Eq. (2) represents the intercept value resulting from linear
least-squares data fitting, whereas Nu® in Eq. (3) represents
the contribution of molecular diffusion into an infinite, quies-
cent fluid corresponding to Ra — 0; it will be denoted the dif-
fusive limit. Some researchers have reported a very wide range
of values for B; including negative values which are physically
unacceptable.
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Amato and Tien |5 report correlation equations developed
for heat and mass transfer from spheres into a variety of fluids.
One set of correlations is based on £L = D, Nu® =2, m = 1/4
and the fitted coefficient C was found to lie in the range 0.399 <
C £0.59. Two correlations are based upon £ = D,m= 1/4
and B = 5.4 or 2.3 with C = 0.44 or 0.585. The third set
of correlations are based upon £ = D, m = 1/4, B =0
and the fitted coefficient C was reported to lie in the range
0.51 < C < 0.56. Amato and Tien [5] used Eq. (3) with
L =D, Nu® =2, m = 1/4 and found € = 0.500 for heat
transfer into water. They reported a mean deviation of less
than 11% provided 3 x 10° < Rap < 8 x 108

Schlichting [24] reports that Shell calculated the mean value
of Nu for a single sphere in air and found that Nup = 0.429 Gr},/4
was confirmed by measurements in air.

Churchill and Chu (13] have used the diffusive limit and the
boundary layer limit in the following blended form to increase
the accuracy of the correlation equation:

(4)

The parameter m was set to the boundary layer value of 1 /4.
They found that the flat plate and horizontal circular cylinder
data could be predicted accurately with n = 1 provided Ra <
108,

Raithby and Hollands {12} have used the Churchill-Usagi
(14] method of blending limiting solutions to correlate free con-
vection from bodies of complex shape. They recommend the
equation '

Nu = [B" + (CRa**)"|V

Nu = (Nu} + Nup)/» (5)

where Nu; and Nu, are the Raithby-Hollands method solu-
tions for the thin laminar and turbulent boundary layers re-
spectively. This method was used with success [8,15] to corre-
late air data for two spheres, an aligned bi-sphere and a cube
in three orientations. As examples of this method, the sphere
and bi-sphere correlation equations are presented here to illus-
trate several points discussed above. The sphere correlation
equation is

Nu = [(2 + 0.452Ra*/*)® + (0.0909Ra!/%)%|1/¢ (6)

where the characteristic length is the sphere diameter, Nu™ =
2, and the Churchill-Usagi parameter n = 6. For the bi-sphere
they obtained the correlation equation

Nu = [(1.38 + 0.378 Ra'/*)*® + (0.104 Ra'/3)*#]1/4% (1)

where the diameter was selected as the characteristic length,
Nu® = 1.386, and the Churchill-Usagi parameter n = 4.8.
They reported excellent agreement between these correlation
equations and the air data of Chamberlain [8]. The cube data
for the three orientations require separate correlation equa-
tions with Nu® = 1.386 based on the cube side as the body
characteristic length, and the laminar Rayleigh number coeffi-
cient having the values 0.343,0.444 and 0.449 respectively for
the three body orientations. The Churchill-Usagi parameter n
ranged from 2.45 to 16 depending strongly on the cube orien-
tation. The Churchill-Usagi parameter used by Raithby and
Hollands is determined empirically to give the best fit to the
data.



Comparing the Raithby-Hollands correlation equations for
the spheres, the aligned bi-sphere and the cube, it can be seen
that the choice of the characteristic length has a significant
effect on the values of the diffusive limit, Nu*, the lami-
nar Rayleigh number coefficient, C, and the Churchill-Usagi
parameter, n. A more physically appropriate characteristic
length should minimize the differences between these correla-
tion coefficients.

In a recent paper Hassani and Hollands (18] have modified
and simplified the Raithby-Hollands method by introducing
the diffusive limit Nu7; of Yovanovich [19] and the character-
istic length, VA, proposed by Yovanovich [20] in the Nusselt
numbers which appear in their correlation equation. They also
introduced another characteristic length, H, in the laminar and
turbulent Rayleigh numbers which appear in their correlation
equation. This new length is seen to be closely related to the
diffusive length proposed by Yovanovich for all body shapes
where VA/H = £5%, and 9% for the bi-sphere. The largest
difference of 50% is observed for the horizontal, thin oblate
spheroid. They propose the correlation equation:

-

. n 1/n
Nuyz= [[[C;Ra};‘]” + (GRaPP]™ + [Nu\/zl"] (8)

where n and p are a new set of Churchill-Usagi parameters. As
anticipated the choice of VA as the characteristic length has
reduced the range of the parameter n from 1.01 to 1.14 for the
variety of body shapes considered in their paper. The other
parameter p is determined by means of another correlation
equation developed by Hassani and Hollands [18]. The laminar
Rayleigh number coefficient, C}, is reported to be a constant for
all body shapes, and the turbulent Rayleigh number coefficient,
G = a\/Z/ H, has values ranging between 0.090 for the cube
in orientation 1 and 0.114 for the bi-sphere.

There is at present no theoretical basis to support the
use of one correlation equation over another for a range of
body shapes, aspect ratio, orientation and a wide range of
the Rayleigh number. It is, therefore, proposed to compare
the simplest correlation equation which is based on the lin-
ear superposition of the Yovanovich diffusive limit {19] and the
laminar boundary layer limit based on the Yovanovich charac-
teristic length (19,20} with air data for a variety of body shapes,
aspect ratio and orientation. The proposed, simple correlation
equation for three-dimensional bodies is '

1/4

Nuz = NuSz + CyzRally )

where Nu2; is the diffusive limit [19] and C sz is an empirical
correlation coefficient to be determined from the air data for
0 < Ra; <10°.

The simple correlation equation can be modified to account
for Prandt! numbers different from the air value by the use of
the Prandt! number function F(Pr) defined as [9,12,14]

0.670
F(Pr) ~ [U+ (0.492/ Pr)oriete
which was developed by Churchill and Chu [13] and used ef-
fectively by Sparrow and Stretton [9] to correlate their air and
water data. This function has the value of 0.514 for Pr =0.71.
The laminar Rayleigh number coefficient, C,/z, [20] is related to

(10)
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Table 1: Conversion Factors for Nusselt and Rayleigh Numbers
for Various Body Shapes

Body Characteristic Conversion
Shape Length Factors
Nu Ra
Sphere Diameter, D VT x3/?
Bi-sphere | Diameter, D Ver | (2x)3
Cube Cube Side, S NG 63/2
Cylinder | Diameter, D 3r/2 | (37/2)%?

the laminar boundary layer body-gravity function G ; which
is dimensionless and the Prandt! number function, Eq. (10),
{20]:

C\/x = F(PT)G‘/X (11)
where
1/3 3/4
Gyz = {% /] (%sinﬁ) / dA] (12)

which can be derived from the boundary layer equations by
similarity methods for Pr — oo for any arbitrary body shape
which does not possess horizontal planes, corners, or surface
depressions. This new function can also be derived from the
relationship developed by the Raithby-Hollands approximate
method [12] by assuming the diffusive characteristic length and
performing the integration over the total body surface. The
geometric parameter P which appears in the integrand is the
local perimeter of the body, and 4 is the local angle between the
outward normal to the body surface and the direction of the
gravity vector. This function can be evaluated analytically for
the oblate and prolate spheroids, and some other simple body
shapes. It is noted [20] that it is a relatively weak function of
the body shape, aspect ratio and orientation for a wide range
of these geometric parameters [21].

Results and Discussion

The air data of Nu and Ra for isothermal spheres (8,15}, bi-
sphere [8,15], cube (8,9,15], oblate and prolate spheroids [6,22],
and short cylinders [7,18] are converted to Nu z and Rez
data by means of the conversion factors given in Table 1.

The relationships for conversion of the oblate spheroidal
data are [19,20}:

Nuyz = folu)Nus (13)

and
Ra 7 = f3(u)Ras (14)
where ( ) 12
g (1-¢ 1+ e\
=3 e B () 13}
and
e=+vV1-—-u? (16)
C
u = ‘E = AR (17)




The relationships for the conversion of the prolate sphercidal
data are {19,20]:

Nuz=ufy(u)Nug (18)
and
Ra ;7 = u*f}(u)Ragp (19)
where
\/— [ sin"te 1 20
14—
fo= AV 20

and ¢ and u are defined in Eqs. (16) and (17), but for prolate
spheroids the aspect ratio, AR = 1/u. i

Log-log plots of Nu s versus Ra sz for the various body
shapes (see Figures 1 and 2) are presented in Figures 3-10. The
data points for 10* < Ra 7 < 108 were used with the following
equation to obtain a set of values of the laminar boundary layer

coefficients: (Vug); — Nuce
u u
(C\/‘ ) \(/}_Zal/‘) VA

where 7 denotes the ith data point and Nu\/— is the diffusive
limit {19] reported in Table 2.

It can be seen that the largest difference in the values of
NuZ is between the thin oblate spheroid of aspect ratio AR =
0.1 and the prolate spheroid of aspect ratio AR = 1.93 and
this relative difference is approximately 6.7%. The arithmetic
average of the (C, z); for each body shape is given in Table 3.

" A least-squares fit to all data for 0 < Ra sz < 102 for all
body shapes was conducted, and the correlation coefficients
C,/z were found by means of the following matrix [23]:

N Nu® 7y

[ZY(R ) T ]{ Cvz
The coefficients were found to lie within 1% of those based

upon the averaged values of Eq. (21). Since the averaged

values produce slightly smaller RMS percent differences, they
are given in Table 3.

(21)

z"(Ra;,/i } { i Zi(Nuya)s

(N u\/—Ra

Table 2: Diffusive Nusselt Numbers for Various
Three-Dimensional Body Shapes [19]
Body Shape Nu>
Sphere 3.545
Bi-sphere 3.473
Cube 1 3.388
Cube 2 3.388
Cube 3 3.388
Vertical 3.444
Cylinder
Horizontal 3.444
Cylinder .
Cylinder at 45° 3.444
Prolate Spheroid | 3.566
(AR = 1.03)
Oblate Spheroid | 3.529
(AR = 0.5)
Oblate Spheroid | 3.342
(AR =0.1)
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Figure 2. Spheroids and Orientation
Table 3: Average Correlation Coefficients for Various
Three-Dimensional Body Shapes
Body Shape Crz | Gz
Spheres 0.526 | 1.023
Bi-sphere . 0.477 | 0.928
Cube 1 0.489 | 0.951
Cube 2 0.509 | 0.990
Cube 3 0.521 | 1.014
Vertical 0.497 | 0.967
Cylinder
Cylinder at 45° 0.516 | 1.004
Horizontal 0.524 |(1.019
Cylinder C,_/ 0
Old Prolate Spheroxd 0.560 | 1.089
(AR = 1.93)
Old Oblate Spheroid | 0.522 | 1.016
(AR = 0.5)
Old Oblate Spheroid | 0.419 | 0.815
(AR = 0.1)
New Prolate Spheroid | 0.520 | 1.012
(AR = 1.93)
New Oblate Spheroid | 0.500 | 0.973
(AR = 0.5)
New Oblate Spheroid | 0.395 | 0.768
(AR =0.1)
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These empirically determined coefficients are remarkably
similar considering the variety of body shapes, their aspect
ratios and orientations. As anticipated the largest value is
associated with the prolate spheroid which is a streamlined
body and the smallest value is associated with the thin oblate
spheroid which is a blunt body. The prolate coefficient is ap-
proximately 32% larger than the thin oblate coefficient. Ex-
cluding the thin oblate spheroid, the coefficients lie in the range
0477 < C /z < 0.560 where the lower bound corresponds to
the bi-sphere and the upper bound to the prolate spheroid.
Two sets of values of C /1 are reported for the spheroids. The
old limited spheroid data (6] and the new, more precise data
[22] applicable over a wider range of Ra were used to gen-
erate the C -z values in Table 3. The less precise Nu data
(approximately 4.5% higher) produced coefficients which are
approximately 4% higher; the new values are recommended.
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The first set designated as old was obtained for the data of
Raithby et al [6] and the second set designated as new was
obtained from the more precise and extensive data of Hassani
[22] using the bodies of reference [6]. The higher precision in
the new data is due to better estimates of the body specific
heat and emissivity as well as a significant reduction in the
lead wire, thermocouple and support wire conduction losses.
An examination of the cube coefficients shows that they lie in
the range 0.489 < Cz <£0.521, and there is only 2 6.5% differ-
ence between the minimum and maximum values correspond-
ing to orientations 1 and 3 respectively. At Ra\/x =10 x 107
the difference in the Nusselt number for these orientation ex-
tremes is approximately 5.4%. Sparrow and Stretton (9] re-
ported orientation-related variations in the Nusselt number to
be in the 2—5% range for air and 10—12% range for water. The
goeﬁicients for the short cylinder of unity aspect ratio lia.in.the .
range 0497 < C 5 < 0.524, and there is only a 5.4% difference
between the minimum. and maximum valuss corresponding to
E‘}}_gh vertical and horizontal orientazions, The Sparrow-Ansari
vertical cylinder data (7] in the range 3x 10® < Rap < 1.3x 10°
(3.1x10* < Ra sz < 1.4 x 10°) are in good agreement with the
data in Figure 8. The Sparrow-Ansari correlation equation is
based on Eq. (1) and a least-squares fit of the data; they found
C = 0.775 and m = 0.208. Their correlation equation converts
to Nuz = 1.037Ra?/2£8 which is valid in the narrow range
of Rayleigh number 1.4 x 10° < Ra 5 < 1.3 x 10%, and they .
reported no difference between the data and the prediction. A
comparison of the predictions of the converted Sparrow-Ansari
correlation equation with the data shown in Figure 8 over the
applicable Rayleigh number range shows the data to lie ap-
proximately 3.6 — 6.2% above the predictions indicating very
good agreement between the two sets of data. It can also be
seen that the choice of £ =D and m = 0.208 in Eq. (1) has a
significant effect on the value of C." '

When the coefficients for the cube and the short cylinder
are compared at comparable orientations, for example cube 1
and the vertical cylinder, the difference between the coefficients
is less than 1%. Comparing cube 2 and the 45° cylinder one
finds a difference of approximately 1.4%, and for cube 3 and
the horizontal cylinder the difference is approximately 0.6%.

An examination of the C\/j values in Table 3 for the sphere,
the new prolate spheroid, the horizontal cylinder, and the corner-
over-corner cube shows a maximum difference of 1%. A value
of 0.523 would accurately predict the Nusselt number for these
steamlined body shapes with aspect ratios between 1 and v/3,
and having different orientations. The thick oblate spheroid
(AR = 0.5) and the vertical cylinder have correlation coeffi-
cients which differ by 1% and they lie approximately 5% below
the sphere, etc. These bodies can be considered to be semi-
blunt bodies. )

The correlation coefficients for the cube 2 and the 45° cylin-
der lie very close to the arithmetic average of the streamlined
and sems-blunt bodies.

The laminar boundary layer coefficients were used in the
correlation equation and the predictions are compared with
the data in the figures where it can be seen that agreement is
excellent for all body shapes, aspect ratios, and orientations
over the full range of Ra. The RMS percent difference be-
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Table 4: Comparison of Simple Correlation with Air Data and
Other Correlations

RMS Percent Difference
Body Shape AR {R-H | H-H MMY
Spheres 1 |0.841|3.67 0.92
Bi-sphere 2 | 3.63|2.26 2.38
Prolate Spheroid 1.93 | 1.90 | 3.56 1.83
Oblate Spheroid 0.50 | 3.75 | 4.09 2.60
Oblate Spheroid 0.106.90 | - 2.34
Cube 1 1 |6.16}5.62 3.13
Cube 2 V2 |5.20 {345 3.93
Cube 3 V3 | 4.08]2.89 4.80
Vertical Cylinder 1 - |27 3.70
Cylinder at 45° V2 - 13.70 4.96
Horizontal Cylinder | 1 - | 2.06 3.56

tween the data and the corresponding predictions for all body
shapes are given in Table 4. The largest differences of 4.80%
and 4.96% occur for cube 3 and the 45° cylinder. The data and
the predictions for these two cases are shown in Figures 7 and
10 respectively where it can be seen that the correlation equa-
tions overpredict the data at the lower Rayleigh numbers and
imnderpredict the data at the higher Rayleigh numbers. The
cube 3 data are approximately 5.7% below the predictions and
approximately 5.9% above the predictions at the low and high
Rayleigh numbers respectively where there is also slightly more
scatter in the data. For the 45° cylinder there are 4 data points
which lie more than 10% below the predictions while all other
data points in the neighborhood of these points are only 6%
below the predictions. These data points at the low Rayleigh
number are clearly seen in Figure 10. At high Rayleigh num-
bers the data are approximately 5% above the predictions.

The best agreement between the data and the correlation
equation occurs with the sphere where the RMS percent dif-
ference is less than 1%. The coefficient based on the air data
of Chamberlain [8] is approximately 6.3% larger than the co-
efficient reported by Yuge [4]. For all other body shapes the
RMS percent difference is less than 4%. The RMS percent
differences between the data and the predictions of the more
complex correlation equations of Raithby-Hollands {12] and
Hassani-Hollands {18] are also given in Table 4. Overall the
RMS percent differences of the simple correlation equation are
as small or smaller than those of the more complex correla-
tion equations of Raithby-Hollands [6] and Hassani-Hollands
[18] which purportedly account for turbulence effects at high
Rayleigh number.

An examination of Tables 2 and 3 suggests that approx-
imations of C, 7 can be developed. For the sphere, prolate
spheroid (AR = 1.93), oblate spheroid (AR = 0.50) and the
bi-sphere we have

Cyz = Nu%z—3 (22)
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The coefficients for the oblate spheroid (AR = 0.1) and the
cube can be approximated by

(AR - 1)

10 (23)

Cra= [1+ ] (Nu‘:,"-x—z.g)
where AR(0.1 < AR < v/3) is the nominal aspect ratio given
in Table 4.

When correlation coefficients determined by the above equa-
tions are used in Eq. (9), one finds natural convection from
the spheres, bi-sphere, oblate and prolate spheroids, and the
cubes can be predicted to an RMS percent difference of ap-
proximately 8%. A general expression based on the average
values of N ":’77\_ and C sz

Nu g =3.470 + 0.510Raf/’§

(24)
is recommended for “rough”estimates of free convection from
isothermal, three-dimensional bodies of complex shape for 0 <
Ra.\/; < 108.

Conclusions

A simple, but accurate, correlation equation is developed
for isothermal three-dimensional bodies of complex shape, as-
pect ratio and orientation. The linear superposition of the
diffusive and the boundary layer limits for the the prediction
of the Nusselt is supported by very good agreement between
the theory and air data over the full range of Rayleigh number,
body shapes, aspect ratios and orientation.

The contribution of the diffusive limit to the total Nusselt
number is significant in the laminar boundary layer regime.
For example, at Ra z = 10%, the diffusive limit contributes
40.7% and 45.8% to the total for the prolate and thin oblate
spheroids. At Ra sz = 108, the fraction falls to 6.4% and 7.8%
respectively.

The characteristic length based upon the square root of
the total surface area appears to be an appropriate length for
correlating natural convection from complex bodies.

The effect of shape on the correlation coefficient is of the
order of 5% when bodies of similar aspect ratios are compared,
for example, the sphere, cube and short cylinder. The effect
of aspect ratio is of the order of 4% provided 0.5 < AR < 2.
The effect of body orientation was found to be relatively small

when similar bodies are compared, for example, the cube and

short cylinder.
Simple equations are presented for estimating the single
semiempirical parameter with acceptable accuracy.
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