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Simplified Solutions to Circular Annular Fins 
with Contact Resistance and End Cooling 

M. M. Yovanovich,* J. R. Culham,? and T. F. LemczykS 
University of Waterloo, Waterloo, Ontario, Canada 

One- and two-dimensional solutions are obtained for circular annular fins of constant cross-section having 
uniform base, end, and side conductances. The solutions are dependent upon one geometric parameter and three 
fin parameters which relate the internal conductive resistance to the three boundary resistances. The two and 
one-dimensional solutions are compared by means of their fin efficiency ratios. For fins used in typical 
microelectronic applications, the analytical expressions are also reduced to simple polynomial expressions which 
converge to unity for large values of the arguments. Numerical computations were performed on an IBM-PC 
and some typical results are reported in graphical form. These plots give the heat loss ratio as a function of the 
dimensionless geometric and fin parameters. 

Nomenclature 
An = Fourier temperature coefficients, Eq. (8) 
U = fin inner radius 
Bn = Fourier heat flow rate coefficients, Eq. (15) 
Si, Bit, Si, = Biot numbers 
b = fin outer radius 
h, h ,  he = side, contact and end conductances 
Io( . ), I ] (  . ) = modified Bessel functions of first kind, order 

KO( . ), K,( - ) = modified Bessel functions of second kind, 
zero and one 

order zero and one 
= thermal conductivity 
= one-dimensional fin parameter, m = 6 
= polynomials used in Eq. (44) 
= total heat flow rate 
= parameter defined by Eq. (46) 
= cylindrical coordinate 
= fin temperature 
= fin half-thickness 
= polynomials defined by Eq. (44) 
= cylindrical coordinate 
= relative inner radius ( u / t )  
= relative outer radius ( b / t )  
= function defined by Eq. (9) 
= eigenvalues, roots of Eq. (11) 
= relative position ( z / t )  
= fin efficiency 
= temperature excess, (T-T,) 
= fin efficiencies ratio = v2/q1 
= arbitrary order of modified Bessel functions 
= relative position ( r / t )  
= function defined by Eq. (10) 
= dimensionless temperature excess, (e/&,) 
= function defined by Eq. (31) 
= pi 

= base condition 
= contact condition 
= end condition 
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I = ideal condition 
n 
00 = ambient condition 
1 = one-dimensional fin 
2 = two-dimensional fin 

Introduction 
IRCULAR annular fins are used extensively in heat C exchange devices to increase the heat transfer rate from a 

heat source for a given temperature difference or to decrease 
the temperature difference between the heat source and the 
heat sink for a given heat flow rate. Interest in the use of fins 
is found in many fields of thermal engineering, such as air 
conditioning, heat-exchangers and microelectronics where, 
using extended surfaces, thermal analysts have succeeded in 
designing more compact and efficient heat transfer systems. 

When fins are added to a surface in contact with a fluid as 
shown in Fig. 1 ,  a number of factors must be considered: the 
additional resistance due to the mechanical contact between 
the fin base and the previously exposed surface, the conduc- 
tive resistance to heat flow within the fin itself, and the 
resistance to heat flow through the convective film of the 
surrounding fluid. 

Several solutions to the problem of steady conduction 
within an annular fin of constant thickness have been 

These solutions are based upon the assumption 
of one-dimensional conduction in the radial direction, perfect 
contact at the fin base, and either insulated and/or some 
approximation to account for end cooling. The two-dimen- 
sional solution in which the temperature depends upon the 
thickness direction as well as the radius direction was obtained 
for the case of an isothermal fin base and some end ~ o o l i n g . ~  
The fin efficiency was determined and reported in graphical 
form versus a design parameter group, which included the 
inner and outer fin radii, the total fin thickness, its thermal 
conductivity, and the film coefficient. The film coefficient was 
assumed to be uniform and of the same magnitude over the 
sides and the end. The other geometric parameter employed in 
the plots was the fin height to thickness ratio. The two-dimen- 
sional results were compared with the one-dimensional results 
for a range of fin height to thickness ratios. It was observed 
that the one-dimensional results were accurate when the height 
to thickness ratio is of the order of 10 or greater, and the 
two-dimensional results for rectangular fins are useful as 
approximations to annular fins when fin curvature is not 
large. With height to thickness ratios less than 10 and for 
annular fins with large curvature, the full two-dimensional 
solution must be employed. 

One objective of this paper is to obtain general, one and 
two-dimensional solutions for circular annular fins of con- 

= order of term (n = 1,2,3, ...) 
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Fig. 1 Heat sink for a microelectronic chip. 

stant thickness with boundary conditions of the third kind 
(Robin condition) applied to the fin base, sides and end. The 
film coefficients along the fin sides and end are assumed to be 
uniform and different. The contact conductance at the fin 
base will also be uniform. These assumptions will introduce 
three dimensionless parameters called Biot numbers that 
characterize the relative magnitudes of the fin conductive 
resistance to the base, sides, and end film resistance. 

A second objective is to compare the two and one-dimen- 
sional heat flow rates for a range of the pertinent Biot 
numbers and fin aspect ratio, which is defined as the ratio of 
the fin outer to inner radius. This study will show that the 
simpler one-dimensional solution can be used over a rather 
wide range of the fin parameters with an acceptable error. 

A third objective of this study is to demonstrate how the 
relatively complex special functions which appear in the two 
solutions can be computed with great accuracy and ease on an 
IBM-PC without requiring special mathematical software. 

Problem Statements and Solutions 
Two-Dimensional Solution 

Steady-state conduction with an isotropic, circular annular 
fin and in the absence of internal heat sources must satisfy the 
two-dimensional Laplace equation, which in cylindrical coor- 
dinates has the form 

Because of symmetry of the boundary conditions of the third 
kind which are imposed over the fin base, sides and end, we 
can write the following conditions for the temperature excess 
e(r, z )  = T ( r ,  z )  - T,: 

ae 
az 

z = O , a s r s b ,  - = O  

ae h 
az k 

z = t, a 5 r s b ,  - = - - e  

The first equation represents the symmetry condition along 
the mid-plane, the second equation represents the side cooling 
through a uniform film coefficient h ,  the third equation 
represents the base contact condition with a uniform base 
temperature excess ob and uniform contact conductance h,, 
and the last equation represents the end cooling condition 
through a uniform film coefficient he. The sink temperature 
T, is assumed to be constant over the entire fin surface. The 

boundary conditions as well as the geometry of the problem 
are shown in Fig. 2. 

For convenience, and to simplify the two-dimensional 
analysis, the fin half-thickness t is chosen to be the character- 
istic dimension in the geometry and the boundary conditions. 
Introducing the dimensionless parameters 

and the dimensionless Biot numbers 

Bi = h t / k  (44  

Si, = h,t / k  (4b) 

Si, = h,t / k  (44 

Laplace's equation and the boundary conditions become 

p = p ,  o s r 5 1 ,  -=  a* ap -(Bi,$) 

where we have introduced the dimensionless excess tempera- 
ture IC. = O/O,. 

Two-Dimensional Solution and Heat Flow Rate 
The two-dimensional temperature distribution which satis- 

fies the dimensionless Laplace's equation, Eq. ( S ) ,  and the 
dimensionless boundary conditions, Eqs. (6a-6d), can be 
obtained by a straightforward application of the separation of 
variables method. The interested reader is referred to the 
conduction texts by Ozisik6 and Mikhailov and Ozisik7 for the 
details of this method. 

The solution is 

The parameters A, , y ,  and 6, which appear in Eq. (7) are 
defined below: 

2 sin (6,) 
6, + sin(6,) cos(&) 

A ,  = 
2 sin (6,) 

6, + sin(6,) cos(&) 
A ,  = 

I i 

Fig. 2 Fin model. 
I I  
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two-dimensional solution to the fin parameters Bit, Si, ,  CY, 

and R. 
When the internal conductive resistance to the external film 

(10) resistance becomes very small, Le., Bi- 0,  the general 
two-dimensional solution can be approximated by the leading 
term of EW. (7)  and (14). When Bi is sufficiently small the 

- [$11(6na)J 

The functions which appear in the solution are the modified 
Bessel functions of the first and second kinds of order zero 
and unity. 

can be approximated by 

(19) 
A ,  
91 

The additional parameter which appears in the solution is 
6,, which is the set of roots of the transcendental equation,6,8 

$4, n =- [Io(61P) + YlKO(61P)J COS(~l i - )  

6, sin(&) = Bi cos(6,) ( 1 1 )  with 

The roots of Eq. ( 1 1 )  depend upon the magnitude of the 
parameter Bi ,  which represents the boundary condition along 
the fin sides. This parameter also represents the relative 
magnitude of the internal fin conductive resistance to the 
external film resistance. In theory its magnitude can range 
between zero and infinity. The first six roots of Eq. ( 1 1 )  are 
given in Carslaw and Jaeger8 for a wide range of Bi where it is 
seen that for O<Bi < 03, in general, (n - 1)r<6, <(2n - l)r/ 
2, n = 1,2, .... However, for applications of the analysis to fins 
of interest to the microelectronics industry, the magnitude of 
Bi will be small because the fins are thin and made of high 
conductivity metal. The film coefficient will also be relatively 
shall when air cooling is present. It will be shown later how 6, 
can be computed approximately by direct methods for an 
important range of Bi .  

Total Heat Flow Rate 
The heat flow rate through the circular annular fin is of 

primary interest and can be determined at the fin base when 
using Fourier's law of conduction, where we have 

Q = - 4rka s t  - k2ra-dz 
0 ar 

in dimensional form, or 

2 sin(6,) 
6 ,  + sin(&) cos(6,) 

A ,  = 

and the parameter 6 ,  which is the first root of Eq. ( 1  1 )  can be 
approximated by9 

61 = {A[ 1 - A2/45])' (23) 

where 

A = 3Bi/(3 + Bi)  ( 2 4  

with an error less than .09% provided Bi 1 2 .  In the limit of 
Bi- 0,  hI-&. 

The two-dimensional solution for the total heat flow rate, 
Eq. (14), can be approximated by the leading term when 
Bi < < 1 ;  therefore, 

in dimensionless form. Substitution of Eq. (7) into Eq. ( 1 3 )  
gives 

and B l  = A ,  sin(6,). 

( 1 4 )  One-Dimeisional Solution 
Bn Q = -4rkta0b C - [ ~ I ( ~ ~ ~ ) - Y J K , ( ~ ~ Q ! ) I  

n = 1 9 n  
The one-dimensional formulation of the circular annular fin 

assumes that the temperature excess depends upon the radial 
coordinate only because Bi < < 1 .  For this problem the 
governing equation is the second order ordinary differential 
equation:I0 

where the new parameter B, is 

B, = A ,  sin(&) ( 1 5 )  

(26) Limiting Values of the Two-Dimensional Solution --dp 1 d [ p j - J - m 2 + = 0  a$ C y s p s ~  
The general two-dimensional solution reduces to the solu- 

tions obtained by other investigators. If perfect contact is 
assumed at the fin base, then Si,  - 03 and the parameter +,, , 
Eq. ( l o ) ,  reduces to: 

where the fin parameter m 2  = Bi = 6: of the two-dimensional 
solution. The base and end boundary conditions are 

p = CY, a$/aP = - Bi,[l - $1 (27) 9, = Id6n 01) + Y&o(6n a )  (16) 

If the fin end is assumed to be insulated, then Si, -0 and the 
parameter Y,, Eq. (9) ,  reduces to 

p = p, a+/aP = - Bie$ 

( 1 7 )  The solution of Eq. (26) islo 

On the other hand, if the film resistance at the fin end is 
assumed to be negligible, then Si, - 03 and yn reduces to 

Y n  = - ZO(6n P)/KO@n P )  (1 8) 
and the gradient of $ is 

These limiting expressions are important when parametric 
studies are performed to examine the sensitivity of the a$ /ap  = mC,I,(mp) - mC,K,(mp) 
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The constants C, and C, are determined by the boundary 
conditions, Eqs. (27) and (28). The condition at the fin end 
gives 

( 3 1 )  
- 2 - mZ,(mP) + BiJo(mP) 

c, mK,(m P )  - BieKo(m P )  

The condition at the fin base gives 

1 mil m 
-=  Zo(mcr) + milK0(ma) + -Kl (ma)  --Z,(ma) CI Si, Sic 

The above general relationships reduce to the following special 
cases: For an insulated fin end, Si, = 0, we find 

(33)  

For an infinitely long fin b / a  - 03 or Si, - 03; or for negligible 
end film resistance on a finite fin Si, = 03; therefore, 

(34) 

When there is perfect contact at the fin base, Si, - 03 and 

- Zo(m C Y )  + m ilKo(m CY)  (35)  
1 _ -  

CI 

Total Heat Flow Rate 

Fourier's law of conduction at the fin base, where 
The total heat flow rate can be determined by application of 

Q = - [4?rkaOba+(a)/ap] (37) 

and with Eqs. (30) and (31), Eq. (37) becomes 

Q = - [ 4?rk tObm~C, [ I , (m~)  - QK,(ma)l)  ( 3 8 )  

where C, in general is determined by Eq. (32). 

Comparison of One and Two-Dimensional Solutions 
The one-dimensional solution is obviously simpler than the 

two-dimensional solution, which in general consists of a 
summation of two or more terms each consisting of the 
modified Bessel functions Io, Z,, KO, and K , .  These functions 
require special attention, particularly when found in ratios. 

For one-dimensional fins it is customary to use a fin 
efficiency, defined as the ratio of the actual heat flow rate 
divided by the ideal heat flow rate, which in the circular 
annular fin case is 

Qj = 2n(b2 - a2)h0, + 4~bth,Ob (39) 

This expression can be put into a form which is more 
convenient for subsequent comparison and analysis. By 
introducing Si and Si, into Eq. (39), it becomes 

Q j  = 2?rktOb[(p2 - a2)Bi + 2PSi,] (40) 

The one-dimensional fin efficiency is defined as 

and the two-dimensional fin efficiency is similarly defined to 
be 

Obviously the ratio of the fin efficiencies is equal to the heat 
flow rate ratio: Bn C [Z1(6nCY) - Y s I ( ~ , ~ ) I  

(43) A = - 02 = - Q2 = 

Q 1  [Z,(&a) - yK,(&a)] 
01 

4 
where y and 4 are defined by Eqs. (9) and ( lo) ,  respectively, 
and yn is replaced by &. This ratio A will be examined in 
greater detail in a subsequent section. 

From the limiting values reported earlier, it can be seen that 
as Si -0, the summation in the numerator of Eq. (43) goes to 
the leading term, which finally approaches the denominator, 
so that the ratio A approaches unity. When the ratio is close to 
unity, the one-dimensional solution can be used to approxi- 
mate the two-dimensional solution. This ratio will be exam- 
ined as a function of the parameters Si, Si,, Si,, and P/a. 

Simplification of Analytical Results 
The analytical results for the one and two-dimensional fins 

can be simplified considerably when typical fins used in 
microelectronics are considered. Most circular annular fins 
are designed to have P > C Y  5 10; therefore, the arguments of 
the modified Bessel functions which appear in the dimension- 
less temperature excess and heat flow rate expressions, are 
x > (n - l ) m  and y >(n - l)?rP for n z 2. With a = 10, 
the arguments for the second term of the solutions are 
y > x  > lor ,  which are considered to be large values. Asymp- 
totic expansions of Z, and K ,  can then be used to compute all 
terms after the leading term of the temperature and heat flow 
rate solutions." Thus for n L 2, the parameter y,, Eq. (9) ,  can 
be expressed as 

where the polynomials Po@), P, ( y ) ,  Wo@), and Wl@) can be 
obtained from the asymptotic expansion for the modified 
Bessel functions." For very large values of y ,  the polynomials 
in Eq. (44) are approximately one, and the expression reduces 
to 

e 2 y  6, +Si, 
Yn =-F (45) 

For either Si, = 0 or Si, = lo3, 17, I >eZoR/n = 6.2 x loz6. 
This important fact will be used to simplify for computational 
purposes. The numerator in Eq. (43) can be simplified 
considerably. It can be shown that 

can be rewritten as 

Factoring the function yn we obtain 

When y > x  = 30*, Zo(x)/y ,@) < < 1 and Z,(x) /y ,@)< < 1 ,  
therefore, Eq. (48) reduces to 

1 6, KO@) 
R2 Sic K l @ )  

- +- 

which for x > 1O?r and n z 2, reduces further to 

_ -  1 6, J+'o(x) 
R2 Sic W,(X) 

---+- 

(49) 
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The ratio Wo(x)/Wl(x) goes to unity as n increases. For 
example, when n = 2 and x = ~OT,  Wo(x)/W,(x) is approxi- 
mately 0.98 1. 

The fin efficiencies ratio A, Eq. (43), can now be expressed 
in a form which permits accurate and efficient numerical 
computations. Equation (43) can be written as 

m 

3 [ Z I ( ~ I ~ )  - ~ I K ] ( ~ I ~ ) I +  c ~ n ~ 2  41 n = 2  
(5  1) A =  e [Z,(&a) - yKl(&a)] 

Also note that when &a> loa, then by similar arguments 
we have 

4 

(52) 
Z,(&a) - yK,(&a) & - I  

4 =[Bi,+11 

Equation (51) simplifies further as Bi -0 because 6, -(n - 1 ) ~  
and the Fourier coefficients approach zero for n 2 2, and 
therefore the summation term disappears. Therefore, 

4 
- [ZI(6lff) - ylKl(~lff)l 
41 

(53) A =  e [Z,(&a) - yK,(&%a)] 

Finally, when Bi <0.2, 6, = &% and B,  = 61, the ratio A goes 
to unity. 

Discussion of Computational Results and Conclusions 
Numerous numerical computations were performed on an 

IBM-PC using the simplified expressions developed in the 
previous sections. The fin efficiencies ratio was computed for 
a wide range of the independent geometric and fin parameters. 
The end Biot number was taken to be either zero or one 
thousand, which is nearly equivalent to an infinite value. The 
contact Biot number ranged from 0.1 to 20, which is 
considered to be an upper bound corresponding to a soldered 
joint. Typical values for microelectronic applications are 
expected to lie in the 0.1 to 1 range. The side Biot number 
ranged from .001 to 5; however, it is expected that it will not 
exceed 0.5 for most microelectronic applications. The geomet- 
ric parameter is the radii ratio or P/a; it ranged from 1.1 to 5 .  
The parameter a was set to 10 for all cases. The cases reported 
here are listed in Table 1. 

It was observed that when P/ar2,  the end condition has 
negligible influence on A for all values of the other fin 
parameters. This means that the fin performance is the same 
whether the end parameter Si, is zero or infinite. On the other 
hand, it was observed that the end condition becomes very 
important when P/a approaches unity, Bi -0, and Bi,-20. It 
was observed that A is less than unity for all values of the 
geometric and fin parameters, demonstrating that the one- 
dimensional fin solution overpredicts the heat transfer rate, 
especially for large values of Bi and Si,. Figure 3 shows how 
A depends upon increasing Bi as a function of Si, for a fixed 
value of P/a = 1.2 for the two extreme end conditions. Results 
are similar for other values of P / a s 2 .  Also, one can see that 
A approaches unity for small values of Si, for all values of Bi 
when Bi, = O  or 1000. Figures 4 and 5 show A for P/a= 1.2, 

4 

Table 1 Summary of parametric studies 

Case b / a  Bi Si, Si, 

1 1.2 0-5 .I-20 0 
2 1.2 0-5 . l -20 1000 
3 1.2 0-.25 .l-20 0 
4 1.2 0-.25 .l-20 1000 
5 1.1-1.5 0-5 1 0,1000 
6 1.1-1.5 0-5 10 0,1000 

Si, = 0 or 1 0 0 0 , O .  1 5 Si, < 20, for the typical range of Bi, Le., 
O <  Bi 50.25. It is noted that the largest difference between the 
one and two-dimensional solutions occurs when Si, = 0, at 
Bi = 0.25 and Si, = 20; however, the difference is approxi- 
mately 5%. On the other hand, when Si, = 1000 the largest 
difference between the two solutions is approximately 1% at 
Bi = 0.25 and Si, = 20. 

To show clearly the effect of the geometric parameter @/a 
upon A for selected fixed values of Bi,, Si,, and the typical 
range of Bi ,  the results are given in Figs. 6 and 7. It is 
interesting to see in Fig. 6 that A increases with increasing P/a 
when Si, = 0.1 and Si, = 0, but decreases with increasing /3/a 
when Bi = 1000. It appears that /!?/a = 1.5 is approximately the 
limiting value independent of Si,. One should also note that 
the difference between the one- and two-dimensional solutions 
is less than 3% when Bi 5 5 .  

1 0  

4 
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Fig. 3 Heat loss rate ratio vs Bi: case 1. 
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Fig. 4 Heat loss rate ratio vs Bi: case 2. 
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Fig. 6 Heat loss rate ratio vs Bi: case 4. 

In Fig. 7 one observes the same trends of A with increasing 
P/CY when Bi,=lO and Si, is either zero or 1000. The 
difference between the one and two-dimensional solutions is 
much greater for this case. 

Acknowledgments 
The authors acknowledge the financial support of the 

Natural Sciences and Engineering Research Council under 
PRAI operating grant P-8322 for support under the Univer- 
sity-Industry Program. Dr. Yovanovich also acknowledges 
the support of the Natural Sciences and Engineering Research 
Council under operating grant A7455. 

References 
‘Harper, D. R. and Brown, W. B., “Mathematical Equations for 

Heat Conduction in the Fins of Air-Cooled Engines,” NACA Report 
No. 158, 1922. 

*Carrier, W. H. and Anderson, S. W., “The Resistance to Heat Flow 
Through Finned Tubing,” Heating, Piping, and Air Conditioning, 
Vol. 10, 1944, pp. 304-320. 

0 8  1 \\ . ,, . 

0.7 i 
si, = 1000 
si = 0 

0 6 / , , ,  , , , > , n , , ,  , , , ,  , , , , , , , , p n  
0 0  1 0  2 0  3 0  4 0  5 0  

BIOT NUMBER (h t /k )  

Fig. 7 Heat loss rate ratio vs Bi: case 5. 

’Murray, W. M., “Heat Dissipation Through an Annular Disk or 
Fin of Uniform Thickness,” Journal of Applied Mechanics, Vol. 5 ,  
Transactions of the American Society of Mechanical Engineers, Vol. 

4Gardner, K. A., “Efficiency of Extended Surfaces,” Transactions 
of the American Society of Mechanical Engineers, Vol. 67, 1945, pp. 

’Keller, H. H. and Somers, E. V., “Heat Transfer From an 
Annular Fin of Constant Thickness,” ASME Journal of Heat 
Transfer, Vol. 81, 1959, pp. 151-156. 

60, 1938, p. A-78. 

621-63 1. 

60zisik, M. N., “Heat Conduction,” Wiley, New York, 1980. 
’Mikhailov, M. D. and Ozisik, M. N., “Unified Analysis and 

Solutions of Heat and Mass Transfer,” Wiley, New York, 1984. 
‘Carslaw, H. S. and Jaeger, J .  C., “Conduction of Heat in Solids,” 

Oxford University Press, London, England, 1959. 
’Beck, J. V., Yovanovich, M. M., and Kula, L., “Accurate 

Algebraic Expressions for Eigenvalues for 6, tan 6, = Bi,” Transac- 
tions of the CSME (submitted for publication). 

“Kern, D. Q. and Kraus, A. D., “Extended Surface Heat 
Transfer,” McGraw-Hill, New York, 1972. 

“Abramowitz, M. and Stegun, I., “Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables,” 
National Bureau of Standards, Dover, New York, 1965. 


