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Abstract-Analytical thermal contact analysis in the past has largely been restricted to idealized boundary 
conditions on the contact surface. Recently, Gladwell et al. (Q. J. Mech. Appl. Math. 36(3), 387-401 
(1983)) have outlined the efficient evaluation of the resulting integro-differential equation for four basic 
axisymmetric problems with uniform convective boundary conditions. This paper outlines in non- 
dimensional form, the variation of the thermal constriction resistance with Biot number for four mixed 
problem types on a homogeneous half-space. In addition, the thermal analysis is extended to include non- 
uniform flux and non-uniform convective conditions. In each case, the constriction resistance is given as a 

compact expression. and for several cases accurate but simpler correlations are presented. 

1. INTRODUCTION 

AN AXISYMMETRIC boundary-value problem occurs 
in the classical theory of thermoelasticity when an 
axisymmetric heated punch, which may be circular or 
annular, flat or curved, contacts an elastic half-space. 
The uncoupled thermal problem is largely concerned 
with establishing the temperature field in the contact 
zone, satisfying the surface boundary conditions. 
Having determined the temperature field, one may 
proceed as required to evaluate stresses and dis- 
placements for the dependent elastic problem, as dis- 
cussed in ref. [ 11. 

The mathematical problem is not new, and has been 
studied exhaustively in the older literature [2]. For 
definitive treatments, see Sneddon [3], Lowengrub and 
Sneddon [4], Collins [5] and Sneddon [6]. However, 
when the surface boundary conditions are of a mixed 
Robin (convective) type, the resulting sets of integral 
equations have largely been solved numerically, as 
discussed by Poddubny [7], Kuz’min [8], Pavlovskii 
[9] and Linz [lo]. These numerical techniques include 
the finite element [l 11, finite difference, and boundary 
element methods, and more recently, the method of 
moments in ref. [ 121. Negus and Yovanovich [ 131 used 
the method of optimized images to examine three- 
dimensional conduction problems for arbitrary con- 
tacts on arbitrary flux tubes, however, with Dirichlet 
and Neumann boundary conditions only. Huang [ 141 
looked at several two-dimensional, transient problems 
using the Weiner-Hopf technique. 

Several recent investigations [ 15-171, have shown 
that application of orthogonal polynomials to mixed 
boundary-value problems in elasticity, yields useful 

and simple solutions. Gladwell et al. [18] showed 
hence that axisymmetric thermal problems with con- 
vective boundary conditions could be reduced to a 
linear, infinite set of algebraic equations. Extending 
this analytical integral transform procedure to include 
non-uniform convection coefficients and non-uniform 
flux distributions, this work is an extensive examin- 
ation on the behaviour of the thermal constriction 
resistance of circular contacts on a homogeneous half- 
space. This thereby extends the study of thermal con- 
striction resistance, as studied in ref. [19], to include 
convective boundary conditions. In the sequel Part 2, 
similar extensive examination is conducted for con- 
tacts on a layered half-space. 

2. PROBLEM STATEMENT 

Steady-state heat conduction from a circular con- 
tact to an isotropic half-space is governed by Laplace’s 
harmonic equation for the medium 

v20 = 0 (1) 

where 0 is the temperature excess field (T- T,). This 
harmonic field may be denoted, in non-dimensional 
circular cylinder coordinates (p = r/a, t: = z/a, 

a = contact radius), by using the Hankel integral 
transform 

@(pa0 = ~E”,[5-‘A(r)exp(-51);P1 (2) 

suitable only for the half-space formulation. The four 
types of mixed convective boundary-value problems 
to be studied as in ref. [ 181, are outlined as follows, in 
non-dimensional form : 
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NOMENCLATURE 

a contact radius dimension r radial coordinate 

a, Fourier series expansion coefficient and R, thermal constriction resistance 
solution vector T, T, system temperature, reference 

A standard system matrix temperature 

A(5) Hankel transformed temperature u Heaviside unit step function 
function a, Legendre series expansion coefficient 

b,, bl, Fourier series expansion coefficients W Legendre polynomial argument, 2p2 - 1 
B coefficient matrix in external convection X Fourier transformed coordinate 

problems z depth coordinate. 
C non-uniform flux and convection 

distribution parameter 
CI....>Cj correlation parameters Greek symbols 
c,, d,,, Legendre series expansion coefficients &I, 8” Fourier series expansion coefficients 
d non-uniform flux and convection 6 n,O delta function, equals unity only for 

distribution parameter n=O 

f9X) 

symmetric coefficient matrix CC dimensionless depth coordinate, z/a 
Fourier transform function 0, O,, Oo, Ob temperature excess, mean 

f fFI+n Fourier series coefficient contact temperature excess, specified 
P symmetric coefficient matrix base and contact temperature 

gn Legendre series expansion coefficient excesses 
and vector 034 angular coordinate transformations 

h, h ,, h, convection coefficients K v general integers 
h lP+ll Fourier series coefficient 5 transformed radial coordinate 
Hi, H,, H2 dimensionless Biot numbers, 71 constant, 3.14159265.. . 

h,& 
I identity matrix & 

dimensionless radial coordinate, r/a 
dimensionless constriction factor, 

k thermal conductivity 4akR,. 

km, L Legendre series coefficients, c, - e,, 

cm-4n 
m, n integer constants Other symbols 

nT truncation value of system of equations d ,, d92 Abel integral operator transforms 
N diagonal coefficient matrix a partial derivative operation 

P” Legendre polynomial of degree n FC, 9s Fourier cosine and sine transform 
y(p), qo(p), q. heat flux functions, uniform operators 

heat flux x”, Hankel transform of order v 
Q, Q* total heat flux through contact, total V Laplacian operator in cylindrical polar 

flux, Q/ak coordinates. 

(9 ao 
ai -H,(p)@ = 0, p > 1 (8) 

ao 
--H,(p)@ = -H,(p)@,, p -=I 1 
ai 

(3) 
(iv) 

(ii) 

ao 

‘5=O’ p” (4) 
o=oo. p<l (9) 

g-H&)O=O, p> I. (IO) 

ao 
ai -H,(p)@ = -H,(p)@,, p < 1 (5) We note that H, and H2 are the dimensionless Biot 

numbers, h,a/k, corresponding to axisymmetric dis- 
o=o, p>l (6) tributions in the internal (p < 1) and external (p > 1) 

(iii) 
regions, respectively. The dimensional flux go(p), is 
defined as q(p)a/k. 0, and O. are respectively the 

a63 
-= specified base and contact temperature excesses. The 

ai 
-_qoCP). P < 1 (7) systems to be studied are illustrated in Fig. 1. 
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The thermal constriction resistance of the circular 
contact spot on the half-space [20] is defined as 

(11) 

where the mean contact temperature rise a,, and total 
heat flux over the contact, Q, are defined in dimen- 
sional and non-dimensional coordinates as 

(12) 

= 2 
s 

’ O(p, 0)p dp 
0 

(13) 

Q=- 
‘l ao(r,o) s (14) 

0 

aZ2nrdr 

= -2nka 
s 

’ WP,OJ 
---pdp. 

ai 0 
(15) 

In Cases (iii) and (iv), one of these quantities is easily 
evaluated, that is 

(iv) * Q, = O. . 

r 

(16) 

(17) 

a8 p’ + $’ - 00 

b) 
FIG. 1. Half-space contacts with convective boundaries. 

Finally, we define the dimensionless thermal con- 
striction resistance factor 

T, = 4akR,. (18) 

Equations (3 j(I0) are problem sets of dual integral 
equations when posed using Hankel transforms. They 
may be reduced to a single integro-differential equa- 
tion as discussed in ref. [ 181, by employing appropriate 
Abel and Fourier transform relations. The integro- 
differential equation may then be reduced to an in- 
finite linear set of algebraic equations by employ- 
ing suitable Fourier expansions. 

3. LIMITING SOLUTIONS 

In order to validate asymptoti~lly the solutions 
when H, or Hz approach zero (insulated condition) 
or approach infinity (isothermal condition), it is 
important to summarize the limiting cases that are 
necessary. 

Reference [ 191 has previously dete~ined that when 
the external boundary is insulated, the evaluation of 
thermal constriction resistance for isothermal and 
constant flux (isojlux) contacts, is straightforward, 
using the Hankel representation (2). In addition, three 
other cases are shown in Table 1, including the two 
limiting problems for a symmetric contact flux dis- 
tribution of the parabolic form 

qo@) = qo(cp2+d). (19) 

We note that Cases (iv) and (v) from Table 1, represent 
bounds on the thermal constriction resistance of a 
symmetric flux contact (19) with a un@rm external 
Biot number H,. They respectively represent the upper 
and lower bounds on the constriction resistance as 
H,-+Oand Hz+ oo. 

4. PROBLEMS WITH A UNIFORM 

HEAT TRANSFER COEFFICIENT 

By assuming a uniform convection coefficient on 
the contact zone or external region, the four basic 
problems in equations (3~(10) may be reduced to the 
same infinite linear set of equations. Thus for clarity, 
we outline here the problem with a uniform contact 
conductance with external insulation, as defined in 
equations (3) and (4). In Hankel operator form, the 
dual integral equations become 

~o[A(r);Pl+H,~o[,r-‘A(5);pl= ffl@b, p < 1 
(20) 

~OMO ; PI = 0, P > 1 (21) 

where H, and Ob are uniform values. Condition (21) 
necessitates that we may represent 

F&f(O;ZX] = (~7r>“‘f(x)U(1-X) (22) 

using the Abel operator Jaz, [18]. U is the Heaviside 
unit function, defined here as unity for x < 1 and zero 
for x > 1. With this representation, we may reduce 
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Table 1. Summary of limiting cases 

Boundary conditions on surface Mean contact 
i=o temperature, Total heat flux, Constriction factor, 

P<l P>l %C Q* = Q/ak 4&/Q* 

“40 
32 - 
3nZ 

4 ao ai = -q&l) 

5 ao 
x= --4csP) o=o z(Zcf5d) 

the dual equations (20) and (21) to the single Abel- 
type integro-differential equation 

1 d 

s 

’ xf(x)dx --- 
pdp ‘, (x2-~‘)‘~= 

+HI -p- -H,@,. (23) 

Integro-differential equations such as equation (23) 
have been exhaustively studied through the years by 
numerous researchers. They basically require some 
approximation to the functionf(x) and suitable selec- 
tion of collocation points to ensure convergence. An 
excellent discussion of various procedures is given by 
Ioakimidis and Theocaris 1211, who have summarized 
an excellent methodology based on Chebyshev series 
approximations forf(x). It should be noted that equa- 
tion (23) may also be represented as a Fredholm in- 
tegral equation of the second kind, for which numer- 
ous solution procedures exist, as noted in earlier 
work 1221. 

We note however, from refs. [l&23], by using two 
simultaneous Fourier expansions forf(x), that is 

f(x) = F(B) = f a, sin (2n + I)@ 0 < 0 < n/2 
n=O 

(24) 

sin6F(@ = jJ b,sin(2n+l)O, 0 <e < n/2 (25) 
n=O 

and with the transformations x = cos 6, p = cos 4, 
then we may obtain (after employing Legendre poly- 
nomial expansions) the system 

a,+H,(2n+l)-‘b” = -9.; n = 0,1,2 )... (26) 

The b, are related to the a, through the theory of 
Fourier series as 

(27) 

where the d,,,,a are integral functions of m and n, and 
as noted in ref. [18], they may be reduced in this 

case to closed form expressions. Furthermore, the 
remaining problems defined by equations (5)-( lo), 
may also be reduced to the same infinite set (26), which 
satisfies regularity conditions [24], and therefore may 
be approximated by truncation. Further detaiIs on 
the derivation of the half-space integro-differential 
equations, may be found in refs. [ 18,25]. In summary, 
the four problems with uniform Biot numbers Hi, may 
all be reduced to the matrix system 

~[~+~,[~][~I~~~ =9” (28) 

which may be solved quite easily for the a,, and the 
accuracy of the solution will depend on the truncation 
value nT used. The matrix equations for each system 
are summarized in the Appendix. 

The necessary quantities of mean contact tem- 
perature and total heat flux through the contact (equa- 
tions (12) and (14)) may be easily expressed in terms 
of the solution vector a, in equation (28) as found in 
ref. [25]. For the imperfect contact problems with 
uniform contact conductance, we may also express 0, 
in terms of Q, by multiplying the contact boundary 
equation by p and integrating from p = 0 to 1. Thus, 
we may find 

O,=ob_& (29) 
f 

where 

Q* = Q/ak. 

We now summarize the solution quantities for the 
four basic problems. For the imperfect contacts with 
uniform Biot number HI, the mean contact tem- 
perature is given by equation (29), and the total heat 
flux Q* is denoted by 

Q* -_ ;a0 (30) 

where a, is the first solution entry of equation (28). 
Thus for both problems defined by equations (3~(6), 
we obtain 



Thermal constriction resistance with convective boundary conditions-l 1865 

Y, =4($&J. (31) 

For the third basic problem, with a uniform fiux qO 
over the contact, and uniform external Biot number 
Hz, we have 

x Z-4 
{ c 

1 I 
1-3+5-“.+ 

(-I)“_’ 
2n-1 )I 

+A (32) 
I 

Q* = xq,, YC = 4&J&j*. (33) 

Finally, for an isothermal contact with uniform 
external Biot number H,, we get 

(34) 

In addition, we must consider the problems defined 
by equations (7) and (8) when q&p) takes on the form 
of equation (19). In this case, the entries of the g, in 
equation (26) are slightly modified from the form 
they have in ref. [18]. These are summarized in the 
Appendix, and upon solving the matrix equation, we 
may obtain 

where S,, is the series term defined previously in equa- 
tion (32). 

5. NON-UNIFORM CONDUCTANCE/ 
CONVECTION COEFFICIENTS 

By introducing a non-uniform convection or contact 
conductance coefficient into the basic problems out- 
lined in the previous section, improved insights can be 
gained in the study of thermal constriction resistance. 
Since thermal contact conductance has been found 
in experimental work [26] to depend on the contact 
pressure, a variable coefficient would more accurately 
represent the variable pressure distribution which 
occurs depending upon punch geometry. Addition- 
ally, it could account for variable surface parameters 
such as asperity roughness, over the contact radius. 
Similarly, a variable external convection coefficient 
more accurately represents the fluid flow model out- 
side the contact, since it is disrupted by the presence 
of the punch, and therefore can only be non-uniform. 

First, for a non-unifo~ contact conductance, we 
choose the symmetric form 

h(P) = h1(cp2+6) (36) 

with c and d defined analogously as for the variable 

flux contact discussed earlier. In the following, we will 
therefore work with a redejned internal Biot number, 
defmed as 

ff ,!Y 
L k ’ (37) 

Now, the integro-differential equation (23), expressed 
in terms of a series of Legendre polynomials becomes 

+H,(cp2+d) t b,P,(2p2-1) 
“=O 

= 2 (~+l)g~~~(2~2-l) (38) 
n-0 

where the argument of P, is w = 2p2- 1. 
The Legendre polynomials satisfy the well-known 

recurrence relation (8.914.1 in ref. [271) 

(~+l)~~+~(w) = (2n+l)w~~(w)-OPT-,(w), 

n=1,2,3,... (39) 

Using this, we may suitably approximate the non- 
linear component in equation (38) by 

w f b,P,(W) = f biP,(w) (40) 
n=O n-0 

where 

b’,, = :b, (41) 

b; = &b+,+&$b”+,; n = 1,2,3,. . , 

(42) 

Substituting into equation (38), we thus obtain an 
approximate linear set 

%fH, 
( > 

;+d (2*+l)-‘b~+H,~(~+l)-‘b~ =g,,, 

n=o, 1,2,... (43) 

The b:, are related exactly to the b, by 

b:, = ]GP, (44) 

where [G] is an nT x (n,+ 1) rectangular matrix, b’ 
is (nT x 1) and b is of size (n,+ 1) x 1. However, for 
computational purposes, we ultimately wish to rep- 
resent b, in terms of the solution vector a,, through a 
matrix [D] defined in equation (27). If we approximate 
[D] to be of rectangular size (nT+ 1) x n, (denoted by 
matrix [o’]), then the product will be square, i.e. 

b; = [G][D’]a, . (45) 

For increasing nT, it was found that this rectangular 
approximation was stable and gave converging 
results, since the b,, and a, both decrease suitably with 
increasing n. Details on the resulting matrix equation 
with modified entries can be found in the Appendix. 
Owing to the non-uniform internal Biot number H,, 
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we may not use the form (29) to relate the mean 
contact temperature to total heat flux. Instead, we 
may directly express the mean contact temperature in 
terms of the solution vector a,. Thus from ref. [25], it 
may be shown that 

where p = 0 for 0 = 0 on the external boundary, and 
p = 1 for &)/a[ = 0 externally. For both problems, 
Q* is given by equation (30). 

Similarly, we can model a variable convection 
coefficient on the external boundary. For this we 
choose the form 

h(p) = h&p~*+d). p > 1. (47) 

The external Biot number is now redefined by 

ff* ,!z 
k 

The necessary matrix system changes are analogous 
to those outlined previously for a variable contact 
conductance, except physically we are now studying 
non-uniformity on the external boundary. It is impor- 
tant to note that they are virtually identical for either 
the isoflux, isothermal and non-uniform flux-specified 
contact conditions. 

6. PRESENTATION OF RESULTS 

The standard system of equations (26) (see Appen- 
dix) was solved for all cases using a simple Gaussian 
elimination routine with scaled partial pivoting [28]. 
Convergence was governed by the truncation value nT 
used for the matrix size, and this was established by 
specifying an accuracy on the constriction resistance 
of six significant figures. Generally, a larger truncation 
value was necessary as the reference Biot number 
increased, and it was found that a value of rzT = 50 
gave the accuracy required for Cases (i) and (iii). A 
slightly larger truncation value was needed for the 
results in Cases (ii) and (iv), generally requiring 
rzr > 50 but rz7 < 75. This also applied to the results 
for non-uniform flux and non-uniform convection 
conditions. The slower convergence in Cases (ii) and 
(iv) was expected because as the Biot number 
increases, the limiting solution in both cases becomes 
an isothermal contact with T = 0 external boundary. 
This is a physically unrealistic surface condition, caus- 
ing a potential discontinuity at the radius r = a. How- 
ever, over the range of Biot numbers studied, the 
constriction resistance should approach smaller and 
smaller values, but the contact will still remain non- 
isothermal. 

Figure 2 illustrates the variation of constriction 
resistance, via the dimensionless constriction factor, 
with the Biot number for a uniform contact con- 
ductance and insulated external boundary. The upper 
and lower bounds are respectively the constriction 

resistance for an isoflux and an isothermal contact. 
This result was also obtained in ref. [12]. It is inter- 
esting to note, that over the entire range of Biot 
numbers considered, the difference in constriction 
resistance amounts to only 7.5% between the upper 
and lower bounds. On the other hand, if the external 
boundary has the condition T = 0 (Fig. 2) the differ- 
ence between the upper and lower bounds is 68%. It 
is important to point out that the results for these 
contacts with contact conductance provide the upper 
and lower bounds for when the external boundary 
has a uniform convective coefficient. However, this 
will also hold when we apply a varying external con- 
vection coefficient of the form (47). Figure 2 also 
shows results for when the contact is isoflux or iso- 
thermal, and an external uniform convection 
coefficient is applied. The upper and lower bounds for 
the isoflux case are respectively the upper bounds for 
the two previous convective contact problems. Here, 
the percentage difference between the upper and lower 
limits over the complete range of Biot numbers, is 
50%. In other words, the lower bound is precisely 
half the upper bound. For the isothermal contact, the 
behaviour is slightly different, and we find that the 
difference is about 60% over the range of Biot num- 
bers shown. In particular, the upper bound is specified 
by 1 in Table 1, which is the same as the lower bound 
from Fig. 2 (uniform contact conductance with exter- 
nal insulation). 

When we apply a varying flux contact (19) and a 
uniform external convection coefficient, the upper and 
lower bounds for all cases are given in Table 1. We 
note that the constriction resistance is independent of 
the values c and d when c = -d and when d = 0. This 
is also the case when we had an isoflux contact, as in 
Fig. 2. The resulting distributions for these are similar 
in form to Fig. 3 except with their appropriate 
asymptotic limits. 

However, when we superimpose flux distributions 
on top of a uniform flux, as in Fig. 3, we note that the 
constriction resistance varies for all the cases shown. 
From Table 1, when c = -d, the difference between 
upper and lower bounds is about 44%, which is 
smaller than the isoflux case. Also, we note that the 
upper and lower bounds are slightly higher than the 
50% for the corresponding isoflux problem. When 
the flux parameter d = 0, from Table 1 we see a differ- 
ence between upper and lower bounds of 57%, and the 
bounds are lower than the isoflux problem. From Fig. 
3, for the given flux variation, we see that the con- 
striction resistance increases steadily as the super- 
imposed flux distribution becomes larger. On the 
other hand, choosing d = 10, and varying c = 1, 10, 
25, 50, we would find that for a larger applied heat 
flux, the constriction resistance steadily decreases. 
These are important features which may not be 
directly discernible from the flux distributions 
modelled by equation (19). 

For a non-uniform contact conductance with insu- 
lated external boundary, in all cases, the lower bound 
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BIOT NUMBER = ha/k 

FIG. 2. Constriction factor vs Biot number HI or H2 ; selected problems. 

.65 

Flux Parameters 

1o-4 1o-3 1o-2 10-l IO0 1oi lo2 IO3 lo4 IO5 

BIOT NUMBER = ha/k 

FIG. 3. Constriction factor vs Biot number H2 ; varying flux contact with uniform external convection. 

is as defined by 1 in Table 1, which is the same as 
observed for a uniform contact conductance shown 
in Fig. 2. Similarly, the upper bound in all cases cor- 
responds to the constriction resistance of a non-uni- 
formflux contact (with the same flux parameters (19) 
as the conductance parameters (36) given here) with 
external insulation, as noted by Table 1. Thus we 
begin to see the direct correspondence and symmetry 
that is resulting from these various solutions. Fur- 
thermore, when we have the conductance parameters 
defined as c = -d and d = 0, particularly useful 
behaviour can also be noted. If we know the con- 
striction resistance with c = - 1, d = 1, at say, a Biot 
number of 10, then this will be the same constriction 
resistance obtained for c = - 10, d = 10, at a Biot 
number of 1. An analogous situation occurs for d = 0. 

Extensive tabulations are supplied in ref. [25], from 
which one can predict the constriction resistance accu- 
rately for a wide range of non-uniform conductance 
parameters at various Biot numbers H,. However, 
when a non-uniform conductance is superimposed 
on a given uniform conductance, the upper bound is 
dependent on the conductance parameters. Similar 
results could be shown as for a contact conductance 
problem with T = 0 external boundary. 

Next we consider the effect of having a non-uniform 
external convection coefficient of the form (47). For 
an isoflux contact, the solutions will always remain 
between the upper and lower bounds defined earlier 
for an isoflux contact with a uniform external con- 
vection coefficient. However, depending on the con- 
vection parameters used, for intermediate Biot 
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numbers H2 the constriction resistance will vary 
considerably. These differences are borne out when 
we compare certain cases as shown in Fig. 4, the 
largest difference occurring at inte~ediate Riot num- 
bers Hz. Similar variation of constriction resistance 
with Biot number occurs for an isothermal contact 
with non-uniform external convection, as shown in 
Fig. 5. The upper and lower bounds again remain the 
same as for the uniform external convection results. 
If we considered a varying flux contact of the form of 
equation (19), and a non-uniform external convection 
coefficient defined by equation (47), then we could 
anticipate the solutions to lie within the bounds simi- 
lar to Fig. 3. 

Accurate and simple correlations for several cases 

are listed in Table 2 in a convenient hyperbolic- 
tangent form adopted from ref. [12]. The hyperbolic 
tangent is a reasonable function choice since it most 
closely resembles the form of the dist~butions gen- 
erated in the figures. A non-linear least squares curve- 
fitting routine was used to fit the correlating form 
Cr over the range 10m4 < Hi < 10’. The largest error 
associated with each fit occurs generally a decade of 
Biot numbers to the left or right of the inflection point 
seen in each distribution (i.e. Biot number of ++ 10’). 

As an overview, we note that for all cases studied, 
the Biot number was varied over the entire range 
10m4 < Hi d 105. However, not a11 cases approached 
the upper and lower bounds at the same Biot number. 
In Fig. 2, the distribution departs from the upper 

1.2 

Upper Bound - I.0608 

Convection Parameters 

-c--i d- i 
---c- f d- 0 

1o-4 1o-3 to-* lo-* IO0 IO’ IO2 103 IO4 IO5 

BIOT NUMBER = ha/k 

FIG. 4. Constricti factor vs Biot number HZ; isoflux contact with non-uniform external convection. 

convection Parameters 

1o-4 1o-3 lo+ 10-l lo” IO1 loB loa IO4 IO5 

MOT NUMBER = ha/k 

FIG. 5. Constriction factor vs Biot number H2; isothermal contact with non-uniform external convection. 
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Table 2. Selected correlations 

C, = c,-c2 tanh (cl In (H,)-c.,) 

Cl C2 c3 c4 I I 
T x lOO(%) 

Isoflux contact with uniform external convection 
0.81180 0.21214 0.33492 -0.06596 0.26 

Isothermal contact with uniform external convection 
0.71006 0.30890 0.25317 -0.08603 2.5 

Varying flux contacts with uniform external convection 
c=-d 

0.90175 0.25455 0.34061 -0.10743 0.25 
d=O 

0.72177 0.29092 0.33070 -0.029927 0.30 

Isoflux contacts with non-uniform external convection 
c= -l.d= 1 

0.81365 0.27407 0.29357 0.22773 0.60 
c= l.d=O 

0.81110 0.27176 0.35965 0.11443 0.20 

bound at a Biot number of - 10-l (for the contact 
conductance cases), whereas for external convection 
cases, it illustrates a departure at a Biot number of 
- 10m3. This is particularly important in estimating 
the error arising from using a limiting (idealized 
boundary condition) solution which does not account 
for convection effects. If we also consider non-uniform 
convection on the contact zone or externally, then 
these departure limits are altered further. The non- 
uniform convective models are physically more 
realistic than a uniform convection coefficient. and 
therefore, depending on the problem type, this could 
significantly alter results and better explain dis- 
crepancies in experimental investigations. This is par- 
ticularly important since we do not always know pre- 
cisely what the boundary conditions are. Experi- 
mental experience has shown that the majority of 
boundary conditions are actually non-linear, and 
therefore the models developed here for non-uniform 
convection effects could provide better estimates for 
bounds, than the idealized conditions previously used. 

7. CONCLUSIONS 

An analytical examination has been conducted into 
the variation of thermal constriction resistance with 
variable Biot number for circular contacts on a half- 
space. Both uniform and non-uniform flux dis- 
tributions and convective components have been 
included. The constriction resistance was found to 
vary predictably with uniform and non-uniform Biot 
number, between previously established asymptotic 
bounds in constriction resistance theory. A common 
trend observed was that the constriction resistance 
will always decrease as the reference Biot number 
increases, regardless of whether the convection 
coefficient is uniform or non-uniform, or if the con- 
vection is associated externally or on the contact zone 
(contact conductance). In particular, the graphical 

results provide a convenient check on what the actual 
error may be when using idealized limiting boundary 
conditions in a problem model. Although results were 
not presented for non-uniform flux contacts with non- 
uniform external convection conditions, the be- 
haviour of the thermal constriction resistance can be 
easily predicted based on the results of this work. 
Additionally, the completely general problem of sim- 
ultaneous convection conditions on the contact and 
external boundary, is the subject of an upcoming pub- 
lication [28]. The bounds for this problem, may finally 
be established from the results shown in this study. 
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APPENDIX: SOLUTION DETAILS 

In the following, [fl denotes the identity matrix, and [N] 
is a diagonal matrix with entries (2i- l)-’ for i = 0,l.. ,n. 
Also, truncation size nT = n + 1. 

Imperfect contacts (H, t&form) 

[B] is symmetric with entries given by equations (3.17) and 
(4.11) in ref. [IS], and for both cases of external ins~ation 
or T = 0, we have 

go = zH,Gb, g, = 0, n = 1,2,. . . 

Isothermal or flux-specified contacts (uniform Hz) 

~tq+~*~~l~~l-‘t~}ai = -9,. 

Matrix [C] is lower hi-diagonal, with entries of l/2 
symmetric with entries given by 

1 1 
+2m-2nfl- > 2m-2n-1 

[B] is upper b&diagonal, with entries given by 

i+l 
4, = &, B,., + , = - 2i+ 3. 4t.n = 

nfl 
I_ 
Zn-l-1’ 

i=O,l.... (A5) 

It’s inverse is upper triangular, with explicit entries 

642) 

(A3) 

[Fl is 

(A4) 

I 
BT. 1 = ..- 

L,‘ &i ’ 
BGg _ -Bj- t.jBtG’ I 

4d ’ 
j=i+l,i+2 ,..., n. 

W) 

For an isoflux or isothermal contact, gJqO are defined in ref. 
[18], and for a non-uniform flux contact of the form of 
equation (19) with arbitrary constants c and d, from ref. 
[25] we have 

A = dsi’ + 42 s- (- l)“h,+, 
K m?, mini-1 

(A7) 

where the g,’ are as defined for the isoflux case. The h,,, are 
now given by 

and 

h nlnf” = pm+,-tJ?t+,- t + . + (- l)m+“U@ (A8) 

8 
trm=rm--n. 

The rm are found by matching coefficients in 

where P, are the Legendre polynomials, and the c, are the 
power series expansion coefficients for 

sin-’ w (l-w’)l” 
p-p 

W’ d 
(All) 

Non-uniform contact conductance 
With the convection coefficient h(p) represented by equa- 

tion (36), we have 

(AW 

[r], [D] and [N] are as defined for the uniform conductance 
problems, with [o’] having entries of [O] truncated to size 
(n,+ 1) x nT. The rectangular (nT x (n,+ 1)) matrix [G] has 
entries from 
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or simply 

The g. are 

1 
j 0 . . . 

0 

2 

5 ... 

2 3 
5 0 .i 

(A13) 

b:, = [G]b, . (A14) 

n n+l -o- 
2n-1 2n+3 

and for 

n=2,3 ..,., nT, g.=O. (AN 

Non-unifopm external convection 
With constants c and d defined now in equation (47), for 

either a flux-specified or an isothermal contact, the resulting 
matrix equation becomes 

CAl6f 

For ~ux-s~ified contacts, the g8 are as defined for an 
iso$m contact, and in the form of equation (A7) for a twj*ing 
$ZJX contact. For an Bothermalcontact, the right-hand vector 
is determined from 

Hz O” 
Td x Z,P,(2s’-I)-l+H,c f IJ’,,,(2s2-1) 

m=* nt=o 

=~~~~(2n-~l)~~‘~+g~~~)P,(2s’--l) (A17) 

where 

g:*’ = 5f,c1,(2a+ I}_‘. 
K (AN 

The series term above is already defined for isothermal 
contact with the uniform external convection coefficient, here 
including the multiplying factor d. The I, are defined by 

!, = c,-d, (A19) 

where 

4 
C” = - 

n 
l_;+;_...+g C-1) 

> 1 
+_ 

2n+l 

6420) 

d, = - 
4 

7r(2n+3)(2n- 1)‘ 

RESISTANCE TH~RMIQUE DE CONSTRICTION AVEC DES CONDITIONS AUX 
LIMITES CO~E~IVE~l. CONTACT DE DEMI-ESPACE 

R&nm&--L’analyse analytique du contact thermique a Cte dam le passe plutdt reduite a des conditions 
aux limites de contact. Rtcemment, Gladwell et al. (Q. J. Mech. Appl. Math. 36(3), 387401 (1983)) a 
d&gage l’haluation effective de l’equation integro-differentielle pour quatre problemes axisymttriques avec 
des conditions aux limites convectives uniformes. On etudie ici, sous forme adimensionnelle, la variation 
de la resistance thermique de constriction avec le nombre de Biot pour quatre types de problemes mixtes 
sur un demi-espate homog&re. De plus l’analyse the~que est Clargie pour inclure des conditions de flux 
non uniforme et de convection non-uniforme. Dans chaque cas, la resistance de constriction est don&e 
sous forme dune expression compacte et pour quelques cas des formules precises mais simples sont 

presentees. 

DER THERMISCHE WIDERSTAND BEI KONVEKTIVEN RANDBEDINGUNGEN- 
1. KONTAKTE AN EINEM HALBRAUM 

Zusammenfassung-Die Untersuchung des thermischen Kontakts ist in der Vergangenheit auf stark 
idealisierte Randbedingungen an der Kontaktflache beschrtinkt gewesen. Vor kurzem haben Glasweil et 
al. (Q. J. Mech. Appl. Mark. 36(3), 387401 (1983)) eine effiziente Auswertung der resultierenden Integral- 
Differential-Gleichung fur vier grundlegende a~hsensymmet~sche Probleme mit einheitlichen konvektiven 
Randbedingungen vorgestellt. Die vorliegende Arbeit zeigt in dimensionsloser Form die Veranderung des 
thermischen Widerstandes mit der Biot-Zahl fiir vier unterschiedliche Problemtypen an einem homogenen 
Halbraum auf. Zusatzlich wurde die thermische Analyse erweitert, urn ungleichformige Striimungen und 
UngleichfSrmige konvektive Bedingungen einzubeziehen. In allen Fallen erhalt man den Widerstand als 

kompakten Ausdruck, und fiir mehrere F&lie werden genaue, aber einfachere Korrelationen vorgelegt. 
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TEPMM’IECKOE COIIPOTHBJIEHME nPki C)KATMM JWI KOHBEKTMBHbIX 
1-PAHWiHbIX YCJIOBkiti-1. KOHTAKTbI B I’IOJ’IYI’IPOCTPAHCTBE 

i%,E,@TSEWE--PaEee TeO~TSYeCKHii aHaJ‘U3 T‘?IUfOBblX KOHTBKTOB ApOBOAHJtCK Apyl ~e~~3~~B~H~ 

ycnosmx Ha KoHTaKTHofi noBepxHocTH. HeAaBwo ~JI3naeAnoM u Ap. (Q. f. Meek. Appl. Math. 36(s), 
387_401(1983))6bur npeAnOW,?H 3@eKTiiBHbIii MeTOA peIiIeHHSl ~HTerpO-~~~~peKwanbHO~O ywB?le- 

HHR &I,$, WTbI~X OCHOBHM: OCW~MMeTpH'%HbIX 3aAa'i C OAHOpO~HblMR KOHBCKTUBHbIMB lJ%S%HVHbIMH 

~CJIOBED?MH. B HaCTORI4efi pa6oTe B 6e3pamepeoM BSiAe OnHCbIBaeTCK 3aBWZiMOCTbTepMBYeCKOrOCOll- 

POTHBJICHUR npkic~anni OT wcna Iiuomm lieTbrpex 3anaYcMeluaHHoro Tuna Ha O~~O~O~HOM nonyn- 
pocrpaHcrse. Kpohfe Toro, aHaJm3 pacnpocTpaHeH Ha HeoAHopoAHbG TennoBofi ~OTOK si Ha 

~eO~OpO~~~e KOHBeK~BH~e ,CIlOBES5S. B KSKAOM 83 HUX COlIpOTHBJieHRe GKaTBZO OiUiCbfBZlWCR KOM- 

na~H~~B~pa~eH~eIeM,a~n~eGKonbKaxcnyraeeAaHbrTorHbIe~6oneenpocrbleo606uzaro~ecoOT- 


