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Abstract—The impetus for this work came as a result of finding that evaluation of the complete elliptic
integrals using theta-function expansions was computationally faster, for the same accuracy, than the well
~ known conventional method using Landen’s transformations, known as the arithmetic-geometric mean
(A.G.M.). By using relations between Jacobian elliptic functions and theta-functions, it is shown here that
the incomplete elliptic integrals may also be evaluated very efficiently using a Newton-Raphson scheme.
. The expressions outlined were found to be substantially more efficient and accurate than several infinite

series or polynomial expansions provided by Abramowitz and Stegun in 1970. Analysis and algorithms
" are presented along with accurate tabulated numerical results.

NOMENCLATURE

¢—constants Greek symbols
E—elliptic integral of the second kind ’

3 L a—modulus parameter
E’—complementary complete elliptic integral of B, y—angular parameters
- the second kind '

. e-—modulus quotient
F—incomplete elliptic integral of the first kind A,—Heuman gmbda function
k, k’—modulus, complementary modulus v fg—general functions
K—complete elliptic integral of the first kind T

, T m—constant = 3.14159265. ..
K'—complementary complete elliptic integral of IT—elliptic integral of the third kin
the first kind

o, ¢, ¥, 6—angular parameters :

m, n—integer constants 6;, ®—theta-functions
s

9, q—nome in theta-function series, complementary
. nome =q(n/2 —a)
. W, x,y,z—arguments e

INTRODUCTION

extgrals of the form

‘J-R(x, V) dx,

Sere R denotes a rational function of x and y and some constant modulus k, and y is generally
duartic function of x, are of a non-standard type. They are referred to as elliptic integrals in the
Fserature, and were first studied in Ref. [1]. Inverses of certain types of these integrals are known
,”’lffi’linunctions, and they were first studied by Gauss, Abel, Jacobi and Weierstrass at the turn
the nineteenth century. As outlined in Ref. [2], every elliptic integral can be evaluated by aid
’ fuflcztions termed theta-functions, and it is this approach which is adopted here. The theta-
wctions themselves satisfy certain types of differential equations which are outlined by Refs [2, 3].
Z““mler(‘)us representations of theta-functions have been adopted over the years and perhaps the
o~ Summary of these is outlined by Ref. [2, Chap. XXT]. Evaluation of complete elliptic integrals
fﬁ}“’ first and second kind using theta-function theory is very efficient (see Ref. [4]), involves no
Q"t‘r,m‘m, and is slightly superior in computational speed compared to the process of the
metic-geometric mean (A.G.M.) described by Ref. [5]. This theory has actually been known
*3a¢ time, as was outlined in Ref. [6]. More recently, Fenton and Gardiner-Garden [7] returned

Lomar, Weop

747




748 T. F. LemMczyk and M. M. YOVANOVICH

to this theory and re-established that theta-function expansions give very convergent methods fo,
evaluating complete elliptic integrals and their related functions. Numerous other non-standaps -

integrals may often be expressed in terms of elliptic integrals, as noted in Refs [3,8]. Tpe
applications are many and, in particular, thermophysics problems are a rich source of these, since
they usually involve Lipshitz-Hankel integrals [9], as studied by Ref. [10], which may be writteg
in terms of elliptic functions.

We note that the evaluation of the complete elliptic integral of the first kind, K(k), is paramouns,

since all other complete elliptic integrals may be expressed in terms of it. Correspondingly, in thj
work, first emphasis is placed on the evaluation of the first incomplete elliptic integral F(6, k). 1y

the same manner as for the complete elliptic integrals, the remaining incomplete elliptic integrayy - -

may then be found.

In this work we outline a procedure for the efficient evaluation of the incomﬁlete elliptic integmg A
using theta-functions. Numerical results are presented in tabulated form for several cases, including " °
some incomplete elliptic integrals of the third kind, for which tables exist only to limited accuracy -

in the literature (i.e. Ref. [5]). Complex values of parameters are not treated here, but for these :

and additional special cases not covered in Appendix A, refer to Refs [2, 3, 5] for excellent reviews, -

EVALUATION OF COMPLETE ELLIPTIC INTEGRALS

It is important to outline first the efficient procedure one' may use to evaluate the complm:?’
elliptic integrals. This was studied in Ref. [7], and also used by one of the authors (M.M.Y\) for !

many years in applied engineering courses.

To qi;;éin efficient cdmﬁ
the nome g given k. He
we can deduce the foll

ti) For the range k <—

The four types of theta-functions we will be using are defined by the nome g and Fourier series i

(Ref. [5, Section 16.7]) as follows:

0,(z, ) = 2¢'*sin z — 2¢**sin 3z + 2¢**sin 5z — - - o
0,(z, q) = 29" cos z + 2¢°* cos 3z + 2¢* cos 5z + - -~ @ 7
0,(z, q) = 1 + 2q cos 2z + 2q* cos 4z + 2¢°cos 6z + - - : @
04(z,q) = 1 —2q cos 2z + 2q* cos 4z —2q° cos 6z + - - - (‘} |

These are used for the evaluation of elliptic integrals, and may be found in different notation ¥

various references. Here we have adopted the notation of Refs [2, 5] [Note: Jahnke and Emde [& ‘

as well as Byrd and Friedman [3], use 6,(z, g), the “zero-theta”, in place of 0,(z, 9).]

The complete elliptic integrals of the first and second kind, denoted in the literature by Kand 1

E, respectively, are given in Legendre notation as,

gﬁn Important relation use

/2 dw =
= _— &3
K L (- Kisin g )™ P
72 . We note that fi
E = 1 —k2sin? )2 dy. g1 I at for the rar
L ( Y)'Pdy {12). For the range (ii), the—

The constant k is referred to as the modulus, and k’ = (1 — k?)'? is the complementary mod“!?‘~

In terms of theta-functions, z =0 or n/2, and K and E are defined by:

T T tF
K =§[93(0, q)]’=3[04(7r/2,q)]2, ¢
850, 9) &
E=K|1-22221, s
[ 94(0,41)] : |
where ' P &
&

q = exp(—uK'[K).

The modulus k is defined as the quotient of theta-functions,

63 (Os Q)

kncmAsz - o

®Iequired to evaluate the
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| £q obtain efficient convergent series for numerical work, it is obvious that we need to determine
: 23 pome § given k. Hence, using expansions developed by Weierstrass in 1895, fromn Refs [6, 21,
5 ; cer. deduce the following procedure for the complete eliiptic integrals to 15 decimal place

- gocuracy: ' ‘ :
ll"m For the range k < I/\/E.
L=k an
214+ /&’

K=-’2‘-[1 +2g +2¢* +2¢°F (13)

 only to limited acCuracy.
cated here, but for thag',k E= 72 ['14+9¢% +25¢° + 49¢"* ¢ (19)
3, 5] for excellent reviews 4K 1+¢*+4° .
GRALS - . (i) For the range 1/\/3 S,k <1
o evaluate the complete e—11= Vk 1s)
he authors (M.M.Y.) for - 21+ k
— 5. 9 B3y ...
ome g and Fourier series | =€ +2+ 1567+ 15067 + (16)
K== (1+24,+2g} + 247 a7
M 2
@ 5 14943 +25¢8 + 4947 18
G 4K’ 1+¢?+q¢
® | . |
-in different notation in { T Inq, {19
e: Jahnke and Emde [6],- ¢ o : :
¢ Of 64(2’ CI)] S —_ 1= 4 .
the literature by K and - E= X E'*' K(K'—E')|. (20)
An important relation used in equation (20) is Legendre’s relation,
EK’+E’K——KK’=-12£. 3N
d . We note that for the range (i), the nor;1e q as defined by equation (9) is identical to the form
{12). For the range (ii), the form (9) must be used to evaluate g after determining K’, K. This will
o+ & berequired to evaluate the incomplete elliptic integrals of the second and third kind to be shown
omplementary modulus. -

¥
@

&

AT D

“later, ’

EVALUATION OF THE FIRST INCOMPLETE ELLIPTIC INTEGRAL F(b, k)

In Legendre’s notation we have

u=F@ k)= f ’ dv (22)

o (1—kZsin® )"’

or, in Jacobi’s notation also in the literature, we may write

@

u= r(l — )71 — k%)~ dy, (23)
“0

————

¥ s found after some manipulation of the form (8

1d
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sn(u, k) =g =sin§,

and sn is referred to as the Jacobian elliptic sine function. In terms of theta- functlons we havc %
relation: '
6,0 (W q)
sn(u, k) == =aqa, ;
0 =5, 8,0 0) oy
where w = u/6%(0, ¢). The quotient 6,/6, is shown in Ref. [3] and by equation (10) to be anzl "
the square root of the modulus &, and thus we obtain

Sir

i

Jh =) .

w000, 9)’ ARG
Expansions for §,(w, ¢) and 8,(w, q) are given by equations (1) and (4). Now, we proceed to méw ,
the trigonometric quantities to a simple series in sin” w, and with this we may reduce equatmg%"
to

j‘ o was found that for va
“mpessary for double pre_

. wyessary, and for 80° < ¢
- procedure is similar t

Y

©
O0=co+ Y c,sin"w, T

n=1

or in nested notation, setting x = sin w, S ) .
F . ghere k, is as in equatior
0= x(c, + x(c2+ x(c3 + x(cs + x(c5 + x(cs + x(c7 + x(cs + - - M) + <. % 1 ~

This is the functional equation for x, to which we can apply a Newton—Raphson scheme to evalugir
x given the constants c¢,. The constants ¢, are functions of « and k, which need to be specifins
beforehand. The first nine constants, truncated to give double precision accuracy, can be shous
to be:

3.
¥

_a\/E ’ Y
€= (1-2g +2¢*—2¢°+2q") BB
0 2 ,.yismnmary of these transf—
¢, = g" — 3g% 4 5¢7 — g0 B iz iteration process. The
! e 1 Newton—Raphson schi
—alk ST R | “-bout 3 or 4 iterations fo
0= 2\/_ (4q — 16g* + 364° — 64¢'°) (3'? 1. “Htisimportant to note t}—
e mlts It is not clearly unc
ey = 4% — 20¢7 + 564 (: ¢ hyother transformations —
X i{gcAGM, it was four
—a/k - ®ostantially improved if a—
€= -—~2i (16g* — 96¢° + 3204'°) ' ﬁj}@ m performed in double
e = 1697 — 112¢%% - (3‘9
R T RE
e 0 2\/} (64q° — 5124') (3% “.,k!:‘-'lhc incomplete elliptic i
;= 649" -
—a/k _
¢ = /K 551
2
The nome ¢ is a function of the modulus %, and can be evaluated as was shown for the comp o
elliptic integrals in the previous section. M
In order to achieve accuracy to double precision (16 dccxmal places) as compared with the Pw , : Not
of he A.G.M., over certain values of k we need to perform a Gauss transformation as gives s requi
el i3, Section 164.02]. This transformation is outlined as follows: . (‘5‘5 e
F(¢, k) =F(O,k)/(1+ k), . L | f=
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ta-functions, we have ; B (6, k) =( DE($, ki) 3 (39
ST e

3 e L (40)

ation (10) to be eth i od ‘
Dl sin (1 + k,sin” @) = (1 +k)sin ¢ (41)
o8 N Y N FAC LA “
W, we proéed" e 2sin¢ k,sinf k,sin6 k|- (42)

i to 5 ‘ . .

1ay reduce equaﬁ;:d{g: © y was found that for values of ¢ less than 45° (note: ¢ = sin~! k), no transformations were
R for double precision accuracy. For 45°<¢ < 80°, one Gauss transformation was

: aecessary, and for 80° < ¢, 2 successive Gauss transformations were required. For this latter case,
 he prbcedure is similar to equation (38) as follows:

F(6,k) = (1 +k\)(1 + k)F (¢, ko), (43)

where k, is as in equations (40) and

I +a. oy

hson scheme to evaluzs - k, = 1 -k (44)
ch need to be specifies 1+k{’
ccuracy, can be showr 1+ k 14k \2 472
LS 2sindhy= otz | (_EE )2 5)
: R ' k, sin ¢, kysin ¢, k,
@ o IR
: é A summary of these transformations is shown in Table 1, along with initial starting values, x,, for
(3 - #» ®eiteration process. The remarkable consequence of all this work is the fact that convergence of

the Newton—Raphson scheme is very efficient. This is shown in Table 2. It requires, on average,
sbout 3 or 4 iterations for the scheme to converge over the entire range of 8 and ¢.

- Itis important to note that other transformations were attempted, but failed to yield reasonable

. sesults. It is not clearly understood at this point why the Gauss transformation works so well, and
__why other transformations in the literature do not. Also, ona real time comparison with the process

“of the A.G.M., it was found that the method outlined here was about 10% slower. This could be
whstantially improved if a relationship between the constants c, could be found. All computations
were performed in double precision on an IBM PC in BASIC and FORTRAN 77.

[N

RELATED INTEGRALS AND FUNCTIONS

The incomplete elliptic integral of the second kind is defined by

E®,k) = Y (1 —k?sin? )" dy . (46)
0

Table 1. Range of transformations for evaluating F(8,¢) -

F<p< 45 5 <p<80° 80° < ¢ < 90°

yown for the compie®

pared with the prooe®
formation as gives ¥

No transf ti 1 Gauss f th 2 Gauss transformations
required. Accuracy | required. Accuracy to required. Accuracy to
exact with A.GM | double precision with | double precision with
to doubls precision. | A.GM. AGM.

S st

= 0O == 0,012 ®, = 0.022

= - A

AL
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Tabie 2. Convergence of method (Newton—Raphson iterations)t

< g <50 |5 < g<ab’ | 45° <g <BF [ BO° < ¢ <0
80° < 6 < 90° 3 4 4 4
45° < 8 < 80° 3 4 4 3
5° < § < 45° 3 3 3 3
0°< 8 <5° 2 3 3 3
T Represented by average number of iterations
From Refs [2, p. 518; 5, Section 17.2.13]
nu
n 2K uE
E@k)=— 2 /. %2 : i
(6,k) K, (7 % “n
4 2K s 4 L

where u = F(0, k), K and E are the complete elliptic intcgrals of the first and second kind wuk
modulus k, and 6, is defined by equation (4). To achieve double precision accuracy, only five termg =~ & .
are required in equation (4), and four terms for the derivative ;. Noting that the nome qisg . §oo

function of the modulus & as in equations (12) and (16), we need only evaluate ¥ = F(6, k), E and
K, outlined earlier, and we may then determine E(6, k) from equation (47). Twelve decimal plaa;
values for F(6,k) and E(8, k) are provided in Table 3.

As a direct result of being able to compute efficiently the incomplete elliptic integrals of thc first
and second kind, we can now efficiently compute elliptic integrals of the third kind, I1(6, y? k),
and also functions such as the Heuman lambda-function A,(8, k), and the Jacobian zeta-function
Z(B, k). These are outlined below in terms of known functions and limiting forms are also gives
in Appendix A.

Table 3. Selected values for F(6, k), E(6, k)

o
go ¢ 1 10 30 43

Fe,4)

1 0.017453292790 | 0.017453319237 | 0.017453514038 | 0.017453785571
10 0.174533193454 | 0.174550492848 | 0.174753855140 | 0.174976301923
30 0.523605673662 | 0.524284017289 | 0.529428627052 | 0.535622732805
45 0.785419897053 | 0.787564037491 | 0.804366101232 | 0.826017876249
60 1.047244324488 | 1051879112762 | 1.089550670052 | 1.142429058046
80 1.398356715044 | 1.405645220554 | 1.484554552055 | 1.608478732060
88 1.536004057997 | 1.547397952690 | 1.645448429580 | 1.804719328423
90 1570915958127 | 1582842804338 | 1.685750354813 | 1.854074677301
60 30 88 90
1 0.017453957120 | 0.017454151959 | 0.017454177604 | 0.017454178684
10 0.175200286348 | 0.175398542412 | 0.175424727014 | 0.175425829652
30 0.542229100804 | 0.548425344543 | 0.549270415213 | 0.549308144334
45 0.851223749071 | 0.877408330406 | 0.881211426058 | 0.881373587020
60 1212596615255 | 1.301353213761 | 1.316305100453 | 1.316057896925
80 1.812520534308 | 2.265273260780 | 2.427180030034 | 2.436248053716
88 2.086744929901 | 2.953656299014 | 3.861075154349 | 4.048125418683

90 2.156515647500 | 3.153385251888 | 4.742717285279 [
E(8, 4]
1 10 30 45
1 0.017453252250 | 0.017453265802 | 0.017453071007 | 0.017452849488

10 0.174532656046 | 0.174506364812 | 0.174312496773 | 0.174091565468
30 0.523501877695 | 0.522915112409 | 0.517881934860 | 0.512049322350
45 0.785376430775 | C.783241622061 | 0.767105985711 | 0.748188504178
60 1.047150781385 | 1.042550471931 | 1.007555555144 | 0.964951457643
80 1.996170007845 | 1.336078853008 | 1.316053404877 | 1.226610499417
88 1.5357754383878 | 1.5245107C4027 | 1.437230174207 | 1.325956187678
90 1.570876709128 | 1.558887198602 | 1467462206389 | 1.350643881048
60 30 (] 90

1 0.017452627066 | C.017452433157 | 0.017452407517 | 0.0i7452406437
0.173870127181 | 0.1736743753C2 | 0.17364w266229 | 0.173845177667
30 0.506092072466 | 0.500742315368 | 0.500030025084 | 0.5CO000000000
13 0.728224155457 | 0.709723805114 | 0.707212390470 | 0.707106781187
o0 0.918395204318 | (.872755203913 | 0.825209900681 | 0.866025403784
80 1.122485895679 | 1.005452046316 | 0.9853891540390 | 0.984807755012
38 1.193592110305 | 1.034013578241 | 1.00118£087678 | 0.999390827019
80 1.211058027568 | 1040114395708 | 1.002524085528 | 1.000000000000

}}W’s lambda-funct

Complete elliptic inte—

I and therefore these will

wbere k' — (1 - R, I
lextmg cases are lis__

Eliptic integrals of the
The elliptic integral ¢

where y =sinf, t =sin—
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Table 4. Incomplete 17(6,y%, ¢); y2=0.1, 0.5

# 1 i6 30 45 i

% = 0,1 -

0.017453470001 | 0.017453520087 | 0.017453681254 0.017453912791
0.262392651443 | 0.262590558405 | 0.263137864406 0.263895537974
0.528208419022 | 0.520750956840 | 0.534119286520 0.540411178855
0.800152692676 | 0.805143972639 | 0.819719226671 0.842096304336
1.079536324835 | 1.000576712217 | 1.124054916306 1179796546823
1.565687829054 | 1.385201841526 | 1.446495430636 1557387474808
1.617104884312 | 1.645207887091 | 1.735523375692 1.908422904221
1.655804132724 | 1.635358775764 | 1.780303494655 1.963259707143
60 75 88 90

0.017454134344 | 0.017454296541 | 0.017454354831 0.017454355911
0.264665130496 | 0.265236285116 | 0.265443180145 0.265447019880
s . . : - | 0.547123080287 | 0.552336708043 | 0.554278260274 0.554314570939
- ( 47) T 0.863168661072 | 0.200401264284 | 0.809218368451 0.899386364852

. 1.253930907389 | 1.329257564848 | 1.363848205364 1364541468240
5 ) 1.731212785187 | 1.972040903456 | 2.137926356560 2.142013900870
2.216030126452 | 2.816582198285 | 4.175310739802 4.382038078332

2.293549650346 | 2.966009011167 | 5.154873005005 o
B Sl =05
. S ; 1 18 30 [
t and second kind with- ¥ ] 1 0.017454178913 | 0.017454238003 | 0.017454400181 | 0017454831735

ccuracy, only five termg ¥ ,Z‘

15 0.264811133186 | 0.265012314941 | 0.265568698104 0.266338966933

30 | 0.548151967556 | 0.549801656749 | 0.554466014962 | 0.561188504815
1g that the nome qisa , » 45 0.870445649697 | 0.876209098974 | 0.893065728905 | 0.919022739166
| ~ F(0 v E 60 . 1.1.253165008864 | 1.267250462391 | 1310168161246 | 1.382180357781
uate u = F(0,k), Eand " 3 75 | 1709309567121 | 1730946979983 | 1.824333511007 | 1.984641750819
' : : 88 | 2.151844214223 | 2.194604893074 | 2.335096359495 | 2.602617110801
)- Twelve decimal place 90 | 2221635084918 | 2.266850425642 | 2413671504201 | 2701287762095
: 0 75 % %0
i ; 17 " 170.017454843304 | 0.017455006513 | 0.017455063608 | 0.01745506488%
ouc ntegrals of the first : 15 0.267121390856 | 0.267702093116 | 0.267912451004 | 0.267916355042
third ki 2 R 30 | 0.568365562104 | 0573944469434 | 0.576022955047 | 0576061831288
X nd, 11(8,?, fi), 45 | 0949385473370 | 0.075378087023 | 0.985713913052 | 0.985910074827
Jacobian zeta-function 60 | 1470063558781 | 1578813355307 | 1.625064106611 | 1.625993807386
. 75 [ 2241555068376 | 2.608458401726 | 2.868200335253 | 2874678895261
1g forms are also given: 88 | 3.095288620000 | 4.097333673743 | 6.480005245197 | 6.851017961617
f 90 | 3.234773471249 | 4.366205147481 | 8.242640572377 o

Heuman’s lambda-function Ao(B, k) and Jacobian zeta-function Z B, k)

Complete elliptic integrals of the third kind can be expressed in terms of A4(B, k) and Z(B, k),
and therefore these will be summarized first. From Ref. [11], we note

(B, ) = 2(E ~ KIF(B, k') + KEG, &), “®)

Z(B, k)= E(B, k) — EF(B, k)/K, (49
where k’ = (1 — k)2, E = E(z/2, k), K = F(z/2, k). ’

Limiting cases are listed in Appendix A.

Eliptic integrals of the third kind

The elliptic integral of the third kind is given by the Legendre and Jacobi forms respectively,

m,y4k)= ’ dis (50)
7 o (1—=y2sin®y)(1 — kZsin? )2’

i ds 51)
o =D =DA -7
. Where y = gin 6, t =siny and y?# 1, y2 # k2 .

- This integral is complete when 6 = /2 (or y = 1), and then the notation IT (y% k) is often used
§ mthe literature. Following Ref. [11], various cases of the elliptic integral of the third kind can be
- » 1 ?'fﬁv"_”‘iu%d to combinations of the first and second kind elliptic integrals. The Ayperbolic caszs are
: o amed if () 92> 1 or (i) 0 <y*<k? and the circular cases cocur when (i) y? <0 and {iv)
"<7’< 1. Both cases (i) and (ii}) can be recuced

1o cases (ii) and (iv) respectively using

o Simm Sy N (e NpwoNo |
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Table 5. Incomplete 171(4, v, ¢); v2=0.9, 1

A o
PN 1 15 30 45
=09
1 0.017454887928 | 0.017464947022 0.017455100213 0.017455330783
15 0.267311610497 | 0.267516201343 0.268082026367 0.268865400118
30 0.571068620117 | 0.572840946669 0.577854045902 0.585084455240
45 0.968565073983 | 0.975465627078 0.995689639173 1.026954262326
60 1.5840686188326 | 1.605155590664 1.667876624374 1.774528374757
k&3 2.74463991549] | 2.799900256217 2.977101484511 3.812107513623
88 4620017519437 | 4.739522277316 5.133937179732 5.933811793915
20 4.967868999231 | 5.099584555503 5.535513209603 6.425573644196
60 75 88 90
1 0.017455552368 0.017455714589 0.017455772889 0.017455773968
15 0.269681175528 | 0.270251812985 0.270465776257 0.270468747206
30 0.502810387582 0.598820907975 0.601081292363 0.601103202435
45 1.0637T157764€3 1.095352365590 1.107973899411 1,.108214564931
o0 1.920812149907 2.074876579981 2.1475279138792 2.148996317918
% 3.876614376125 4.744332058197 5.404323238959 5.421258204038
88 7.505693899885 | 11.124061618136 | 21.517134981934 | 23.284483587519
90 8.200889161724 | 12.464091505630 | 30.304518759221 00
=1
1 15 30 45
1 0.017455065198 0.017455124293 0.017455286487 0.017455508061
13 0.267950129014 { 0.268155693835 0.288723839483 0.269510573079
30 0.577358455473 | 0.579164983705 0.584275373072 0.591647537839
45 1.000032684912 | 1.007311426564 1.028657249209 1061695675463
60 - 1.732155119238 | 1.755647021548 1827809262659 1.951138930286
7 3.732419888196 | 38.816547721377 4.088637756786 4.612796113312
88 28.640381402161 | 29.590854673433 32.802148252251 | 89.675239854077
90 oo 0o oo o
() 75 88 90
1 0.017455729650 | 0.017455891874 0.017455955376 0.017455951254
15 0.270309771690 | 0.270902956534 0.271117909952 0.271121832123
30 0.599526819407 | 0.605657988621 0.807943717461 0.607986405500
45 1.100604787410 | 1.134143595278 1.147537853149 1.147793574696
60 2.121599132046 | 2.302764655626 2.388787111951 2.390529756031
7% 5.525541968744 | 7.003718597607 8.192303774545 8.223563231008
88 54.689422357519 | 98.276543996369 | 341.910456760807 | 412.291487581163
920 oo oo o0 oo

transformations given by Ref. {5; Section 17.7]. Expressions for limiting cases of the elliptic integral
of the third kind are summarized in Appendix B. Here we note the hyperbolic case (ii) for the
incomplete elliptic integral of the third kind, which may be expressed in terms of theta-function

expansions.

Incomplete I1(8, 7% k), 0 <y><k?, {hyperbolic}
When 72 = k2 the integral is defined by equation (A.26). For 0 <y?<k?, the integral reduces

to

where

i< 1.

e,y k)=F@,k)+

V[F(6,k)Z(B, k) — Q]

B = sin~'(y/k),

Qz=§1n

1 <94[v + w(B), 4]
0.[v — (), q]

v = nF(8, k))2K,
w(B)=nF(B, k)/2K
and 6,(z, q) is defined in equation (4). Tabulations for IT(6, y, k) are shown in Tables 4 and 5 fof

)

[(A -y =y
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e g 3. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin (1954).
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eHliptic integrals
ovided in tabujar sor®
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Yo everal cases. Software has been provided with interactive codes based on the outlined material.
" ::,{;531 forms in Appendices A and B have also been included in the codes.
'Tabic 3 values can be compared to results in Ref. [5, Chap. 17]. Tables 4 and S were also
ﬁn_\_pared to Ref. [11] whose authors used Simpson numerical integration to provide six decimal
e accuracy. For the circular cases occurring when k* < y? < 1, listed in Tables 4 and 5, the form
“en by Ref. [5; Section 17.7.11] was used. Complex arguments would otherwise occur using
© .a-function expansions, and these are not within the scope of this work.
- Computations were compated to the process of the A.G.M. and found to be sufficiently accurate
o efficient. These integrals have numerous applications both old and new and their efficient
smputation, particularly on a personal computer, provides the analyst with substantial savings
et resorting to numerical integration schemes. Although accuracy is usually needed to only a few
scimal places, particular applications sometimes require a series of these integrals, or ratios (i.e.

e [10]. In these cases, for adequate convergence, substantial decimal accuracy (10-1 6) is required.

o

o ?
S

AN e

: We also note a lesser known work by Gonzalez [12], who provided compact expressions for

gcomplete elliptic integrals in terms of Legendre polynomial series. These were found to be less

} obdent, although quite accurate, requiring a convergence acceleration scheme (see Ref. [13]) over

etain range of parameters. Although Carlson in Ref. [14] has provided robust schemes for elliptic

“'mnctions, the object of this work was to summarize and clarify the use of theta-functions for

avaluating elliptic integrals. Perhaps further work could be undertaken to compare more rigorously
the duplication formulae given by Ref. [15], with the theta-function expansions shown here. Finally,

© e merit in this work is due to the research that was conducted by the many early mathematicians

who devoted time towards functions which are not so well known, albeit remembered, today.
fronically, the use of these theta-functions vastly supersedes many present-day numerical integra-
tion techniques. Other applications of these functions can only be the subject of further research.

sdnowledgement—The authors wish to acknowledge the financial support of the Natural Sciences and Engineering
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APPENDIX A

7 Special Values
2 WPiete elliptic integral X(k) and E(k)
N E()=EGy=1 (A

X(1) = K'(6) = % (a.2)

FT s
WA

Al

[
) ‘
bl

T
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K(©) = K'()=n/2
E@=E)=7/2

Other special values and limiting cases can be found in Byrd and Friedman Ref. [3, Section 111}.

Incomplete elliptic integrals F(8,k) and E@6,k)
' E©, k)= F(0,k)=0
E(6,0)=F(6,0)=10
E(B,1)=sinf
F(8,1)=In(tan 6 + sec 9)
F(—8,k)=—F(8,k)
E(—0,k)= —E(8,k)
F(mn +0,k)=2mK(k) = F(,k)
E(mn £ 8,k)= 2mE(k) £ E(6,k)-

Complete elliptic integral I1(n /2,y3’, k)
Mx/2,y%, ) =0 (x/2, 1,k)=
(z/2,0,k) = K(k)
n@x/2,0,0)=m/2

n
H(n/2,y2 <1,0) =E(l_:;2—)l—7§‘

Incomplete elliptic integral I1(8, y2%, k)

no,74k)=0
116, 0, k) = F(6, k)
1(6,0,1)= F(0,1)=In(tan @ + sec 8)
I, 1,0)=tané
tanh~'[(y* — 1) tan 8]
y:-D"”
tanh~'((1 —7>)"* tan 0)
a-y"
k2F(0,k)— E(6,k)+ tan (1 —k* sin? 9)‘/2.
k. - ’
F14+ysind |
In(tan 6 +sec6) —v In Lm] .

H(G,y2>0,1)=_____——————l——_—y—2—_——————-——; yr#l

ne,y*>1,0=
ne,y*<1,0)=

ae1,k)= k#1

1—92
i . 2
H(O,k’,k):f(_eMzsméck________o_iM@—/;

ne,1,1)= sind L Foan(Ta
* U T 2c0stl 2 4 2]Y

Heuman lambda -function Ay(B, k) and Jacobian zeta-function VAl

@, y*<0,)=

k#1

Afn (2, k)= 1; Afmn[2,k)=m; m =0,1,2,...
-~ Z(n/2,k)=Z(0,k)=Ao(0,k)=Z(ﬂ,0)=0
AfB,0)=sin B
A8, ) =2B/n
Ao(—ﬂ,k)= — A8, k)
Afmn + B k)=2m % AfB, k).

(AR
(A18
(Ad%

—
g
ot

R i e

(A

A%

@an ’

a®
(AR

a®

(A??v !

Az g

(¥

2 k), 72<0, {circi
then the integral

C’{Pk(‘ nw
B “‘f?zs —-k,

” " Fog other cases, We note that t

[ ber

Complete neak), k2<y?’< 1
'~‘<~Wbcn7'1=k2 or k, the speci

d _

For other cases, there are two

!rhcte @ and ¢ are defined as:

Complete 11(y% k), 0 <y’ < ko
One special case is defined

] Complete 1% k), 72> 1. {hi

- This case is simply defined__
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APPENDIX B
Cempleie Eiliptic H(nj2,v7, k)

tion 111). e (2 k), v2< 0, {circular}
1z'= —k, then the integral reduces to
. 1
’ T(~k, k) = ————[r + 2(1 + k)K).
I( ) 4(1+k)[n+(+)K]
For other cases, we note that there are two equivaient expressions
' k*K 2N, k
G2 k) = =z YiAe($, k) ’
k2 =y 21—y (? — kD)2
- K . ylA8,k)~1]
oGy%Lk)= - )
v s e o
where
B . . 72 2 . . 1
=sint ()" o =
Camplete 172, k), k2<y?< 1, {circular}
When y2=k? or k, the special forms are:
E
"(kz, k) = ,7
nd
1
nk,k)=——nr 2(1 - k)k].
(k) = s e + 201~ k]
Foc other cases, there are two equivalent expressions:
T y(1 - A48, %))
OGLk) =K+ —— 020
2[0? = kD1 — 32
o
n v44(E, k)
nelky=s 27 _
K T e
ahere 6 and ¢ are defined as:
1—y3\12 ) Y —k2 \I2
d =sin~! N = N —— .
sin (l —kz) ¢ =sin A=
Complete I(y%, k), 0 < y? < k2, {hyperbolic}
] One special case is defined here when 7? = k2, hence this is given above. For other cases we note
vKZ(B, k)
ne k)y=K+_————= -
(1 =y k*—y2)'2
where
o B ='sin~!(y/k).
Complete I7 % k), yi> 1, {hyperbolic}
This case is simply defined by
1 . KZ (B, k
JeEN R—— L N
-~ [~ DG =k
“where
B =sin"'(1/y).
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(B.1)

(B-2)

(B.3)

(B.4)

(8.5

(B.6)

(B.7)

(B.8y

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)




