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ABSTRACT

Two-dimensional natural convection heat transfer from a
vertical plate is studied for a family of non-similar surface heat
flux variations. The investigation resulted in an approximate
but simple analytical method that predicts the local tempera-
ture and velocity distributions for laminar boundary layer flow
over a wide range of Prandtl numbers. A derivation is de-
tailed, and a number of illustrative results are presented. The
downstream variations of wall temperature and maximum ve-
locity level are compared with existing numerical data, which
was obtained for a case in air with a uniform surface heat flux
element mounted flush on a vertical adiabatic surface. The
agreement is good, and the qualitative characteristics of the
new results are consistent with those described in the numeri-
cal study. The method also adequately reproduces the results
that were predicted by using similarity methods for the case
with a line thermal source on an adiabatic surface.-

NOMENCLATURE
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a, A constants in Eq. (4)
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i*erfc z complementary error function integrated #-times,
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constants in Eq. (7)

constant defined by Eq. (31) or Eq. (34)
constants in Eq. (7)

square root of Prandtl number, +/Pr

local heat flux

non-dimensionalized local heat flux, ¢/quo
parameters defined by Eqs. {A.8) and (A.7)
pseudo-time defined in ¢t — y plane

pseudo-time when z = z,

temperature excess over ambient fluid temperature
non-dimensionalized temperature excess, T /Ty
local velocity parallel to plate, in z-direction
characteristic u-velocity across the boundary layer
local velocity normal to plate, in y-direction
vertical coordinate measured from leading edge
value of z at which functional discontinuity of
wall temperature occurs, see Eq. {4)

horizontal coordinate measured from plate surface

Greek Symbols

(o4
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.,
I'(z)

No

thermal diffusivity of fluid, &/(pc,)
thermal expansion coefficient, —(8p/3T)p/p
parameter, n9/n; or /(1 — 1/5)15/03

[+ ]
Gamma function, / t*" e dr
0

variable, y/v/4at int — y plane, or

(:',,/\/:S Gr:Y*.y/z inz—yplane
variable, y/m mt-y plane, or
Co/V(1~1/€)%-Gri/%.yjz in z —y plane

parameter, A(%) = 1/iferfc 0 = 2°T(”/2 + 1)
kinematic viscosity, u/p

non-dimensionalized z-coordinate, z/zq
modifying functions defined in Eqgs. (16) and (17),
4.'; =1 when z < x4



Subscripts

w0
wl

wall conditions for z < z,
wall conditions for z > z,

Dimensionless Groups

Gr; modified Grashof number, gfq,0z*/ki?
Nu, - local Nusselt number, ¢,0z/Twok

Pr Prandtl number, v/«

Ra] modified Rayleigh number, Gr]-Pr
INTRODUCTION

The study of natural convection heat transfer from a verti-
cal plate with a number of finite size heat sources has attracted
a great deal of interest over the past years. It has direct appli-
cations to thermal design of microelectronic circuit boards, and
other energy dissipating equipment under limiting situations.
Interests are focussed mainly on determining the magnitude
and location of the local maximum surface temperature, and
on understanding the downstream effects of the thermal plume
produced by a heated element.

Numerous investigators, using various methods and tech-
niques, have worked on cases of a step change in uniform

wall temperature (Schetz and Eichhorn, 1964, Hayday et al., .

1'967, Smith, 1970, Kelleher, 1971, Kao, 1975, Sokovishin and
Erman, 1982, Lee and Yovanovich, 1987). This thermal con-
dition is non-similar and renders mathematical singularities to
the boundary layer equations at the leading edge of the plate
and at the point of discontinuity. Thus, the resulting surface
heat flux becomes unbounded at these locations.

Conjugate problems, which concurrently account for the ef-
fects of heat conduction through the plate and heat convection
in the surrounding fluids, have been studied numerically with
experimental corroboration by Zinnes (1970}, Kishinami and
Seki (1983), and Kishinami et al. (1987).

The plate with prescribed heat flux variations has not re-
ceived much attention to date, despite the fact that it often
simulates realistic situations better than the plate with pre-
scribed temperature variations. Only recently, Jaluria (1982,
1983), using numerical methods, solved the two-dimensional
boundary layer equations, and the full elliptic equations for
problems with finite size uniform heat flux elements distributed
over an adiabatic surface. The solutions of the full elliptic equa-
tions reveal non-boundary layer effects in the temperature and
velocity fields.

In this paper, the two-dimensional natural convection heat
transfer from a vertical plate with a family of non-similar sur-
face heat flux variations is considered. The plate is semi-infinite
and suspended in a quiescent fluid which is maintained at uni-
form temperature. This study deals with boundary layer type
problems and is an extension of an approximate method re-
cently developed by the present authors in an earlier study
(Lee and Yovanovich, 1987).

A similar approximate approach has been adopted as be-
fore, and the analysis is presented in such a manner that of-
fers a direct comparison with that of the earlier study. The
method utilizes a linearization technique, formally called the
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Rayleigh transformation, with the von Karman-Pohlhausen in-
tegral method, and results in a simple analytical model. The
model predicts the local temperature and velocity distribu-
tions for the laminar boundary layer flow over a wide range
of Prandtl numbers. Comparisons are made with the afore-
mentioned numerical data of Jaluria (1985), for the case in
air with a step change in uniform surface heat fux. Also,
comparisons are made with the results obtained by using the
similarity methods for the case with a line thermal source on
an adiabatic surface (Jaluria and Gebhart, 1977). It is shown
that the downstream variations of wall temperature and max-
imum velocity level are in good agreement. A separate study
(Lee, 1988), which further extends the present model, shows a
possible application of this method to problems with general
heat flux variations at the wall.

ANALYSIS

Governing Equations. The natural convection prob-
lem under consideration deals with a vertical flat piate of large
transverse dimension with a surface heat flux variation pre-
scribed along the wall. The plate is located in an ambient
fluid which is maintained at uniform temperature. The con- -
servation of mass, momentum and energy for two-dimensional,
steady-state, laminar boundary layer flow yields the usual set
of governing differential equations expressed as

du | Jdv

e e = 1
az dy 0 (1)
a2 3 a*
aT oT T
—_— . = —_ 3
”az tv dy a8y2 @)

where z and y are coordinates parallel and normal to the plate,
respectively, u and v are corresponding components of the ve-
locity, and T is the local temperature excess over the ambi-
ent fluid temperature. These boundary layer equations as-
sume constant fluid properties except density variation which
is needed in the derivation of the buoyant term, the driving
force of the flow. The dynamic pressure work and viscous dis-
sipation terms with other minor effects have been neglected in
the above equations. The boundary conditions are

aty=0, u=v=0,
-—k?—T— = Quo = AT? for z < zo
8y
_k%z = qu, = AZ? + B(z — zo)} forz> 1o (4)
Y

asy —o0, u—0, T—0
atz=0, u=T=0
where a, b, A and B are constants.

Since the boundary layer approximations assume no diffu-
sion along the flow direction, the solution to the above set of
equations becomes less valid in the immediate vicinity of the




leading edge, at = = 0, and the location of functional change,
at £ = zo. The quantitative discrepancy introduced by the ap-
proximations has been examined by Jaluria (1985), who solved
a full set of two-dimensional elliptic equations by employing fi-
nite difference methods. Consider a plate generating heat with
negligible lateral thermal conduction. The plate dissipates en-
ergy directly into the fluid, and the surface heat Aux variation
thus coincides with the internal heat generation of the plate,
as such g0 > 0 and gy, > 0. The present analysis also allows
¢u1 to become negative, meaning the fluid is heating the plate,
provided that the temperature excess at any point within the
fluid is maintained positive.

Pseudo-Transient Equations. The set of equations,
Egs. (1-3), with the foregoing boundary conditions represents
an extremely complicated mathematical problem. The mo-
mentum and energy equations are mutually coupled and are
non-linear. Similarity solutions exist for £ < z,, but not for
z > Zo.

An approximate method which transforms the z-coordinate
into a pseudo-transient coordinate ¢ is introduced. A relation-
ship, called the Rayleigh transformation, between z and ¢ is
established as z = 4, x t, where u, represen.s a characteris-
tic streamwise velocity across the boundary layer. Since u. is
dependent only on z in space, a fixed downstream location z
corresponds to a fixed pseudo-time t over the boundary layer,
and the original £ — y plane is transformed into the t — v plane.
An assumption is made such that diffusion is dominant across
the boundary layer in the y-direction at any given time. This
implies that the temperature and velocity profiles would take
the form of transient conduction heat transfer into a half space.
Subsequently, the convective derivatives in the z — y plane,
shown on the left hand side of Eqgs. (2) and (3), are replaced
by the transient derivatives, resulting in the following pseudo-
transient equations:

o/ d*u
a_'t‘ = vgm + 96T (5)
aT T
i (©)

The associated boundary conditions that are compatible with
those in the z — y plane are

at y =0, v=0,
T A
‘ka_y=q'“°=‘~t /2 fort < to
_k%z = quy = NE L Mt - 1) fort >t ()
Yy

asy—o0, u—0, T—0
att =0, u=T=0

where #i, n, N and M are constants, ¢ is the transformed
pseudo-time, and ty is the corresponding time of the discon-
tinuity at z,.

The velocity normal to the wall does not appear in these
equations. Consequently, the continuity equation, Eq. (1), be-
comes irrelevant in the t — y plane. A qualitative discussion
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regarding this omission of the v-velocity has been briefly car-
ried out by Lee and Yovanovich (1987). The most notable
features that are different in these transformed equations from
the steady-state equations are the linearity of the dependent
variables u and T, and the unilateral decoupling of the tem-
perature field from the velocity field.

The solutions to the above transient equations with the
specified boundary conditions are obtained by means of either
Laplace transforms (Schetz and Eichhorn, 1962, Menold and
Yang, 1962), or similarity methods (Lee, 1988). The resulting
solutions for ¢t > tg are

= %& [quot!/?A(R) i**erfc no (8)

+(qw1 ~ quo)(t — to)ll2 A() i™Hlerfen, ]

wo £3/2 A(R) ngi*t2erfe ng

4v/agB
%
+{qu1 = quo)(t - t0)3/2 A(m) gy i™+2erfc m] forPr=1

u= 4\/3913_?__[

k 1-Pr
+(qu1 — quo)(t — t0)*/?

x A{m) (i7+3 7 _ i/m+3 £ ’7_1__]
(/) (™ erfcn; — i erc\/P)

w0 B2 A(R) (i 3erfc ng — 1+ 3erfc —10 (9)
Jwd ( )(l o c\/-PTl')

for Pr=1
r

where 7 and 77 are integers that are greater than or equal to
~2, no = y/Viat, 1 = y/\/da(t - to), and A(R) = 27T (3+1).
The above solutions were developed based on the method of
superposition, and the first terms represent the solutions for
t <ty ‘

Note that 2 = /i = 0 denotes uniform guo and gy, and
n = m = -1 is the condition for uniform T, and Ter in
the t — y plane. However, it will be observed that the latter
condition does not correspond to uniform T,y in the z—y plane,
for which the superposition is not allowed. This is discussed
further after the presentation of the reverse transformations of
the pseudo-time onto the spacial coordinates.

Now, the problem is reduced to finding a proper charac-
teristic velocity or velocities, u.(z), over the boundary layer,
and the values of 72 and . Determination of u.(z) defines the
transformation functions that will, in turn, convert the t — y
plane carrying the above solutions back to the z — y plane.

t — z Transformations for r < z,. The parameters from
the steady-state solutions for the given surface heat flux vari-
ations, and those appearing in the above pseudo-transient so-
lutions are compared as follows:

Nt/ (10)

Surface Heat Flux ; Azd =

v 4/
Reference Velocity Group; C.,;Gr;z/s = f\/—lc——-%Qwotslz (11)

. -1/52 = y 12
P GGl = o7 (1)
where C, and C:‘,, are dimensionless proportionality constants,
functions only of the exponent & and the Prandtl number. The
parameters shown on the left hand side of the above compar-
isons are from the similarity analysis of Sparrow and Gregg

Similarity Variable

L+I




{1956). Although they have reported the similarity transforma-
tions for the case of uniform surface heat flux, it can be verified
that the same parameters are valid for the present boundary
conditions of the power form at z < z5. This verification will
become apparent after the discussions in the following sections.

A manipulation of either Eq. (11) or Eq. (12) upon substi-
tution of Eq. (10) for guo yields

(13)

By rearranging Eqgs. (11) and (12) for ¢, we find, respectively,

: VPr é’u 3 z (14)
1 Z Gr;z/s

Pr z (15)
4C? £ Gr}*P

Both Egs. (14) and (15) express an identical functional form
for the characteristic velocity such that u, = viz- Gr'z/s/C
where C = (VPrC,/4)¥3 or C = Pr/(4C?). The former equa-
tion defines the time anticipated in the reference velocity group
and the latter defines the time anticipated in the similarity vari-
able. The values of the constants C"u and C~’,, are determined by
employing the von Kirman-Pohlhausen integral method, and
the derivation is provided in the appendix.

t — z Transformations for z > z;. Superposition of the
transformation functions is invalid, due to the non-linearity of
the problem. The t — z transformations are sought by adjust-
ing the characteristic streamwise velocity as follows:

t = = = Cé¢ 16

. ¢ £G1_.2/5 (16)

_ Z—ZTy _ z s T—Zg -

t=t = u, = Cqur'z/s (17

where C denotes, as previously defined, two different coeffi- .

cients. The function ¢ in Eq. (16) modifies the characteristic
velocity that would have been attained at the location of inter-
est if the thermal condition at the wall were maintained at guo.
The other function, ¥ in Eq. (17), represents the ratio of the
existing characteristic velocity over a new one that character-
izes the flow velocity in the secondary boundary layer initiated
at z = z,.

The modifying functions, é and zZv, are dimensionless and
dependent on the exponents @ and b, Pr, gs, and £, where
9u1 = 9uw1/uwo and £ = z/zg. The von Kirmén-Pohlhausen
integral method is again employed in evaluating ¢ and . The
derivation is described in the appendix for cases where @ = b.

An interesting and important observation can be drawn
from Eq. (17). Though ¢4, the corresponding pseudo-time at
fixed z¢, is constant in the t — y plane, it is no longer possible
to isolate the fixed t in the z — y plane. This makes the term
t — to a unique variable, and, for the same reason, the time
t in Eq. (17) is not the same ¢ as in Eq. (16). The fact that
there are two distinct time-spacial transformations, and the
existing characteristic velocity had to be modified by d;, are
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all parts of conditions that are required if the non-linearity
of the problem was to be restored through the transformation
functions for = > zo.

Recognizing that the present solutions must approach an-
other set of similarity solutions written in terms of ¢,, at large
z, when b= a, it is suggested to use the same relationship,
given by Eq. (13), between m and b in place of # and a.
Also, note that the coefficient C in Eq. (17) is dependent on b,
whereas that in Eq. (16) is dependent on &. Hence, if b # &, C
in Eq. (17) has to be evaluated separately from the appendix
with the corresponding values of the exponents.

RESULTS AND DISCUSSION

Upon substitution of the forefound transformations, Egs.
(16} and (17), into the pseudo-transient solutions given by Egs.
(8) and (9), a set of approximate solutions in the z — y plane
is obtained. For simplicity, only the cases of & = b are consid-
ered in this section. The resulting set of non-dimensionalized
solutions for z > zo may be expressed as

T =
TR ‘/_A(n)[fr(no) (gor — Dy fr(m)]  (18)
v G:-'z/”s Cu AR fulno) + (a5 — 1) ¥ fulmi)]  (19)

where
fr(n) = i**terfcn - (20)

ni**2erfc n forPr=1
fuln) = (i"‘”erfc n — i**3erfe ) forPr#1 (21)

1-P \/—
Mo = Co/\/& - Qe oy [z, my = no/y and v = /(1 - 1/6)9/3.
The values of Cy, C,,, ¢ and 1,b can be obtained from the ap-
pendix. The solutions to a problem in which the entire wall
is maintained at g, can be found from Egs. (18) and (19) by
discarding the last terms and setting d; = 1. It is also reas-
suring to note that, in the limit, as the value of the Prandt!
number approaches unity, all the expressions contained herein
for Pr # 1 become identical to those for Pr = 1.

Equations (18) and (19) are evaluated for a wide range of
Prandt! numbers with various surface heat flux ratios, ¢,;. The
surface heat flux ratio for general values of a is

-y

Dimensionless temperature and velocity distributions for
z < z¢ are shown in Figs. 1 and 2, respectively, for cases of
uniform surface heat flux with the variables converted to those
used in the study of Sparrow and Gregg (1956). These figures
show good agreement between the results obtained by using
the present method and those obtained by using the similarity
methods. Figures 3 and 4 depict the dimensionless tempera-
ture and velocity field developments in air responding to a step
change in uniform surface heat flux with ¢}, =1+ 3/4 =0

B
A

dwl
=12

w0

(22)
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—— Present Method for z < z¢
gl N - -—- Similarity Solution
X (Sparrow and Gregg, 1956)
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FiGc. 1 COMPARISON OF DIMENSIONLESS TEMPERATURE

DISTRIBUTIONS FOR VARIOUS PRANDTL NUMBERS WITH A
UNIFORM SURFACE HEAT FLUX.

and 2, where T\, is the wall temperature that would have been
attained at the location of interest if the entire wall had been
maintained at gyo. Shown in Fig. 5 is the temperature distri-
bution for the same parameters used in Fig. 3, except the value
of @ which is equal to —1/4. Figure 5 reveals the positive tem-
perature gradient at the downstream locations near the wall,
clearly depicting the heat transfer from the fluid to the plate
when 1+ B/A = 0. When B/4 is less than zero, g, given by
Eq. (22) is negative in the downstream region between £ =1
and £ =1/ [1— (B/A)Y].

The local wall temperature at the location z < zy may be
obtained from the first term of Eq. (18). Upon substituting
¢.'= 1 and ng = 0, it yields

Tuo = =z e —200 (23)

W cee- 14+ B/A=0
‘§‘\ —-— 1+8/A=2

FI1G.3 DIMENSIONLESS TEMPERATURE FIELD DEVELOP-
MENT WITH A STEP CHANGE IN UNIFORM SURFACE HEAT
FLUX, a=b=0: Pr=0.7.
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- Present Method for z < z4
/ --—- Similarity Solution
Sk (Sparrow and Gregg, 1956)
.4
"
B
./'\
afgle 3
SN

1

0 .5 1 1.5

G\ V8

2=z

)
FI1G.2 COMPARISON OF DIMENSIONLESS VELOCITY DIS-

TRIBUTIONS FOR VARIOUS PRANDTL NUMBERS WITH A
UNIFORM SURFACE HEAT FLUX.
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A dimensionless local heat transfer coefficient at z < zg is,
therefore,

Nu, C, AR+1)

Ra;”® PO/ A(R) (24)

The coefficient is evaluated for the uniform surface heat flux
case over a wide range of Prandt]l numbers. For this case,n =0
results in A(?) = 1 and A(R+1) = /7. This is compared to an
existing correlation equation of Fujii and Fujii (1976) in Fig.
6, where a maximum difference of 17% is observed when the
value of the Prandtl number is around 10%. The correlation
equation is rewritten here as

Nu, _ ( Pr )‘/5 (25)

Ra;'® = \4+9v/Pr + 10Pr

—-== 1+B8/A=0
—— 14 B/A=2

1.8

G\

2=

5
FIG. 4 DIMENSIONLESS VELOCITY FIELD DEVELOPMENT

WITH A STEP CHANGE IN UNIFORM SURFACE HEAT FLUX,
a=b=0: Pr=0.7.
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FIG.5 DIMENSIONLESS TEMPERATURE FIELD DEVELOP-
MENT : & =b=~1/4, Pr=0.7.

A dimensionless local wall temperature at the location z >
Zo may be expressed as

. Tw - - N
=—‘=\/; [1+(go — )] (26)

wl TwO

Notice that while the value of T, at fixed z differs depending
on the expression chosen between the calculated and correlated
coefficients, T, given by Eq. (26), is independent of the choice.

The selected wall temperature variations obtained by using
Eq. (26) are plotted in Figs. 7 and 8 for 3 =0 and @ = —1/4,
respectively. The values indicated by arrows are the asymp-
totic values at large z, and they are from

5 4/5 .
lim T3, = (1 + ]) _ (27)

Both Figs. 7 and 8 depict the faster thermal response of a
higher Prandtl number fluid to the surface heat flux change.
Further, the responses seen from Fig. 8 are much faster when

-—

= Awymplotle Limita s
0 I ! ! 1 ! 1 L —
1 1.5 2 2.5 3

—— Eq. (24)

~ === Correlation Eq. (25)
(Fujii and Fujii, 1976)
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FIG. 6 COMPARISON OF Nu,/Ra]!/*

PRANDTL NUMBER : UNIFORM SURFACE HEAT FLUX CASE.

AS A FUNCTION OF

compared with those seen from Fig. 7. From Eq. (23), Tyo is
uniform when ¢, is proportional to z=4. Since gy, ~ quo is
proportiocnal to (z — zp)~!/* for z > z4, the downstream wall
temperature variations shown in Fig. 8 would be uniform and
equal to the corresponding asymptotic values if superposition
were valid in the z — y plane. Thus, the deviation of the wall
temperature at z > z, from their corresponding asymptotic
values in Fig. 8 is attributed to the non-linear effects on the
temperature fleld.

The wall temperature variation due to a finite size strip
source of uniform surface heat flux, located on an adiabatic
surface in air, is evaluated along the flow direction. The results
are compared in Fig. 9 with Jaluria’s numerical data (1985).
Also compared in this figure is the local maximum streamwise
velocity of the flow with the variables converted to those of
Jaluria’s study. Figure 9 contains an additional comparison
between the results obtained by using the present method and
those obtained by using the similarity methods (Jaluria and
Gebhart, 1977), for a vertical adiabatic surface with a line

Pr=10

= Pr=1
~ —-=— Pr=01
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1% Present Method
;f:g? —-— Present Method ; &, from Eqgs. (24) and {25)
o Ll e Numerical Solution (Jaluria, 1985)
Ial® — — — Similarity Solution
i {Jaluria and Gebhart, 1977, Jaluria, 1985)
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FiG.9 COMPARISON OF WALL TEMPERATURE AND MAX-
IMUM VELOCITY VARIATIONS : ¢, =0, Pr =0.7.

source located at the leading edge. The total amount of energy
dissipated by the line source is sized to be the same as that
dissipated by the strip source, so that the asymptotic behavior
of the results may be examined. The present method simulates
this line source by using a thin source, that has a width of one-
hundredth of the strip source at the leading edge. Jaluria’s
results compared in Fig. 9 are retrieved by carefully discretizing
his reported plots that are contained in the numerical study
(Jaluria, 1985). '

The comparisons are in good agreement. The qualitative
behavior predicted by using the present method is essentially
the same as that obtained by using the other methods. Un-
like T, of Eq. {26), the magnitude of the dimensionless wall
temperature, 4,, in Fig. 9 is dependent on the choice of the ex-
pression for the heat transfer coefficient. The values of é’u and
C, from the appendix are used in Egs. (18) and (19) for the
variations drawn by the solid lines. The wall temperature vari-
ation depicted by the chain line is also obtained from Eq. (18),
except it is evaluated by using C~',, that is directly obtained by

equating Eqgs. (24) and (25). It is worthwhile stressing that the

difference in the values of C, from these two different sources
is a constant scaling factor, so that it alters the overall magni-
tude of the wall temperature variation while maintaining the
surface heat flux as prescribed. Although the value of C, ob-
tained by equating Eqs. (24) and (25) conserves neither energy
nor momentum over the boundary layer in general, it is rec-
ommended to be used when the Prandtl number is greater
than 0.1, as the deviation in the heat transfer rate from that
of the correlation equation of Fujii and Fujii (1976) becomes
significant, as shown in Fig. 6. Jaluria’s numerical prediction
overestimates the wall temperature by approximately 5% at
€ = 1, when it is compared to the result of Eq. (18) evaluated
with C, from Egs. (24) and (25).

The solutions, obtained by using the similarity methods
for the case of uniform surface heat flux, indicate that the
local wall temperature variation is proportional to z1/5, and the
maximum How velocity is proportional to z*/% (Sparrow and
Gregg, 1956). The results reported by Jaluria and Gebhart
(1977), who also used similarity methods for the case with
a line source, show that the local wall temperature variation
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FIc. 10 WALL TEMPERATURE AND MAXIMUM VELOCITY
VARIATIONS : ¢, =0, Pr =0.7.
is proportional to z~%°%, and the maximum flow velocity is
proportional to z%/5. Figure 10 reveals perfect agreement of the
results obtained by using the present method in this regard.
The remainder of this section establishes relationships be-
tween the approximate solutions to problems with prescribed
wall temperature variations of the power form and those with
the prescribed surface heat flux variations for z < zo.
Consider the governing differential equations, Egs. (1-3),
with the boundary conditions given by Eq. (4), except the ther-

mal conditions at y = 0 are replaced by
T = Tyo = Az® (28)

where a¢ and A are constants. The approximate solutions to
this problem were found (Lee and Yovanovich, 1987) as

A A(n)iterfcn (29)
w0
Cy A{n) nittlerfcn for Pr=1
u - 2 ne2 nt2 n
Ny Cy A(n) % (i**%erfc n — it 2erfc \/—ﬁ) (30)

for Pr#1

where n = C,(Gr./4)Yy/z ,
local Grashof number, and

A(-) is as defined, Gr, is the

4a
n=

== (31)

The coefficients C, and C, are constants that are analogous to
C-',, and (:',,.

The above solutions become identical to Eqs. (18) and (19)
for £ < zo when Eq. {23) is substituted for T\ and the follow-
ing relationships are satisfied:

Ch=4 Zm / (32)
. QA(Y-I.) 1/2

C“‘C“[4 A(n)] (®)

n=n+1 (34)




The relationship between a and & may be obtained from
Eq. (34) by substituting Egs. (13) and (31) for # and n, re-
spectively. That is

(35)

The same relationship may be obtained by substituting T, =
Az® and g0 = Az® into Eq. (23). Equation (33) determines
the functional variation of one type of boundary condition sub-
jected to the other. Sparrow and Gregg (1958) have found this
relationship by using similarity methods. The foregoing dis-
cussion indicates that a problem with 2 prescribed wall tem-
perature variation and one with a prescribed surface heat flux
variation are essentially the same problem when the variations
are given in the power form.
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APPENDIX

Derivation of (:‘,, and C~',.,. The dimensionless propor-

tionality constants, C, and C:',,, needed in the t — z transfor-
mation functions for z < z, may be evaluated by using the
von Kdrmén-Pohlhausen integral method. Integration of the
momentum and energy equations, Egs. (2) and (3), across the
boundary layer, followed by another integration of the energy
equation from the leading edge of the plate, z 0, to the
location of interest yields

d (= , Ju ©
— = Td Al
/0 u dy-\‘-u(ay)v:o gﬂ[) y (A1)

dz
E/°°Tudy=/zq.,dz (A.2)
alo 0
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where we have used the continuity equation, Eq. (1). Although
direct substitutions of the solutions given by Eqs. (18) and (19)
for z < zy into the above integral equations provide the iden-
tical results, it is simpler to utilize the forefound relationships
given by Egs. (32) and (33). They express C, and C in terms
of C, and C,, where C, and C, can be obtained from the ap-
pendix of the earlier study (Lee and Yovanovich, 1987) with
corresponding values of n and a as defined by Egs. (34) and

(35).

Derivation of ¢ and ¥. The modifying functions ¢ and
¥, required in the t — z transformations for z > z,, are eval-
vated by using the von Kdrmdn-Pohlhausen integral method
for the wall conditions prescribed in Eq. (4). For simplicity,
however, only the conditions where @ = b are concerned in this
derivation. Substitute solutions given by Egs. (18) and (19)
for T and u, respectively, and Eq. {4) for g, into Eqgs. (A.1)
and {A.2), evaluate, simplify, and rearrange to obtain

5 1 d
Ba+7)/s 3172 31 1 oo

3G +7T c(3a+z)/s¢ dc [ ¢ ] =GOy (A.3)
55/2}& = q: (A4)

where
Mo = 14 (g =1 + (g = )vhm  (A5)
He = 1+ (g5 —1)*7° + (g5 — ke (A.6)
9 = 1+ (g - 1) (A7)

. Lt 1

g = l+{g-1Q1- E) (A.8)
and - € = z/z0, 7 = /(1 ~1/€)%/¢. Here, the relationship

between (:”,, and C, was used, and

27 52 fu(n) fuln) dn

L S HO Y (4
_ Y I fr(vm) fuln) dn+ I3 fr(n /) fu(n) dn
the = I fr(n) fu(n) dn (4.10)

where fr(-) and f,(-) are defined by Eqgs. (20) and (21), respec-
tively.

The parameters k., and k, are both functions of 7, Pr, and
4. Although it is possible to derive recurrence relationships
for hn, and h, in terms of 7, only the expressions for the case
where i = 0, a step change in uniform surface heat flux, are
shown below for brevity. They are, for Pr =1,

7 LR, 2435~2(1 23/2_12 14+ 2Y7/2
qhy = RUETPATYIH124 7 (1+4°) (1+4%) (A.11)
19 - 132

2+ 5 5T+ 221 +42)52

~h, = W (A.12)

or, for Pr #1,

Yhm = [(l—p)(l—p’){ﬂv’*/’(1+7’H2(1+p_’)(1+p—p’)(1+7’)}(A-13)
-:-2p3(1+p)(1+72)7,/2 _2(p2+72)7/z —2(1+p372)7/2}'

+ (27478 + (V- 9) (' +£%) + Tt 2= 2(1+57) 17

~h, = {4p3(1 + ,72)5/2 -201 +p272)s/z _ 2(p"' - ,72)5/2 (A.14)
+2(1 - 29+ p°)(1+ %) + 5572 (1 = p)(1 + )]
+ [2p° + (8vZ - 9)p® + 5p% +2 - 2(1 + Py
where p = vPr.
The corresponding expressions for the case where 71 = —1
or @ = —1/4 may also be found in the appendix of the earlier

study that was carried out by Lee and Yovanovich (1987), for
the case with a step change in uniform wall temperature.
Expanding the derivative, Eq. (A.3) becomes
s/ 56 [7de%? 252 AX.
2N + —— 17— =gt
¢ G+7 [5 g mTe g = (A
Under a further manipulation, this becomes

d~* 3‘_‘527; [(3&‘*‘7)(0;7)’:; "‘1"01) = %(q;u - 1)] .)aJ:ae a?lzlae
df OHen (Ty30y _ IN./54%3%
3Hm 3He

(A.16)

and ¥* =0at £ =1.

This initial value of 4* at £ = 1 can be obtained by con-
sidering the conditions that have to be satisfied at £ = 1. It is
clear that at £ = 1, or z = z,, the t — z transformations for
z £ zo and those for z > z5 should be continuous, resulting
in ¢ = 1. Hence Eq. (A.4) results in ¥, = 1, and in turn,
Eq. (A.6) suggests v = 0.

Equation (A.4) and the following expressions were used in
the above manipulation.

a+1

d$5/2

— _1_ . _ _"5/zd}(e AT
i i
X _ oM O 4v (A.18)
d¢ 8¢ ' 3vtoy dE ,

where, Eq. (A.17) is derived from Eq. (A.4), and X denotes ei-
ther Xm or X.. Equation (A.18) is formed such that singularity
problems anticipated in the numerical evaluation of Eq. (A.16)
are avoided. Also, the partial derivatives of ¥, and X, with
respect to £ and  may be obtained from Egs. (A.5) and (A.6).

Equation (A.16) combined with Eqgs. (A.3) through (A.10)

is a first order ordinary differential equation that may be solved o

numerically for 43 with given ¢, and Pr. Note that this dif-
ferential equation becomes considerably simpler when'a = 0,
the case of a step change in uniform surface heat flux, since
the last_three terms in the numerator vanish. Upon finding 4*,
& and ¥ can be obtained respectively from Eq. (A.4) and the
definition of « stated earlier.
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